Магнит его применение. Использование магнитов


Благодаря появлению сплава на основе Nd -Fe -B (неодима, железа и бора) применение магнитов в промышленности было существенно расширено. Среди ключевых преимуществ этого редкоземельного магнита по сравнению с используемыми ранее SmCo и Fe-P особенно стоит отметить его доступность. Сочетая высокую силу сцепления с компактными размерами и длительным сроком службы, такие изделия стали востребованы в самых разных сферах хозяйственной деятельности.


Использование неодимовых магнитов в различных промышленных отраслях


Ограничения при использовании редкоземельных магнитов на основе неодима связаны с их слабостью к перегреву. Верхний показатель рабочей температуры для стандартных изделий составляет +80⁰C , а для модифицированных термостойких сплавов - +200⁰C . С учетом этой особенности применение неодимовых магнитов в промышленности охватывает следующие сферы:


1) Компьютерная техника. Значительная часть от общего объема магнитной продукции используются в производстве DVD -приводов и винчестеров для ПК. Пластина из неодимового сплава используется в конструкции головки чтения/записи. Неодимовый магнит – неотъемлемая часть динамиков в смартфонах и планшетах. Для защиты от размагничивания из-за воздействия внешних полей этот элемент закрывают с помощью специальных экранирующих материалов.


2) Медицина. Компактные и мощные постоянные магниты находят свое применение при изготовлении приборов для магнитно-резонансной томографии. Такие устройства оказываются значительно экономичнее и надежнее по сравнению с устройствами, в которых установлены электромагниты.


3) Строительство. На строительных площадках различного уровня используются практичные и удобные магнитные фиксаторы, которые успешно вытесняют сварные формы. С помощью магнитов подготавливают воду для замешивания цементного раствора. Благодаря особым свойствам омагниченной жидкости получаемый бетон быстрее застывает, обладая при этом повышенной прочностью.


4) Транспорт. Редкоземельные магниты незаменимы при производстве современных электродвигателей, роторов и турбин. Появление неодимового сплава обеспечило снижение стоимости оборудования при улучшении его эксплуатационных свойств. В частности, мощные и в то же время компактные постоянные магниты позволили уменьшить габариты электродвигателей, снизить силу трения и увеличить КПД.


5) Нефтепереработка. Магниты устанавливают на трубопроводные системы, что позволяет защитить их от образования осадка органических и неорганических отложений. Благодаря такому эффекту появилась возможность создать более экономичные и не вредящие окружающей среде системы с замкнутым технологическим циклом.


6) Сепараторы и железоотделители. На многих производственных предприятиях необходимо обеспечить отсутствие металлических примесей в жидких или сыпучих материалах. Неодимовые магниты позволяют с минимальными затратами и максимальной эффективностью справиться с этой задачей. Это позволяет не допустить попадания металлических загрязнений в готовую продукцию и защитить промышленное оборудование от поломок.

С тех пор, как вначале 80-х был изобретен неодимовый магнит, применение его распространилось практически на все сферы промышленности - от швейной и пищевой до станкостроительной и космической. Сегодня практически нет отрасли, где бы ни использовались подобные устройства. Более того, в большинстве случаев они практически вытеснили традиционные ферримагниты, существенно уступающие по своим характеристикам.

В чем причина популярности изделий из неодима?

В нескольких словах скажем о том, что такое неодимовый магнит и где применяется

Магнитные свойства неодима были открыты сравнительно недавно, а первая продукция из него появилась лишь в 1982 году. Несмотря на это, она тут же стала набирать популярность. Причина в потрясающих характеристиках сплава, способного притягивать железные предметы в сотни раз больше собственного веса и в десятки раз сильнее, чем ферромагнитные устройства. Благодаря этому, техника, где применяются неодимовые магниты, стала меньше по размерам, но при этом гораздо эффективнее.

В составе сплава, помимо неодима, содержится железо и бор. Чтобы получить нужное изделие, эти вещества в виде порошка не расплавляют, а спекают, что приводит к одному существенному недостатку - хрупкости. Избавиться от сколов и коррозии помогает слой медно-никелевого сплава, благодаря которому, получается продукт готовый для полноценного использования.

Неодимовые магниты - применение в быту

Сегодня каждый может купить бруски, диски или кольца из неодима и использовать их в домашнем хозяйстве. В зависимости от задач, можно выбрать нужный размер, вес и форму изделия, сообразуясь со своим кошельком. Ниже мы приводим несколько вариантов использования магнитных устройств, хотя, в действительности сфера из употребления практически безгранична и ограничивается только фантазией владельца.

Итак, где применяется неодимовый магнит в быту?

Поиск и сбор металлических предметов

Теперь у Вас не возникнет проблем с поиском железных вещей, закатившихся под мебель или упавших в колодец. Просто закрепите, например, магнитный диск на конце палки или привяжите его на шнур и проведите таким нехитрым приспособлением по месту, куда вероятно упал предмет. Буквально через несколько минут потерянное окажется в Ваших руках целым и невредимым.

Применение неодимового магнита поможет также собрать металлическую стружку или рассыпавшиеся саморезы. Для удобства оберните предмет из неодима в ткань, носок или полиэтиленовый пакет. Это поможет с одной стороны защитить рабочую поверхность от налипания железного мусора, а с другой - снять разом все, что прилипло и не отделять каждый шуруп отдельно.


Держатели

Рассказывая о сферах, где применяются неодимовые магниты в быту, упомянем о разного рода фиксаторах. С их помощью Вы можете подвешивать на вертикальных поверхностях любые железосодержащие предметы: кухонные или слесарные принадлежности, садовый и любой другой инструмент. Просто закрепите пластинки из неодима на стенде в определенном порядке и при необходимости прикрепляйте к ним, например ножи или отвертки.

Применение неодимового магнита в быту возможно и для подвешивания не железных предметов: картин, зеркал, полочек, антимоскитных сеток и т.д. Для этого зафиксируйте на вещи магнитную пластину, а на поверхность, куда планируете её крепить небольшой лист железа.

Как мы уже говорили, сплав из неодима достаточно хрупкий, поэтому нежелательно нарушать его целостность сверлением или разрезанием, из-за чего свойства металла существенно пострадают. В качестве подвесов лучше выбирать неодимовые магниты, применение которых не требует дополнительной обработки. Благо интернет-магазины предлагают изделия самых разных конфигураций с отверстиями нужного диаметра, с различными креплениями и вырезами. Поэтому Вы без труда выберите устройство нужной конфигурации. С таким же успехом можно использовать магнитные элементы в качестве защелки на двери, для прикрепления бейджа или создания своими руками магнитика на холодильник. Это далеко не полный список сфер, где применяют неодимовый магнит.

Зажимы

Если требуется склеить две поверхности, а из-за сложности формы использовать тиски не получится, проблему опять помогут решить магнитные детали. Просто разместите между ними склеиваемые предметы, которые за счет притягивающей силы неодима будут плотно прижаты друг к другу.

Используя такого рода зажимы, Вы легко сможете почистить или помыть поверхности, казавшиеся абсолютно недоступными. Где применяют неодимовые магниты конкретно? Для мытья внешних поверхностей стекол балкона, чистки аквариума и других труднодоступных стеклянных емкостей. Поместите магнитный брусок внутрь мочалки, которую зафиксируйте с внешней стороны балкона, удерживая её другим магнитом изнутри. Таким образом, вы можете направлять внешнюю мочалку, куда пожелаете и идеально очистить стекло.

Авто

От стружки и другого металлического мусора в машинном масле можно избавиться с помощью применения неодимового магнита, видео об этом есть в сети. Закрепите магнитное устройство на сливной пробке картера, неодим притянет микрочастицы железа, и они не попадут в рабочие механизмы авто.

С помощью небольшой пластинки из неодима, можно также закрепить какие-либо предметы на кузове авто, а с помощью больших магнитных дисков или брусков можно даже выравнивать небольшие вмятины.

Неодимовый магнит - применение в быту. Неисследованные моменты

Многие ученые считают, что электромагнитные волны оказывают благотворное воздействие на живые организмы. В связи с этим появилось множество устройств, которые, как считается, способствуют росту растений и оздоравливают организм. Многие огородники втыкают магнитные прутки рядом с посаженными растениями, а животноводы помещают предметы в клетках с домашними животными. Кроме того, сейчас популярны различные магнитные браслеты, отделка неодимом одежды, очистка воды и многое другое.

Безусловно, в статье мы затронули лишь малую толику сфер, где неодимовые магниты нашли применение, видео и статьи с другими способами использования этих изделий вы можете найти в сети.

В электротехнике ферромагнетики играют существенную роль. К ферримагнитным материалам могут предъявляться разные требования в зависимости от их назначения.

Постоянные магниты

Были созданы специальные магнитные материалы с заданными свойствами. Так, для того чтобы получить постоянный магнит необходимо найти ферромагнетик у которого петля гистерезиса была бы максимально широкой. Что значило бы, при нулевом внешнем магнитном поле (после его выключения) остаточная намагниченность была максимально большой. Велика, также коэрцитивная сила таких магнетиков. Для такого вещества границы доменов должны оставаться неизменными. Такой материал был создан. Его название $AlNiCo V$ -- это сплав, он имеет состав: $51\% Fe, 8\%Al, 14\%Ni, 24\% Co, 3\% Cu$. Движение доменных стенок в этом сплаве крайне затруднительно. В процессе затвердевания AlNiCo V образует «вторую фазу», которая имеет зерненый состав. Вещество охлаждают во внешнем магнитном поле, при этом зерна растут в нужной ориентации. Кроме прочего материал еще подвергается механической обработке таким образом, что его кристаллы выстраиваются в виде продолговатых зерен в направлении линий преимущественной намагниченности. Петлю гистерезиса для этого ферромагнетика получают в 500 раз шире, чем петля гистерезиса мягкого железа. $AlNiCo$ -- термостабильный магнит, имеет высокую коррозионную и радиационную стойкость. Остаточная намагниченность порядка $B_r\sim 1,1-1,5\ Тл,$ коэрцитивная сила $H_k=0,5-1,9\ кЭ$ (кило эрстед). Максимальная рабочая температура до $450^oС$. Сейчас делаются попытки сделать наноструктурные сплавы. Используются в акустических системах, студийных микрофонах, звукоснимателях, электродвигателях, реле, сенсорах.

Спеченные редкоземельные магниты на основе SmCo. Не требуют защитного покрытия, имеют высокие рабочие температуры и высокую коэрцитивную силу, то есть устойчивы к размагничиванию. Но довольно хрупкие и очень дорогие. Остаточная намагниченность порядка $B_r\sim 0,8-\ 1,1Тл,$ коэрцитивная сила $H_k=8-10\ кЭ.\ $ Используют в космических аппаратах, мобильной телефонии, компьютерной технике, авиастроении, медицинском оборудовании, микро электромеханических приборах.

Неодимовые магниты, сплавы Nd-Fe-B. Рабочие температуры невысокие $-60-220^oC$. Довольно хрупкие. Если перегреты требуют перемагничивания. Подвержены коррозии. Легко обрабатываются механически, гибкие. Спечённые неодимовые магниты имеют наибольшую остаточную намагниченность порядка $B_r\sim 1-\ 1,4Тл$, коэрцитивная сила $H_k=12\ кЭ.\ $ Используются в компьютерной технике, двигателях, датчиках.

Магниты могут терять намагниченность при механических вибрациях, деформациях, перепадах температуры. Полное размагничивание происходит при температуре выше точки Кюри, в сильных магнитных полях, если ферромагнит находится в затухающем переменном магнитном поле или постоянное внешнее поле имеет противоположное направление к внутреннему полю. Железные магниты размагничиваются при комнатных условиях многие десятки лет. Многие искусственно созданные магниты стареют быстро.

Постоянные магниты также применяются:

  • В качестве зажимов, крепления, фиксации предметов.
  • Для поиска железных предметов методами зондирования, уборки металлического мусора.

Использование «мягких» ферромагнетиков

Ферромагнетики используют при изготовлении трансформаторов и двигателей. Но в данном случае ферромагнетик должен обладать иными свойствами, чем пригодный для постоянных магнитов. Материал должен быть «мягким» в магнитном отношении. Его намагниченность должна легко меняться при изменении внешнего магнитного поля. Требованиями к ферромагнетику в этом случае являются: высокая магнитная проницаемость и слабый гистерезис. В данном случае применяют чистые вещества без примесей с минимальным количеством доменов, стенки доменов должны легко перемещаться. Анизотропию кристаллов пытаются минимизировать. В таком случае, если зерна вещества находятся под неправильным углом к полю, магнетик все равно хорошо намагничивается. Так, подобрали сплав железа и никеля (около 80\% Ni и 20\%Fe) легированный хромом, медью или кремнием, при этом получается очень «мягкий» сплав, который легко намагничивается. Такие вещества называют пермаллоями.

Хорошие магнитные свойства пермаллоя, который содержит 78,5 никеля получены при двухэтапной термической обработки сплава. На первом этапе его нагревают до $900-950^oС$ и выдерживают около часа, затем охлаждают с низкой скоростью. На втором этапе нагрев происходит до $600^oС$ и охлаждение при комнатной температуре со скоростью 1500 $\frac{град}{мин}$.

Они используются в качественных трансформаторах, но не годятся для постоянных магнитов. Пермаллои не терпят деформаций, их свойства существенно изменяются.

Сплавы с максимальной магнитной проницаемостью используют для сердечников малоразмерных трансформаторов, реле, магнитных экранов, магнитных усилителей, реле. Сплавы с повышенным удельным сопротивлением применяют для сердечников импульсных трансформаторов, высокочастотной аппаратуры.

При расчете разного рода устройств переменного тока, которые содержат ферромагнетики, всегда проводят расчет теплового эффекта при гистерезисе. Наличие этого явления в железных сердечниках трансформаторов или вращающихся якорях генераторов постоянного тока приводит к затратам части энергии на тепло гистерезиса, что снижает КПД устройств. Значит, для подобных устройств, следует подбирать специальные сорта ферромагнетиков , площадь петли гистерезиса для которых, минимальна.

Исследования показали, что некоторые сплавы неферромагнитных металлов в определенном соотношении компонент имеют сильные ферромагнитные свойства. Например, марганец -- висмут, хром -- теллур и др.

Ферриты

В том случае если величина намагничивания подрешеток отличается, то возникает некомпенсированный антиферромагнетизм. Тело может иметь значительный магнитный момент. Такие вещества называют ферримагнетиками. По своим магнитным свойствам они аналогичны ферромагнетикам. Если ферримагнетики имеют полупроводниковые свойства, то их называют ферритами -- магнитные полупроводники, которые имеют большое удельное электросопротивление (около ${10}^2-{10}^6Ом\cdot см$). Намагниченность насыщения у ферримагнетиков меньше, чем у ферромагнетиков. Они полезны только при слабых полях. Ферриты -- ферромагнитные изоляторы. Вихревые токи, которые создаются в них в полях с высокой частотой очень маленькие, это позволяет использовать ферриты в микроволновой технике. Микрополя проникают внутрь ферритов, тогда как в ферромагнетиках это не возможно из-за вихревых токов.

Эти вещества, также используют в радиотехнике при больших частотах, там, где в ферромагнетиках из-за их большой проводимости возникают большие потери на вихревые токи.

Пример 1

Задание: Какой из ферромагнитных материалов, на рис.1 наиболее пригоден для электромагнитов с быстрой регулировкой подъёмной силы? Для постоянного магнита?

Для постоянного магнита более пригоден ферромагнетик с широкой петлей гистерезиса, которой соответствует большая коэрцитивная сила, позволяющая веществу размагничиваться с меньшей скоростью и большая остаточная намагниченность. Значит, ферромагнетик с номером 1 более пригоден для постоянного магнита.

Для электромагнита с быстрой регулировкой необходим ферромагнетик, у которого петля гистерезиса узкая, меньше коэрцитивная сила и остаточная намагниченность, следовательно, для этих целей удобнее ферромагнетик номер 2.

Пример 2

Задание: Можно ли электромагнитным краном переносить раскаленные стальные трубы?

Очевидно, что делать этого не стоит, так как ферромагнитные свойства при температурах выше точки Кюри ферромагнетиком утрачиваются, и он станет парамагнетиком с очень малой магнитной проницаемостью и его магнитные свойства станут недостаточными, для использования в качестве средства транспортировки труб.

4. Применение магнитов в разных сферах деятельности современного общества

Основное применение магнит находит в электротехнике, радиотехнике, приборостроении, автоматике и телемеханике. Здесь ферромагнитные материалы идут на изготовление магнитопроводов, реле и т.д. .

Электромашинные генераторы и электродвигатели - машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действие электродвигателей основано на том, что на провод с током, помещенный в поперечное магнитное поле, действует сила.

Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю.

Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности.

Электрические наручные часы питаются миниатюрной батарейкой. Для их работы требуется гораздо меньше деталей, чем в механических часах; так, в схему типичных электрических портативных часов входят два магнита, две катушки индуктивности и транзистор.

Динамометр - механический или электрический прибор для измерения силы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различных конструкций; к ним относятся, например, тормоз Прони, гидравлический и электромагнитный тормоза .

Электромагнитный динамометр может быть выполнен в виде миниатюрного прибора, пригодного для измерений характеристик малогабаритных двигателей.

Гальванометр – чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Приборы на его базе - самый распространенный вид приборов .

Магнитные свойства вещества находят широкое применение в науке и технике как средство изучения структуры различных тел. Так возникли науки:

Магнитохимия - раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, магнитохимия исследует влияние магнитных полей на химические процессы. магнитохимия опирается на современную физику магнитных явлений. Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества.

Магнитная дефектоскопия, метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.

Ускоритель частиц, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные и разнообразные виды техники, в т.ч. мощные прецизионные магниты.

В медицинской терапии и диагностике у скорители играют важную практическую роль. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным .

Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе не учитывая существования каких-либо магнитных полей. Более того, некоторые биологи считали нужным подчеркнуть, что даже сильное искусственное магнитное поле не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влиянии магнитных полей на биологические процессы ничего не говорилось. В научной литературе всего мира ежегодно появлялись единичные позитивные соображения о том или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёк не мог растопить айсберг недоверия даже к постановке самой проблемы… И вдруг ручеёк превратился в бурный поток. Лавина магнитобиологических публикаций, словно сорвавшись с какой – то вершины, с начала 60 – х годов непрестанно увеличивается и заглушает скептические высказывания.

От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке – сотни болезней .

Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов, греков, римлян и т.д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно – сосудистые заболевания, раковые заболевания).

Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

Широко распространён магнитный метод удаления металлических частиц из глаза.

Большинству из нас известно исследование работы сердца с помощью электрических датчиков – электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10-6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца.

Надо отметить, что биологи сейчас просят физиков дать теорию первичного механизма биологического действия магнитного поля, а физики в ответ требуют от биологов побольше проверенных биологических фактов. Очевидно, что успешным будет тесное сотрудничество различных специалистов .

Важным звеном, объединяющим магнитобиологические проблемы, является реакция нервной системы на магнитные поля. Именно мозг первым реагирует на любые изменения во внешней среде. Именно изучение его реакций будет ключом к решению многих задач магнитобиологии.

Среди технологических революций конца XX века одной из самых главных является перевод потребителей на атомное топливо. И снова магнитные поля оказались в центре внимания. Только они смогут обуздать своенравную плазму в «мирной» термоядерной реакции, которая должна прийти на смену реакциям деления радиоактивных ядер урана и тория.

Что бы еще сжечь? – навязчивым рефреном звучит вопрос, вечно мучающий энергетиков. Довольно долго нас выручали дрова, но у них малая энергоемкость, а потому дровяная цивилизация примитивна. Сегодняшнее наше благосостояние основано на сжигании ископаемого топлива, однако легкодоступные запасы нефти, угля и природного газа медленно, но верно иссякают. Волей-неволей приходится переориентировать топливно-энергетический баланс страны на что-то другое. В будущем веке остатки органического топлива придется сохранять для сырьевых нужд химии. А основным энергосырьем, как известно, станет ядерное топливо.

Идея магнитной термоизоляции плазмы основана на известном свойстве электрически заряженных частиц, движущихся в магнитном поле, искривлять свою траекторию и двигаться по спирали силовых линий поля. Это искривление траектории в неоднородном магнитном поле приводит к тому, что частица выталкивается в область, где магнитное поле более слабое. Задача состоит в том, чтобы плазму со всех сторон окружить более сильным полем. Эта задача решается во многих лабораториях мира. Магнитное удержание плазмы открыли советские ученые, которые в 1950 г. предложили удерживать плазму в так называемых магнитных ловушках (или, как часто их называют, в магнитных бутылках).

Примером весьма простой системы для магнитного удержания плазмы может служить ловушка с магнитными пробками или зеркалами (пробкотрон). Система представляет собой длинную трубу, в которой создано продольное магнитное поле. На концах трубы намотаны более массивные обмотки, чем в середине. Это приводит к тому, что магнитные силовые линии на концах трубы расположены гуще и магнитное поле в этих областях сильнее. Таким образом, частица, попавшая в магнитную бутылку, не может покинуть систему, ибо ей пришлось бы пересекать силовые линии и вследствие лоренцевой силы «накручиваться» на них. На этом принципе была построена огромная магнитная ловушка установки «Огра-1», пущенной в Институте атомной энергии имени И.В. Курчатова в 1958 г. Вакуумная камера «Огра-1» имеет длину 19 м при внутреннем диаметре 1,4 м. Средний диаметр обмотки, создающей магнитное поле, составляет 1,8 м, напряженность поля в середине камеры 0,5 Тл, в пробках 0,8 Тл.

Стоимость электроэнергии, получаемой от термоядерных электростанций, будет очень низкой вследствие дешевизны исходного сырья (воды). Настанет время, когда электростанции будут вырабатывать буквально океаны электроэнергии. С помощью этой электроэнергии станет возможным, быть может, не только кардинально изменить условия жизни на Земле – повернуть вспять реки, осушить болота, обводнить пустыни, – но и изменить облик окружающего космического пространства – заселить и «оживить» Луну, окружить Марс атмосферой.

Одна из основных трудностей на этом пути – создание магнитного поля заданной геометрии и величины. Магнитные поля в современных термоядерных ловушках относительно невелики. Тем не менее, если учесть громадные объемы камер, отсутствие ферромагнитного сердечника, а также специальные требования к форме магнитного поля, затрудняющие создание таких систем, то следует признать, что имеющиеся ловушки – большое техническое достижение.

Исходя из вышесказанного, можно сделать вывод, что в настоящее время нет отрасли, в которой бы не применялся магнит или явление магнетизма.

5. Сверхпроводники и их применение магнит сверхпроводник

Сверхпроводники часто называют ключом к электротехнике будущего. Это объясняется их поистине удивительными свойствами. Вообще-то, сверхпроводников как особых материалов не существует. Это обычные материалы из элементов таблицы Менделеева, у которых в определенных условиях появляются необычные свойства. Алюминий, например, считается хорошим проводником, неплохо пропускает тепло и в своей толще чуть усиливает магнитное поле (парамагнетик). При охлаждении ниже 1,2 К электропроводность алюминия возрастает бесконечно (сверхпроводник), теплопроводность так же сильно ухудшается (теплоизолятор), а магнитное поле в него уже не может проникнуть (диамагнетик). Казалось бы, что за достижение столь полезных качеств надо платить слишком дорого – достижение низких температур – удовольствие недешевое. Оказалось, однако, что стоимость рефрижераторов и тепловой защиты холодных зон несравнима с достигаемыми преимуществами. Стало возможным без чрезмерных затрат получать огромные токи (в несколько тысяч раз большие, чем в обычных проводниках) и огромные магнитные поля при скромных сечениях токонесущих шин: именно это является чрезвычайно важным при создании мощных электроэнергетических устройств .

Ясно, что для создания генераторов большей мощности понадобятся новые конструкторские решения и материалы. В этой связи особые надежды ученые и инженеры возлагают на сверхпроводимость. Недаром одним из основных направлений развития науки намечены теоретические и экспериментальные исследования в области сверхпроводящих материалов, а одним из основных направлений развития техники – разработка сверхпроводниковых турбогенераторов. Сверхпроводящее электрооборудование позволит резко увеличить электрические и магнитные нагрузки в элементах устройств и благодаря этому резко сократить их размеры. В сверхпроводящем проводе допустима плотность тока, в 10...50 раз превышающая плотность тока в обычном электрооборудовании. Магнитные поля можно будет довести до значений порядка 10 Тл, по сравнению с 0,8...1 Тл в обычных машинах. Если учесть, что размеры электротехнических устройств обратно пропорциональны произведению допустимой плотности тока на индукцию магнитного поля, то ясно, что применение сверхпроводников уменьшит размеры и массу электрооборудования во много раз!

Многие препятствия сами по себе отпадают, если использовать эффект сверхпроводимости и применить сверхпроводящие материалы. Тогда потери в роторной обмотке можно практически свести к нулю, так как постоянный ток не будет встречать в ней сопротивления. А раз так, повышается КПД машины. Протекающий по сверхпроводящей обмотке возбуждения ток большой силы создает столь сильное магнитное поле, что уже нет необходимости применять стальной магнитопровод, традиционный для любой электрической машины. Устранение стали снизит массу ротора и его инерционность. Создание криогенных электрических машин – не дань моде, а необходимость, естественное следствие научно-технического прогресса. И есть все основания утверждать, что к концу века сверхпроводящие турбогенераторы мощностью более 1000 МВт будут работать в энергосистемах .

Энергетикам нужны не только холодные генераторы. Уже изготовлено и испытано несколько десятков сверхпроводящих трансформаторов (первый из них построен американцем Мак-Фи в 1961 г.; трансформатор работал на уровне 15 кВт). Имеются проекты сверхпроводящих трансформаторов на мощность до 1 млн. кВт. При достаточно больших мощностях сверхпроводящие трансформаторы будут легче обычных на 40...50% при примерно одинаковых с обычными трансформаторами потерях мощности (в этих расчетах учитывалась и мощность ожижителя).У сверхпроводящих трансформаторов, однако, есть и существенные недостатки. Они связаны с необходимостью защиты трансформатора от выхода его из сверхпроводящего состояния при перегрузках, коротких замыканиях, перегревах, когда магнитное поле, ток или температура могут достичь критических значений.

В последние годы становится все более близкой к осуществлению мечта о сверхпроводящих линиях электропередачи. Все возрастающая потребность в электроэнергии делает очень привлекательной передачу большой мощности на большие расстояния. Советские ученые убедительно показали перспективность сверхпроводящих линий передачи. Стоимость линий будет сопоставима со стоимостью обычных воздушных линий передачи электроэнергии (стоимость сверхпроводника, если учесть высокое значение критической плотности его тока по сравнению с экономически целесообразной плотностью тока в медных или алюминиевых проводах, невелика) и ниже стоимости кабельных линий. Осуществлять сверхпроводниковые линии электропередачи предполагается так: между конечными пунктами передачи в земле прокладывается трубопровод с жидким азотом. Внутри этого трубопровода располагается трубопровод с жидким гелием. Гелий и азот протекают по трубопроводам вследствие создания между исходным и конечным пунктами разности давлений. Таким образом, ожижительно-насосные станции будут лишь на концах линии. Жидкий азот можно использовать одновременно и в качестве диэлектрика. Гелиевый трубопровод поддерживается внутри азотного диэлектрическими стойками (у большинства изоляторов диэлектрические свойства при низких температурах улучшаются). Гелиевый трубопровод имеет вакуумную изоляцию. Внутренняя поверхность трубопровода жидкого гелия покрыта слоем сверхпроводника. Потери в такой линии с учетом неизбежных потерь на концах линии, где сверхпроводник должен стыковаться с шинами при обычной температуре, не превысят нескольких долей процента, а в обычных линиях электропередачи потери в 5...10 раз больше!

Основой энергетики начала XXI века могут стать атомные и термоядерные станции с чрезвычайно мощными электрогенераторами. Электрические поля, порожденные сверхпроводящими электромагнитами, могучими реками смогут перетекать по сверхпроводящим линиям электропередачи в сверхпроводящие накопители энергии, откуда по мере необходимости будут отбираться потребителями. Электростанции смогут равномерно вырабатывать мощность и днем, и ночью, а освобождение их от плановых режимов должно повысить экономичность и срок службы главных агрегатов .

К наземным электростанциям можно добавить космические солнечные станции. Зависнув над фиксированными точками планеты, они должны будут преобразовывать солнечные лучи в коротковолновое электромагнитное из лучение, чтобы посылать сфокусированные потоки энергии к наземным преобразователям в токи промышленной назначения. Все электрооборудование наземно-космических электрических систем должно быть сверхпроводящим, в противном случае потери в проводниках конечной электропроводности окажутся, по-видимому, неприемлемо большими.


Заключение

Мировоззрение и благосостояние человека в достаточной степени зависит от прогресса науки.

Маленькой дрожащей стрелке, с одного конца выкрашенной в черный цвет, с другого – в красный, мы обязаны удивительными открытиями. Неизвестные миры, экзотические животные, благоухающие острова, ледяные континенты и не знающие цивилизации народы предстали перед глазами изумленных «водителей фрегатов», сверявших свой путь с маленькой стрелкой компаса...

В огромном арсенале средств современной науки магнит занимает совершенно особое место. Без него невозможно никакое исследование, никакая наука, никакая промышленность, никакая цивилизованная жизнь. Если вспомнить еще и о том, что не обладай Земля магнитным полем, она была бы сейчас испепеленной космическим излучением планетой, как Марс, то можно почувствовать к магнитам нечто вроде благодарности.

Но кроме благодарности магнит достоин и уважения – ведь если мыслить в исторических масштабах, то приходится сознаться, что мы немногое еще можем сказать о природе притяжения магнита.

Вопрос магнитного притяжения еще сотни лет будет волновать умы мальчишек и ученых. Не станем переоценивать своих знаний. Кто это делает, часто попадает впросак. Вспомним, что было написано об электричестве в 1755 г. в одном лондонском еженедельнике: «Электричество – сила, хорошо изученная человеком. Ее с успехом применяют для лечения болезней, эта сила способна ускорять развитие растений» .

Эти слова были написаны до Фарадея, Ампера, Максвелла, когда люди, как теперь смело можно утверждать, почти ничего не знали об электричестве. А теперь, во второй половине XX века, вряд ли какой-нибудь ученый найдет в себе смелость утверждать: «Электричество – сила, хорошо изученная человеком».

Мы много знаем об электричестве и магнетизме и с каждым днем узнаем все больше и больше. Но за одной проблемой встают другие, не менее сложные и интересные. Жизнь всегда будет полна загадок. И наряду с самыми сложными – загадкой жизни и загадкой Вселенной – загадка магнита всегда будет давать пищу для любознательного ума.

Альберт Эйнштейн на всю жизнь запомнил тот день, когда ему, четырехлетнему ребенку, подарили новую игрушку – компас. На всю жизнь сохранил он детскую удивлённость чудесными свойствами магнита, теми самыми свойствами, которые тысячи лет назад волновали наших предков .

Вряд ли когда-нибудь найдется человек, который возьмет на себя смелость утверждать: «Я постиг загадку магнита!» Однако ученые, познавшие удивительно небольшую толику тайны, смогли создать устройства, способные соперничать с самыми сильными магнитами, созданными природой.


Список используемой литературы

1. Большая советская энциклопедия. Издательство "Советская энциклопедия", М., 1974.

2. Дягилев, Ф.М. Из истории физики и жизни ее творцов: учебное пособие для вузов / Ф.М. Дягилев. - М.: Просвещение, 1986г. – 280 с.

3. Кабардин, О.Ф. Физика: Справ. Материалы: Учеб. Пособие для учащихся. / О.Ф. Кабардин. - 3-е изд. - М.: Просвещение, 1991. – 367с.: ил.

4. Карцев, В.П. Магнит за три тысячелетия / В.П. Карцев. - М.: Знание, 1986г. – 230 с.

5. Лось, В.А. История и философия науки. Основы курса: учебное пособие / В.А. Лось. - М.: Издательство – торговая корпорация «Дашков и К 0 », 2004.- 404 с.

6. Милковская, Л.Б. Повторим физику: учебное пособие для вузов / Л.Б. Милковская. – М.: Высшая школа, 1991– 307с.: ил.

7. Симоненко, О.Д. Электротехническая наука в первой половине XX века. / О.Д. Симоненко. - М.: Знание, 1988г. – 325с.

8. Современная радиоэлектроника (50-80-е гг.) / В.П. Борисов [и др.] ; под ред. В.П. Борисова, В.М. Родионова. - М.: Омега-Л, 1993. – 340 с.

9. Холодов, Ю.А. Человек в магнитной паутине: / Ю.А. Холодов. – М.: Знание, 1972 г. – 173 с.

10. Электромагнитные динамометры//Наука и техника. - 2008. - №5. - с.25-27

КОМПАС  Ко́ мпас - устройство, облегчающее ориентирование на местности. Предположительно, компас был изобретён в Китае. В Европе изобретение компаса относят к XII-XIII вв., однако устройство его оставалось очень простым - магнитная стрелка, укрепленная на пробке и опущенная в сосуд с водой. Принцип действия магнитного компаса основан на притяжении-отталкивании двух магнитов. Противоположные полюса магнитов притягиваются, одноименные - отталкиваются.

  • 3. ПРИМЕНЕНИЕ МАГНИТОВ ВНУТРИ ЖИЛИЩА
  • 4. ПРИМЕНЕНИЕ МАГНИТОВ ВНУТРИ ЖИЛИЩА  Наушники  Стереоколонки  Телефонная трубка  Электрозвонок  Держатель по периметру дверцы холодильника  Записывающие и воспроизводящие головки аудио- и видеоаппаратуры  Записывающие и воспроизводящие головки дисковода и жесткого диска компьютера  Магнитная полоска на банковской карте  Управляющие и размагничивающие магнитные системы в телевизоре  Вентиляторы  Трансформаторы  Магнитные замки  Игрушки  Магнитные носители информации
  • 5. МАГНИТНЫЕ НОСИТЕЛЬ ИНФОРМАЦИИ  · Жесткие диски ПК (винчестеры) · Видеокассеты (любых форматов, в том числе Betacam) · Аудиокассеты · Стримерные кассеты · Дискеты, ZIP-диски
  • 6. МАГНИТНЫЕ ЗАМКИ.  Магнитный замок – это особое запорное устройство, принцип работы которого базируется на магнитном взаимодействии. Магнитный замок может функционировать как с дополнительным питанием, так и без него. Магнитный замок, работающий без дополнительного питания - это упрощенная конструкция, обладающая меньшей рабочей силой. Подобные магнитные замки используются для закрывания дверей шкафов, на женских сумочках, одежде и пр. Магнитный замок, работающий под подачей электрического тока получил широкое распространение в качестве запирающего и отпирающего оборудования дверей в помещениях, с ограниченным доступом и контролем посещений. Основное техническое преимущество магнитного замка заключается в том, что конструкция не предусматривает наличия движущихся механизмов и деталей. Это является одним из факторов, обеспечивающих высокую надежность и долговечность работы. При всем при этом, магнитный замок не слишком трудоемок в монтаже и прост в эксплуатации. Замкам другого типа магнитный замок проигрывает только в одном – он абсолютно недееспособен при отсутствии электропитания.
  • 7. ИГРУШКИ 
  • 8. НАУШНИКИ  Наушники - устройство для персонального прослушивания музыки, речи или иных звуковых сигналов.
  • 9. КРЕДИТНЫЕ КАРТОЧКИ  Креди́ тная ка́рта (разг. креди́ тка) - банковская платёжная карта, предназначенная для совершения операций, расчёты по которым осуществляются исключительно за счёт денежных средств.
  • 10. ТЕЛЕФОННАЯ ТРУБКА
  • 11. СТЕРЕОКОЛОНКИ
  • 12. ЭЛЕКТРОЗВОНОК
  • 13. ДЕРЖАТЕЛЬ ПО ПЕРИМЕТРУ ДВЕРЦЫ ХОЛОДИЛЬНИКА
  • 14. ТРАНСФОРМАТОРЫ
  • 15. ВЕНТИЛЯТОРЫ
  • 16. УПРАВЛЯЮЩИЕ И РАЗМАГНИЧИВАЮЩИЕ МАГНИТНЫЕ СИСТЕМЫ В ТЕЛЕВИЗОРЕ
  • 17. СВЕРХВЫСОКО ЧАСТОТНЫЙ ДИАПАЗОН (СВЧ)  Сверхвысоко частотный диапазон (СВЧ) - частотный диапазон электромагнитного излучения (100ч300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Радиоволны СВЧ-диапазона широко применяются в технике связи. СВЧ- излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности.
  • 18. В МЕДИЦИНЕ  Кардиостимуляторы  Томографы  Тонометры
  • 19. КАРДИОСТИМУЛЯТОРЫ
  • 20. ТОМОГРАФЫ  Магни́ тно-резона́нсный томо́ граф (МРТ), ядерно магнитно-резонансный томограф (ЯМРТ) или магнитно-резонансная томография(МРТ), является основным инструментом медицинской техники для создания изображений, используемых в радиологии для подробной визуализации внутренних структур и органов человека. Томограф обеспечивает хороший контраст между различными мягкими тканями тела, что делает его особенно полезным при исследованиях мозга, мышц, сердца и диагностики рака по сравнению с другими медицинскими методами визуализации