Как обнаружили вред от радиации. Есть ли радиация в чернобыле и каково ее влияние на человека

Радиация - невидима, неслышима, не имеет вкуса, цвета и запаха, а посему ужасна. Слово «радиация » вызывает паранойю, ужас или непонятное состояние, сильно напоминающее тревогу. При непосредственном воздействии радиации может развиться лучевая болезнь (в этот момент тревога перерастает в панику, потому что никто не знает, что это и как с этим бороться). Получается, радиация смертельна… но не всегда, иногда даже и полезна.

Так что же это такое? С чем её едят, эту радиацию, как пережить встречу с ней и куда позвонить, если она случайно пристанет на улице?

Что такое радиоактивность и радиация?

Радиоактивность — неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Далее мы будем говорить лишь о той радиации, которая связана с радиоактивностью.

Радиация , или ионизирующее излучение — это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.

Какая бывает радиация?

Различают несколько видов радиации.

  • Альфа-частицы : относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.
  • Бета-частицы — это просто электроны.
  • Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.
  • Нейтроны — электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.
  • Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце — один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.

Ультрафиолетовое излучение и излучение лазеров в нашем рассмотрении не являются радиацией.

Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества — например, обычная одежда (если, конечно, источник излучения находится снаружи).

Следует различать радиоактивность и радиацию . Источники радиации — радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) — могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе.

К чему может привести воздействие радиации на человека?

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.
Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь . Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых.

Что же касается часто упоминаемых генетических (т.е. передаваемых по наследству) мутаций как следствие облучения человека, то таковых еще ни разу не удалось обнаружить. Даже у 78000 детей тех японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не было констатировано какого-либо увеличения числа случаев наследственных болезней (книга «Жизнь после Чернобыля» шведских ученых С.Кулландера и Б.Ларсона ).

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

Как радиация может попасть в организм?

Организм человека реагирует на радиацию, а не на ее источник.
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем обучении.
Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.
Внутреннее облучение значительно опаснее внешнего.

Передается ли радиация как болезнь?

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

Конечно, можно «испачкать » тело или одежду радиоактивной жидкостью, порошком или пылью. Тогда некоторая часть такой радиоактивной «грязи» — вместе с обычной грязью — может быть передана при контакте другому человеку. В отличие от болезни, которая, передаваясь от человека к человеку, воспроизводит свою вредоносную силу (и даже может привести к эпидемии), передача грязи приводит к ее быстрому разбавлению до безопасных пределов.

В каких единицах измеряется радиоактивность?

Мерой радиоактивности служит активность . Измеряется в Беккерелях (Бк ), что соответствует 1 распаду в секунду . Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).
Также встречается еще такая единица активности, как Кюри (Ки ). Это — огромная величина: 1 Ки = 37000000000 (37*10^9) Бк .
Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду .

Как было сказано выше, при этих распадах источник испускает ионизирующее излучение. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза . Часто измеряется в Рентгенах (Р ). Поскольку 1 Рентген — довольно большая величина, на практике удобнее пользоваться миллионной (мкР ) или тысячной (мР ) долями Рентгена.
Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы. Единица измерения мощности экспозиционной дозы — микроРентген/час .

Мощность дозы, умноженная на время, называется дозой . Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).
Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы . Измеряются, соответственно, в Зивертах (Зв ) и Зивертах/час (Зв/час ). В быту можно считать, что 1 Зиверт = 100 Рентген . Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров — приблизительно 0,003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения .

Теперь абсолютно понятна типичная ошибка средств массовой информации, сообщающих: «Сегодня на такой-то улице обнаружен радиоактивный источник в 10 тысяч рентген при норме 20 ».
Во-первых, в Рентгенах измеряется доза, а характеристикой источника является его активность. Источник в столько-то Рентген — это то же самое, что мешок картошки весом в столько-то минут.
Поэтому в любом случае речь может идти только о мощности дозы от источника. И не просто мощности дозы, а с указанием того, на каком расстоянии от источника эта мощность дозы измерена.

Далее можно высказать следующие соображения. 10 тысяч рентген/час — достаточно большая величина. С дозиметром в руках ее вряд ли можно измерить, так как при приближении к источнику дозиметр прежде покажет и 100 Рентген/час, и 1000 Рентген/час! Весьма трудно предположить, что дозиметрист продолжит приближаться к источнику. Поскольку дозиметры измеряют мощность дозы в микроРентгенах/час, то можно предполагать, что и в данном случае речь идет о 10 тысяч микроРентген/час = 10 миллиРентген/час = 0,01 Рентгена/час. Подобные источники, хотя и не представляют смертельной опасности, на улице попадаются реже, чем сторублевые купюры, и это может быть темой для информационного сообщения. Тем более что упоминание о «норме 20» можно понимать как условную верхнюю границу обычных показаний дозиметра в городе, т.е. 20 микроРентген/час.

Поэтому правильно сообщение, по-видимому, должно выглядеть так: «Сегодня на такой-то улице обнаружен радиоактивный источник, вплотную к которому дозиметр показывает 10 тысяч микрорентген в час, при том что среднее значение радиационного фона в нашем городе не превосходит 20 микрорентген в час».

Что такое изотопы?

В таблице Менделеева более 100 химических элементов. Почти каждый из них представлен смесью стабильных и радиоактивных атомов , которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 — стабильные.
Например, у первого элемента таблицы Менделеева — водорода — существуют следующие изотопы:
водород Н-1 (стабильный)
дейтерий Н-2 (стабильный)
тритий Н-3 (радиоактивный, период полураспада 12 лет)

Радиоактивные изотопы обычно называют радионуклидами .

Что такое период полураспада?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.
Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.
Абсолютно ошибочной является следующая трактовка понятия «период полураспада»: «если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час — вторая половина, и это вещество полностью исчезнет (распадется) «.

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа — в 4, через 3 часа — в 8 раз и т.д., но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида — свой период полураспада , он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно .
Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

Что вокруг нас радиоактивно?

Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма (по данным А.Г.Зеленкова, 1990).

По происхождению радиоактивность делят на естественную (природную) и техногенную.

а) Естественная радиоактивность
Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.

Учтем, что современный человек до 80% времени проводит в помещениях — дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне, в стройматериалах, из которых они построены, содержится природная радиоактивность. Существенный вклад в облучение человека вносит радон и продукты его распада.

б) Радон
Основным источником этого радиоактивного инертного газа является земная кора. Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях. Другой источник радона в помещении — это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются источником радона. Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д.
Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.
Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении; регулярное проветривание может снизить концентрацию радона в несколько раз.
При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких.
Сравнить мощность излучения различных источников радона поможет следующая диаграмма.

в) Техногенная радиоактивность
Техногенная радиоактивность возникает вследствие человеческой деятельности.
Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона. Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд.
Так, например, исследования нефтепромыслов на территории России показывают значительное превышение допустимых норм радиоактивности, повышение уровней радиации в районе скважин, вызванное отложением на оборудовании и прилегающем грунте солей радия-226, тория-232 и калия-40. Особенно загрязнены действующие и отработавшие трубы, которые нередко приходится классифицировать как радиоактивные отходы.
Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения.
И, конечно, свой вклад дают испытания ядерного оружия, предприятия атомной энергетики и промышленности.

Безусловно, возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п. Таки ситуации, к счастью, ОЧЕНЬ РЕДКИ. Кроме того, их опасность не следует преувеличивать.
Для сравнения, вклад Чернобыля в суммарную коллективную дозу радиации, которую получат россияне и украинцы, проживающие на загрязненных территориях, в предстоящие 50 лет составит всего 2%,тогда как 60% дозы будут определяться естественной радиоактивностью.

Как выглядят часто встречаемые радиоактивные предметы?

Согласно данным МосНПО «Радон», более 70 процентов всех выявляемых в Москве случаев радиоактивных загрязнений приходится на жилые массивы с интенсивным новым строительством и зеленые зоны столицы. Именно в последних в 50-60-е годы располагались свалки бытового мусора, куда свозились также низкорадиоактивные промышленные отходы, считавшиеся тогда относительно безопасными.

Кроме того, носителями радиоактивности могут быть отдельные предметы, изображенные ниже:

Переключатель со светящимся в темноте тумблером, кончик которого покрашен светосоставом постоянного действия на основе солей радия. Мощность дозы при измерениях «в упор» — около 2 миллиРентген/час

Является ли компьютер источником радиации?

Единственной частью компьютера, в отношении которой можно говорить о радиации, являются только мониторы на электронно-лучевых трубках (ЭЛТ); дисплеев других типов (жидкокристаллических, плазменных и т.п.) это не касается.
Мониторы, наряду с обычными телевизорами на ЭЛТ, можно считать слабым источником рентгеновского излучения, возникающим на внутренней поверхности стекла экрана ЭЛТ. Однако благодаря большой толщине этого же стекла, оно же и поглощает значительную часть излучения. До настоящего времени не обнаружено никакого влияния рентгеновского излучения мониторов на ЭЛТ на здоровье, тем не менее все современные ЭЛТ выпускаются с условно безопасным уровнем рентгеновского излучения.

В настоящее время в отношении мониторов общепризнанными для всех производителей являются шведские национальные стандарты «MPR II», «TCO-92», -95, -99 . Эти стандарты, в частности, регламентируют электрические и магнитные поля от мониторов.
Что касается термина «low radiation» («низкий уровень излучения»), то это не стандарт, а всего лишь декларация изготовителя о том, что он предпринял нечто, лишь ему известное, с тем чтобы уменьшить излучение. Аналогичный смысл имеет менее распространенный термин «low emission».

Нормы, действующие в России, изложены в документе «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» (СанПиН СанПиН 2.2.2/2.4.1340-03), полный текст находится по адресу, а краткая выдержка о допустимых значениях всех видов излучений от видеомониторов — здесь.

При выполнении заказов на радиационный контроль офисов ряда организаций г.Москвы, сотрудниками ЛРК-1 было проведено дозиметрическое обследование около 50 мониторов на ЭЛТ разных марок, с размером диагонали экрана от 14 до 21 дюйма. Во всех случаях мощность дозы на расстоянии 5 см от мониторов не превосходила 30 мкР/час, т.е. с трехкратным запасом укладывалась в допустимую норму (100 мкР/час).

Что такое нормальный радиационный фон?

На Земле существуют населенные области с повышенным радиационным фоном. Это, например, высокогорные города Богота, Лхаса, Кито, где уровень космического излучения примерно в 5 раз выше, чем на уровне моря.

Это также песчаные зоны с большой концентрацией минералов, содержащих фосфаты с примесью урана и тория — в Индии (штат Керала) и Бразилии (штат Эспириту-Санту). Можно упомянуть участок выхода вод с высокой концентрацией радия в Иране (г. Ромсер). Хотя в некоторых из этих районов мощность поглощенной дозы в 1000 раз превышает среднюю по поверхности Земли, обследование населения не выявило сдвигов в структуре заболеваемости и смертности.

Кроме того, даже для конкретной местности не существует «нормального фона» как постоянной характеристики, его нельзя получить как результат небольшого числа измерений.
В любом месте, даже для неосвоенных территорий, где «не ступала нога человека», радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности.

Измерения радиационного фона в городе Москве позволяют указать ТИПИЧНЫЕ значение фона на улице (открытой местности) — 8 — 12 мкР/час , в помещении — 15 — 20 мкР/час .

Какие бывают нормы радиоактивности?

В отношении радиоактивности существует очень много норм — нормируется буквально все. Во всех случаях проводится различие между населением и персоналом, т.е. лицами, чья работа связана с радиоактивностью (работники АЭС, ядерной промышленности и т.п.). Вне своего производства персонал относится к населению. Для персонала и производственных помещений устанавливаются свои нормы.

Далее будем говорить только о нормах для населения — той их части, которая прямо связана с обычной жизнедеятельностью, опираясь на Федеральный Закон «О радиационной безопасности населения» № 3-ФЗ от 05.12.96 и «Нормы радиационной безопасности (НРБ-99). Санитарные правила СП 2.6.1.1292-03».

Основная задача радиационного контроля (измерений радиации или радиоактивности) состоит в определении соответствия радиационных параметров исследуемого объекта (мощность дозы в помещении, содержание радионуклидов в строительных материалах и т.д.) установленным нормам.

а) воздух, продукты питания и вода
Для вдыхаемого воздуха, воды и продуктов питания нормируется содержание как техногенных, так и естественных радиоактивных веществ.
В дополнение к НРБ-99 применяются «Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов (СанПиН 2.3.2.560-96)».

б) стройматериалы
Нормируется содержание радиоактивных веществ из семейств урана и тория, а также калий-40 (в соответствии с НРБ-99).
Удельная эффективная активность (Аэфф) естественных радионуклидов в строительных материалах, используемых для вновь стоящихся жилых и общественных зданий (1 класс),
Аэфф = АRa +1,31АTh + 0,085 Ак не должна превышать 370 Бк/кг,
где АRa и АTh — удельные активности радия-226 и тория-232, находящиеся в равновесии с остальными членами уранового и ториевого семейств, Ак — удельная активность К-40 (Бк/кг).
Также применяются ГОСТ 30108-94 «Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов» и ГОСТ Р 50801-95 «Древесное сырье, лесоматериалы, полуфабрикаты и изделия из древесины и древесных материалов. Допустимая удельная активность радионуклидов, отбор проб и методы измерения удельной активности радионуклидов».
Отметим, что согласно ГОСТ 30108-94 за результат определения удельной эффективной активности в контролируемом материале и установления класса материала принимается значение Аэфф м:
Аэфф м = Аэфф + DАэфф , где DАэфф — погрешность опеределения Аэфф .

в) помещения
Нормируется суммарное содержание радона и торона в воздухе помещений:
для новых зданий — не более 100 Бк/м3, для уже эксплуатируемых — не более 200 Бк/м3.
В городе Москве применяются МГСН 2.02-97 «Допустимые уровни ионизирующего излучения и радона на участках застройки».

г) медицинская диагностика
Не устанавливаются предельные дозовые значения для пациентов, однако выдвигается требование минимально достаточных уровней облучения для получения диагностической информации.

д) компьютерная техника
Мощность экспозиционной дозы рентгеновского излучения на расстоянии 5 см от любой точки видеомонитора или персональной ЭВМ не должна превышать 100 мкР/час. Норма содержится в документе «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» (СанПиН 2.2.2/2.4.1340-03).

Как защититься от радиации?

От источника радиации защищаются временем, расстоянием и веществом.

  • Временем — вследствие того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения.
  • Расстоянием — благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния). Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мкР/час, то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мкР/час.
  • Веществом — необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит.

Что касается главного источника облучения в помещениях — радона и продуктов его распада, то регулярное проветривание позволяет значительно уменьшить их вклад в дозовую нагрузку.
Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы — благо их ассортимент ныне чрезвычайно богат.

Помогает ли от радиации алкоголь?

Алкоголь, принятый незадолго до облучения, в некоторой степени способен ослабить последствия облучения. Однако его защитное действие уступает современным противорадиационным препаратам.

Когда думать о радиации?

Всегда думать. Но в обыденной жизни крайне мала вероятность столкнуться с источником радиации, представляющим непосредственную угрозу для здоровья. Например, в г. Москве и области фиксируется менее 50 подобных случаев в год, причем в большинстве случаев — благодаря постоянной планомерной работе профессиональных дозиметристов (сотрудников МосНПО «Радон» и ЦГСЭН Москвы) в местах наиболее вероятного обнаружения источников радиации и локальных радиоактивных загрязнений (свалки, котлованы, склады металлолома).
Тем не менее именно в обыденной жизни иногда о радиоактивности следует вспомнить. Это полезно сделать:

  • при покупке квартиры, дома, земельного участка,
  • при планировании строительных и отделочных работ,
  • при выборе и приобретении строительных и отделочных материалов для квартиры или дома
  • при выборе материалов для благоустройства территории вокруг дома (грунт насыпных газонов, насыпные покрытия для теннисных кортов, тротуарная плитка и брусчатка и т.д.)

Следует все-таки отметить, что радиация — далеко не самая главная причина для постоянного беспокойства. По разработанной в США шкале относительной опасности различных видов антропогенного воздействия на человека, радиация находится на 26 -м месте, а первые два места занимают тяжелые металлы и химические токсиканты .

Ионизирующие излучение или радиация вредна для здоровья, это знаю все. Но какие болезни возникают под действием облучения, какая доза может быть безопасной для человека, а какая может его убить?

Радиация – невидимая опасность

Безопасная доза облучения

Где человек получает дозы радиации? Не стоит забывать о естественной радиации. В разных точках планеты радиационный фон может отличаться в разы. Так, на горных вершинах радиация выше, т. к. там у атмосферы защитные свойства ниже. Повышенная радиация может быть и в местах, где в воздухе много пыли и песка с торием и ураном.

Какая же доза излучения может быть безопасной, предельно допустимой, и организм не пострадает? Оно не должно превышать 0,3- 0,5 мкЗв в час. Но если находиться в этом помещении недолго, то организм человека без вреда для здоровья переносит излучение мощностью в 10 мкЗ в час, это предельно допустимый уровень радиации.

Опасная доза облучения

Если предельно допустимый уровень излучения превышен, в организме пострадавшего происходят изменения. Как действует на человека радиация, что может быть в организме под ее влиянием? В таблице ниже приведены дозы облучения и их воздействие на человека.

Доза облучения (в год) Влияние на человека
0,05 мЗв Допустимый уровень радиации, который должен быть около ядерных объектов.
0,3 — 0,6 мЗв Излучают искусственные источники излучения (медицинские аппараты)
3 мЗв Излучают природные источники, норма
3 — 5 мЗв Получают шахтеры на урановых рудниках
10 мЗв Предельно допустимый уровень излучения, получаемый шахтерами при добыче урана
20 мЗв Предельно допустимый уровень проникающего облучения для людей, работающих радиацией
50 мЗв Это допустимый (самый низкий) уровень облучения, после которого уже возникают онкологические заболевания
1 Зв (1000 мЗв) Последствия не такие серьезные. Если облучение недолгое, организм может отреагировать недомоганием, которое не грозит жизни человека. Но через несколько лет есть вероятность заболеть раком.
2-10 Зв Кратковременное облучение приведет к развитию лучевой болезни, это не смертельная доза, но последствия могут быть серьезными: может быть фатальный исход
10 Зв Поражающее излучение. Это смертельная доза, которую организм человека не вынесет. Болезнь и смерть в течение нескольких недель.

Заболевания, которые появляются из-за радиации

Есть химические элементы (плутоний, радий, уран и т.д.), которые способны к спонтанным превращениям. Они сопровождаются потоком излучения. Впервые его обнаружили у радия, поэтому назвали радиоактивным распадом, а излучение радиоактивным. Другое его название проникающая радиация.

Генетические последствия проникающего излучения плохо изучены

Мутации

Ученые знают, что из-за радиации бывают мутации. Поражающее излучение вызывает изменения. Но пока генетические последствия, мутации проникающего излучения плохо изучены. Дело в том, что мутации дают о себе знать только через поколения, и понадобится немало сотен лет, чтобы мутации проявились. Да и непонятно, связано ли их возникновение с радиацией или же мутации вызваны другими причинами.

Также трудность заключается в том, что большинство детей с аномалиями не успевают родиться, у женщин происходит спонтанный аборт, ребенок с отклонениями может не родиться. Мутации бывают доминантными (сразу дают о себе знать), и рецессивными, которые проявляются только тогда, если у папы и мамы ребенка один и тот же ген мутантный. Тогда мутации могут не проявляться несколько поколений или же вообще не повлияют на жизнь человека и его потомков.

После трагедии в Хиросиме и Нагасаки изучили 27 тыс. детей. Их родители на себе почувствовали воздействие существенных доз радиации. У них обнаружили всего две мутации в организме. А такое же количество детей, чьи отец и мать подверглись не такому сильному облучению, вообще не было мутации. Однако это еще ни о чем не говорит. Изучение влияния излучения на человека, мутации началось не так давно, и возможно нас ждут и другие «сюрпризы».

Лучевая болезнь

Возникает или при однократном сильном облучении или же при постоянном облучении сравнительно небольшими дозами. Поражающее излучение опасно для жизни человека. Это самое часто встречающееся заболевание, связанное с проникающей радиацией.

Лейкоз

Причиной возникновения лейкоза становится проникающая радиация

Статистика показывает, что часто причиной возникновения лейкоза становится проникающая радиация. Еще в 40-х годах прошлого века заметили, что рентгенологи часто умирали после лейкозов, организм не выдерживал излучения. Позже влияние проникающей радиации на развитие лейкоза подтвердили наблюдения за жителями Хиросимы и Нагасаки.

О точных дозах облучения в этот раз речь не шла, брали приблизительные цифры, ориентируясь на эпицентр взрыва и симптомы острого лучевого поражения. Только через 5 лет после бомбардировки стали регистрировать случаи возникновения лейкоза. Обследовали 109 тыс. человек, переживших бомбардировку:

  • Группа облученных (доза более 1 Гр) с 1950 по 1971 – 58 случаев заболевания, что больше в 7 раз той цифры, что ожидали ученые.
  • Группа облученных (доза меньше 1 Гр) – заболели 64 человека, хотя ожидалось, что 71.

В последующие года количество заболевших снижалось. Последствия в виде лейкоза опасны для людей, которые пережили облучение в возрасте до 15 лет. Болезнь после проникающей радиации не сразу дает о себе знать. Чаще всего проходит 4-10 лет после того, как поражающее излучение нанесло свой удар. Нет единого мнения, какое количество излучения вызывает такие последствия, все приводят разные допустимые дозы (50, 100, 200 р). Патогенез лучевого лейкоза пока также полностью не понятен, но ученые работают в том направлении и предлагают свои теории.

Другие раковые заболевания

Проникающая радиация влияет на возникновение рака

Ученые изучают воздействие радиации на человека, в том числе пытаются понять, влияет ли проникающая радиация на возникновение рака. Но нельзя говорить о точных сведениях, т. к. ученые не могут проводить эксперименты над людьми. Проводятся опыты с животными, но по ним нельзя судить, как влияет поражающее излучение на организм людей. Чтобы сведения были достоверными, важно соблюдать следующие условия.

  • Надо знать величину поглощаемой дозы.
  • Необходимо, чтобы излучение равномерно попадало или на все тело, или конкретный орган.
  • Обследовать подопытную группу нужно регулярно, и делать это в течение десятилетий.
  • Должна иметься другая «контрольная» группа людей, чтобы можно было сопоставить уровень заболевания.
  • Обе группы должны включать огромное количество людей.

Провести подобный эксперимент нельзя, поэтому ученым приходится изучать последствия, связанные с воздействием проникающей радиации после случайного облучения. Пока полученные данные неточны. Так, ученые считают, что допустимые дозы проникающей радиации не существует, любая доза увеличивает риск развития рака и может вызвать это заболевание. Чаще всего у людей после проникающей радиации появляется:

  1. Лейкоз – на первом месте.
  2. Рак молочной железы. У 10 женщин из 1000 развивается это заболевание.
  3. Рак щитовидной железы. После облучения у 10 человек из 1000 появляется заболевание. Оно сейчас излечимо, смертность очень низка.
  4. Последствие облучения – рак легких. Сведения о том, что проникающая радиация влияет на частоту появления этого заболевания, на организм человека, появились не только по данным, собранным после бомбардировки Японии, но и после обследования шахтеров урановых рудников в Канаде, США и Чехословакии.

Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

Основными источниками радиации являются:

  • природные радиоактивные вещества вокруг и внутри нас - 73%;
  • медицинские процедуры (рентгеноскопия и прочие) - 13%;
  • космическое излучение - 14%.

Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

mos-rep.ru

Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

В каких единицах измеряется радиация

Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

С прочими единицами измерения можно ознакомиться в таблице.

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель, Бк

1 Ки = 3,7 × 10 10 Бк

Число радиоактивных распадов в единицу времени

Мощность дозы

Зиверт в час, Зв/ч

Рентген в час, Р/ч

1 мкР/ч = 0,01 мкЗв/ч

Уровень излучения в единицу времени

Поглощённая доза

Радиан, рад

1 рад = 0,01 Гр

Количество энергии ионизирующего излучения, переданное определённому объекту

Эффективная доза

Зиверт, Зв

1 рем = 0,01 Зв

Доза облучения, учитывающая различную

чувствительность органов к радиации

Последствия облучения

Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


chornobyl.in.ua

Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

  • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
  • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
  • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
  • около 7 000 000 мкЗв - смерть.

Опасны ли рентгенологические исследования


Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

  • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
  • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
  • 80 цифровых ортопантомограмм (13–17 мкЗв);
  • 40 плёночных ортопантомограмм (25–30 мкЗв);
  • 20 компьютерных томограмм (45–60 мкЗв).

То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

Кому нельзя облучаться

Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

Как защититься

Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.

Радиация – это потоки частиц, образовавшихся во время ядерных реакций или радиоактивного распада . Все мы наслышаны про опасность радиоактивного излучения для человеческого организма и знаем, что оно может стать причиной огромного количества патологических состояний. Но зачастую большинство людей не знают, в чем именно состоит опасность радиации и как можно защитить себя от нее. В этой статье мы рассмотрели, что такое радиация, в чем заключается ее опасность для человека, причиной каких заболеваний она может стать.

Что такое радиация

Определение этого термина не очень понятно для человека, не связанного с физикой или, например, с медициной. Под термином «радиация» подразумевают выход частиц, образовавшихся во время ядерных реакций или радиоактивного распада. То есть это излучение, которое выходит из некоторых веществ.

Радиоактивные частицы имеют различную способность проникновения и прохождения через различные вещества . Некоторые из них могут проходить через стекло, человеческое тело, бетон.

На знании о способности конкретных радиоактивных волн проходить через материалы составлены правила защиты от радиации. Например, стены рентгенологических кабинетов сделаны из свинца, через который радиоактивное излучение не может пройти.

Радиация бывает:

  • природной. Она формирует природный радиационный фон, к которому мы все привыкли. Солнце, почва, камни выделяют излучения. Они не опасны для человеческого организма .
  • техногенной, то есть такой, которая была создана вследствие человеческой деятельности. Сюда относится добывание радиоактивных веществ из глубин Земли, использование ядерных топлив, реакторов и т. д.

Как радиация попадает в человеческий организм

Острая лучевая болезнь


Это состояние развивается при однократном массивном облучении человека
. Такое состояние встречается нечасто.

Оно может развиться во время каких-то техногенных аварий и катастроф.

Степень клинических проявлений зависит от количества радиации, подействовавшей на организм человека.

При этом могут поражаться все органы и системы.

Хроническая лучевая болезнь

Это состояние развивается при длительном контакте с радиоактивными веществами . Чаще всего развивается у людей, которые взаимодействуют с ними по долгу службы.

При этом клиническая картина может нарастать медленно, на протяжении многих лет. При продолжительном и длительном контакте с радиоактивными источниками облучения происходит поражение нервной, эндокринной, кровеносной систем. Также страдают почки, происходят сбои во всех обменных процессах.

Хроническая лучевая болезнь имеет несколько стадий . Она может протекать полиморфно, клинически проявляясь поражением различных органов и систем.

Онкологические злокачественные патологии

Учеными доказано, что радиация может спровоцировать онкологические патологии . Чаще всего развивается рак кожи или щитовидной железы, также нередки случаи появления лейкоза – рака крови у людей, страдающих от острой лучевой болезни.

Согласно статистическим данным, количество онкологических патологий после аварии на Чернобыльской АЭС возросло в десятки раз на территориях, пораженных радиацией.

Использование радиации в медицине

Ученые научились использовать радиационное излучение во благо человечества. Огромное количество различных диагностических и лечебных процедур тем или иным образом связаны с радиоактивным излучением. Благодаря продуманным протоколам по безопасности и современному оборудованию такое применение радиации практически безопасно для пациента и для медицинского персонала , но при соблюдении всех правил по безопасности.

Диагностические медицинские методики с использованием радиации: рентгенография, компьютерная томография, флюорография.

К лечебным методикам относятся различные виды лучевой терапии, которые используются при лечении онкологических патологий .

Использование лучевых методов диагностики и терапии должно проводиться квалифицированными специалистами. Данные процедуры назначаются пациентам исключительно по показаниям.

Основные методы защиты от радиационного излучения

Научившись использовать радиоактивное излучение в промышленности и в медицине, ученые позаботились про безопасность людей, которые могут вступать в контакт с данными опасными веществами.

Только тщательное соблюдение основ личной профилактики и защиты от радиации может защитить человека, работающего в опасной радиоактивной зоне, от хронической лучевой болезни.

Основные способы защиты от радиации:

  • Защита с помощью расстояния. Радиоактивное излучение имеет определенную длину волн, дальше которой оно не действует. Поэтому в случае опасности нужно немедленно покидать опасную зону .
  • Защита экранированием. Суть этого метода состоит в использовании для защиты веществ, которые не пропускают сквозь себя радиоактивные волны. Например, от альфа-излучений способны защитить бумага, респиратор, резиновые перчатки.
  • Защита временем. Все радиоактивные вещества имеют время полураспада и распада.
  • Химическая защита. Человеку даются перорально или вводятся в виде уколов вещества, способные снижать негативное влияние радиации на организм.

У людей, работающих с радиоактивными веществами, есть протоколы защиты и поведения в различных ситуациях. Как правило, в рабочих помещениях установлены дозиметры – аппараты для измерения радиационного фона .

Радиация опасна для человека. При повышении ее уровня выше допустимой нормы развиваются различные заболевания и поражения внутренних органов и систем. На фоне лучевого облучения могут развиваться злокачественные онкологические патологии. Радиационное излучение используют и в медицине. С его помощью проводят диагностику и лечение многих болезней.

После аварии на АЭС« Фукусима» мир захлестнула очередная волна панической радиофобии. На Дальнем Востоке из продажи исчез йод, а производители и продавцы дозиметров не только распродали все имевшиеся на складах приборы, но и собрали предзаказы на полгода-год вперед. Но так ли страшна радиация? Если вы каждый раз вздрагиваете при этом слове, статья написана для вас.

Что же такое радиация? Так называют различные виды ионизирующего излучения, то есть того, которое способно отрывать электроны от атомов вещества. Три основных вида ионизирующего излучения принято обозначать греческими буквами альфа, бета и гамма. Альфа-излучение — это поток ядер гелия-4 (практически весь гелий из воздушных шариков когда-то был альфа-излучением), бета — поток быстрых электронов (реже позитронов), а гамма — поток фотонов высокой энергии. Еще один вид радиации — поток нейтронов. Ионизирующее излучение (за исключением рентгеновского) — результат ядерных реакций, поэтому ни мобильные телефоны, ни микроволновые печи не являются его источниками.

Заряженное оружие

Из всех видов искусства для нас важнейшим, как известно, является кино, а из видов радиации — гамма-излучение. Оно обладает очень высокой проникающей способностью, и теоретически никакая преграда не способна защитить от него полностью. Мы постоянно подвергаемся гамма-облучению, оно приходит к нам сквозь толщу атмосферы из космоса, пробивается сквозь слой грунта и стены домов. Обратная сторона такой всепроникаемости — относительно слабое разрушающее действие: из большого количества фотонов лишь малая часть передаст свою энергию организму. Мягкое (низкоэнергетическое) гамма-излучение (и рентгеновское) в основном взаимодействует с веществом, выбивая из него электроны за счет фотоэффекта, жесткое — рассеивается на электронах, при этом фотон не поглощается и сохраняет заметную часть своей энергии, так что вероятность разрушения молекул в таком процессе значительно меньше.


Бета-излучение по своему воздействию близко к гамма-излучению — оно тоже выбивает электроны из атомов. Но при внешнем облучении оно полностью поглощается кожей и ближайшими к коже тканями, не доходя до внутренних органов. Тем не менее это приводит к тому, что поток быстрых электронов передает облученным тканям значительную энергию, что может привести к лучевым ожогам или спровоцировать, например, катаракту.

Альфа-излучение несет значительную энергию и большой импульс, что позволяет ему выбивать электроны из атомов и даже сами атомы из молекул. Поэтому причиненные им «разрушения» значительно больше — считается, что, передав телу 1 Дж энергии, альфа-излучение нанесет такой же ущерб, как 20 Дж в случае гамма- или бета-излучения. К счастью, проникающая способность альфа-частиц чрезвычайно мала: они поглощаются самым верхним слоем кожи. Но при попадании внутрь организма альфа-активные изотопы крайне опасны: вспомните печально известный чай с альфа-активным полонием-210, которым был отравлен Александр Литвиненко.


Нейтральная опасность

Но первое место в рейтинге опасности, несомненно, занимают быстрые нейтроны. Нейтрон не имеет электрического заряда и поэтому взаимодействует не с электронами, а с ядрами — только при «прямом попадании». Поток быстрых нейтронов может пройти через слой вещества в среднем от 2 до 10 см без взаимодействия с ним. Причем в случае тяжелых элементов, столкнувшись с ядром, нейтрон лишь отклоняется в сторону, почти не теряя энергии. А при столкновении с ядром водорода (протоном) нейтрон передает ему примерно половину своей энергии, выбивая протон с его места. Именно этот быстрый протон (или, в меньшей степени, ядро другого легкого элемента) и вызывает ионизацию в веществе, действуя подобно альфа-излучению. В результате нейтронное излучение, подобно гамма-квантам, легко проникает внутрь организма, но там почти полностью поглощается, создавая быстрые протоны, вызывающие большие разрушения. Кроме того, нейтроны — это то самое излучение, которое вызывает наведенную радиоактивность в облучаемых веществах, то есть превращает стабильные изотопы в радиоактивные. Это крайне неприятный эффект: скажем, с транспортных средств после пребывания в очаге радиационной аварии альфа-, бета- и гамма-активную пыль можно смыть, а вот от нейтронной активации избавиться невозможно — излучает уже сам корпус (на этом, кстати, и был основан поражающий эффект нейтронной бомбы, активировавшей броню танков).

Доза и мощность

При измерении и оценке радиации используется такое количество различных понятий и единиц, что обычному человеку немудрено и запутаться.
Экспозиционная доза пропорциональна количеству ионов, которые создает гамма- и рентгеновское излучения в единице массы воздуха. Ее принято измерять в рентгенах (Р).
Поглощенная доза показывает количество энергии излучения, поглощенное единицей массы вещества. Ранее ее измеряли в радах (рад), а сейчас — в греях (Гр).
Эквивалентная доза дополнительно учитывает разницу в разрушительной способности разных типов радиации. Ранее её измеряли в «биологических эквивалентах рада» — бэрах (бэр), а сейчас — в зивертах (Зв).
Эффективная доза учитывает ещё и различную чувствительность разных органов к радиации: например, облучать руку куда менее опасно, чем спину или грудь. Ранее измерялась в тех же бэрах, сейчас — в зивертах.
Перевод одних единиц измерения в другие не всегда корректен, но в среднем принято считать, что экспозиционная доза гамма-излучения в 1 Р принесёт организму такой же вред, как эквивалентная доза 1/114 Зв. Перевод рад в греи и бэров в зиверты очень прост: 1 Гр = 100 рад, 1 Зв = 100 бэр. Для перевода поглощённой дозы в эквивалентную используют т.н. «коэффициент качества излучения», равный 1 для гамма- и бета-излучения, 20 для альфа-излучения и 10 для быстрых нейтронов. Например, 1 Гр быстрых нейтронов = 10 Зв = 1000 бэр.
Природная мощность эквивалентной дозы (МЭД) внешнего облучения обычно составляет 0,06 — 0,10 мкЗв/ч, но в некоторых местах может быть и менее 0,02 мкЗв/ч или более 0,30 мкЗв/ч. Уровень более 1,2 мкЗв/ч в России официально считается опасным, хотя в салоне самолёта во время перелёта МЭД может многократно превышать это значение. А экипаж МКС подвергается облучению с мощностью примерно 40 мкЗв/ч.

В природе нейтронное излучение весьма незначительно. По сути, риск подвергнуться ему существует лишь при ядерной бомбардировке или серьезной аварии на АЭС с расплавлением и выбросом в окружающую среду большей части активной зоны реактора (да и то лишь в первые секунды).

Газоразрядные счетчики

Радиацию можно обнаружить и измерить с помощью различных датчиков. Самые простые из них — ионизационные камеры, пропорциональные счетчики и газоразрядные счетчики Гейгера-Мюллера. Они представляют собой тонкостенную металлическую трубку с газом (или воздухом), вдоль оси которой натянута проволочка — электрод. Между корпусом и проволочкой прикладывают напряжение и измеряют протекающий ток. Принципиальное отличие между датчиками лишь в величине прикладываемого напряжения: при небольших напряжениях имеем ионизационную камеру, при больших — газоразрядный счетчик, где-то посередине — пропорциональный счетчик.


Сфера из плутония-238 светится в темноте, подобно одноваттной лампочке. Плутоний токсичен, радиоактивен и невероятно тяжел: один килограмм этого вещества умещается в кубике со стороной 4 см.

Ионизационные камеры и пропорциональные счетчики позволяют определить энергию, которую передала газу каждая частица. Счетчик Гейгера-Мюллера только считает частицы, зато показания с него очень легко получать и обрабатывать: мощность каждого импульса достаточна, чтобы напрямую вывести ее на небольшой динамик! Важная проблема газоразрядных счетчиков — зависимость скорости счета от энергии излучения при одинаковом уровне радиации. Для ее выравнивания используют специальные фильтры, поглощающие часть мягкого гамма- и всё бета-излучение. Для измерения плотности потока бета- и альфа-частиц такие фильтры делают съемными. Кроме того, для повышения чувствительности к бета- и альфа-излучению применяются «торцевые счетчики»: это диск с донышком в качестве одного электрода и вторым спиральным проволочным электродом. Крышку торцевых счетчиков делают из очень тонкой (10−20 мкм) пластинки слюды, через которую легко проходит мягкое бета-излучение и даже альфа-частицы.


Полупроводники и сцинтилляторы

Вместо ионизационной камеры можно использовать полупроводниковый датчик. Простейшим примером служит обычный диод, к которому приложено запирающее напряжение: при попадании ионизирующей частицы в p-n-переход она создает дополнительные носители заряда, которые приводят к появлению импульса тока. Чтобы повысить чувствительность, используют так называемые pin-диоды, где между слоями p- и n-полупроводников есть относительно толстый слой нелегированного полупроводника. Такие датчики компактны и позволяют измерять энергию частиц с высокой точностью. Но объем чувствительной области у них мал, а потому чувствительность ограничена. Кроме того, они куда дороже газоразрядных.

Еще один принцип — подсчет и измерение яркости вспышек, которые возникают в некоторых веществах при поглощении частиц ионизирующего излучения. Увидеть невооруженным глазом эти вспышки нельзя, но специальные высокочувствительные приборы — фотоэлектронные умножители — на это способны. Они даже позволяют измерять изменение яркости во времени, что характеризует потери энергии каждой отдельной частицей. Датчики на этом принципе называют сцинтилляторными.


Щит от радиации

Для защиты от гамма-излучения наиболее эффективны тяжелые элементы, такие как свинец. Чем больше номер элемента в таблице Менделеева, тем сильнее в нем проявляется фотоэффект. Степень защиты зависит и от энергии частиц излучения. Даже свинец ослабляет излучение от цезия-137 (662 кэВ) лишь в два раза на каждые 5 мм своей толщины. В случае кобальта-60 (1173 и 1333 кэВ) для двукратного ослабления потребуется уже более сантиметра свинца. Лишь для мягкого гамма-излучения, такого как излучение кобальта-57 (122 кэВ), серьезной защитой будет и достаточно тонкий слой свинца: 1 мм ослабит его раз в десять. Так что противорадиационные костюмы из фильмов и компьютерных игр в реальности защищают лишь от мягкого гамма-излучения.

Бета-излучение полностью поглощается защитой определенной толщины. Например, бета-излучение цезия-137 с максимальной энергией 514 кэВ (и средней 174 кэВ) полностью поглощается слоем воды толщиной в 2 мм или всего 0,6 мм алюминия. А вот свинец для защиты от бета-излучения использовать не стоит: слишком быстрое торможение бета-электронов приводит к образованию рентгеновского излучения. Чтобы полностью поглотить излучение стронция-90, нужно менее 1,5 мм свинца, но для поглощения образовавшегося при этом рентгеновского излучения требуется еще сантиметр!

Народные средства

Существует устоявшийся миф о «защитном» действии спиртного, однако он не имеет под собой никакого научного обоснования. Даже если красное вино содержит природные антиоксиданты, которые теоретически могли бы выступать в роли радиопротекторов, их теоретическая польза перевешивается практическим вредом от этанола, который повреждает клетки и является нейротоксическим ядом.
Чрезвычайно живучая народная рекомендация пить йод, чтобы не «заразиться радиацией» оправдана разве что для 30-километровой зоны вокруг свежевзорвавшейся АЭС. В этом случае используется йодид калия, чтобы «не пустить» в щитовидку радиоактивный йод-131 (период полураспада — 8 суток). Используется тактика меньшего зла: пусть лучше щитовидная железа будет «забита» обычным, а не радиоактивным йодом. И перспектива получить расстройство функций щитовидки меркнет перед раком или даже летальным исходом. Но вне зоны заражения глотать таблетки, пить спиртовой раствор йода или мазать им шею спереди не имеет никакого смысла — профилактического значения это не имеет, а вот заработать йодное отравление и превратить себя в пожизненного пациента эндокринолога можно легко.

От внешнего альфа-облучения защититься проще всего: для этого достаточно листа бумаги. Впрочем, большая часть альфа-частиц не проходит в воздухе и пяти сантиметров, так что защита может потребоваться разве что в случае непосредственного контакта с радиоактивным источником. Куда важнее защититься от попадания альфа-активных изотопов внутрь организма, для чего используется маска-респиратор, а в идеале — герметичный костюм с изолированной системой дыхания.


Наконец, от быстрых нейтронов лучше всего защищают богатые водородом вещества. Например, углеводороды, самый лучший вариант — полиэтилен. Испытывая столкновения с атомами водорода, нейтрон быстро теряет энергию, замедляется и вскоре становится неспособен вызывать ионизацию. Однако такие нейтроны все еще могут активировать, то есть преобразовывать в радиоактивные, многие стабильные изотопы. Поэтому в нейтронную защиту часто добавляют бор, который очень сильно поглощает такие медленные (их называют тепловыми) нейтроны. Увы, толщина полиэтилена для надежной защиты должна быть как минимум 10 см. Так что она получается ненамного легче, чем свинцовая защита от гамма-излучения.

Таблетки от радиации

Человеческий организм более чем на три четверти состоит из воды, так что основное действие ионизирующего излучения — радиолиз (разложение воды). Образующиеся свободные радикалы вызывают лавинный каскад патологических реакций с возникновением вторичных «осколков». Кроме того, излучение повреждает химические связи в молекулах нуклеиновых кислот, вызывая дезинтеграцию и деполимеризацию ДНК и РНК. Инактивируются важнейшие ферменты, имеющие в своем составе сульфгидрильную группу — SH (аденозинтрифосфатаза, сукциноксидаза, гексокиназа, карбоксилаза, холинэстераза). При этом нарушаются процессы биосинтеза и энергетического обмена, из разрушенных органелл в цитоплазму высвобождаются протеолитические ферменты, начинается самопереваривание. В группе риска в первую очередь оказываются половые клетки, предшественники форменных элементов крови, клетки желудочно-кишечного тракта и лимфоциты, а вот нейроны и мышечные клетки к ионизирующему излучению довольно устойчивы.


Препараты, способные защитить от последствий облучения, стали активно разрабатываться в середине XX века. Более-менее эффективными и пригодными для массового использования оказались лишь некоторые аминотиолы, такие как цистамин, цистеамин, аминоэтилизотиуроний. По сути они являются донорами — SH групп, подставляя их под удар вместо «родных».

Радиация вокруг нас

Чтобы столкнуться с радиацией «лицом к лицу», аварии вовсе не обязательны. Радиоактивные вещества широко применяются в быту. Природной радиоактивностью обладает калий — очень важный для всего живого элемент. Из-за малой примеси изотопа K-40 в природном калии «фонит» диетическая соль и калийные удобрения. В некоторых старых объективах использовалось стекло с примесью оксида тория. Этот же элемент добавляют в некоторые современные электроды для аргоновой сварки. До середины ХХ века активно использовали приборы с подсветкой на основе радия (в наше время радий заменили на менее опасный тритий). В некоторых датчиках дыма используется альфа-излучатель на основе америция-241 или высокообогащенного плутония-239 (да-да, того самого, из которого делают ядерные бомбы). Но волноваться не стоит — вред здоровью от всех этих источников значительно меньше вреда от беспокойства по этому поводу.