Что такое траектория ее виды. Что такое траектория

С древних времен человечество старалось добиться победы в столкновении с противником на максимально возможной дистанции, чтобы не губить собственных воинов. Пращи, луки, арбалеты, потом ружья, теперь и бомбы - все они нуждаются в точном расчете баллистической траектории. И если у старинной военной «техники» отследить точку попадания можно было визуально, что позволяло учиться и в следующий раз стрелять точнее, то в современном мире точка назначения обычно удалена настолько, что разглядеть ее без дополнительных приборов просто невозможно.

Что такое баллистическая траектория

Это путь, который преодолевает какой-либо объект. У него должна быть определенная начальная скорость. На него воздействует сопротивление воздуха и сила притяжения, что исключает возможность движения по прямой линии. Даже в космосе такая траектория будет искажаться под влиянием гравитации различных объектов, хоть и не так значительно, как на нашей планете. Если не учитывать сопротивление воздушных масс, то больше всего такой процесс перемещения будет напоминать эллипс.

Другой вариант - гипербола. И лишь в некоторых случаях это будет парабола или окружность (при достижении второй и первой космической скорости соответственно). В большинстве случаев такие расчеты проводятся для ракет. Они, как правило, летают в верхних слоях атмосферы, где влияние воздуха минимально. Как следствие, чаще всего баллистическая траектория все же напоминает именно эллипс. В зависимости от многих факторов, таких как скорость движения, масса, тип атмосферы, температура, вращение планеты и так далее, отдельные части пути могут принимать самые разнообразные формы.

Расчет баллистической траектории

Для того чтобы понять, куда именно упадет выпущенное тело, применяют дифференциальные уравнения и метод численного интегрирования. Уравнение баллистической траектории зависит от многих переменных, но существует и некий универсальный вариант, который не дает нужной точности, но вполне достаточен для примера.

y=x-tgѲ 0 -gx 2 /2V 0 2 -Cos 2 Ѳ 0, где:

  • y - это максимальная высота над поверхностью земли.
  • Х - дистанция от точки старта до момента, когда тело доберется до высшей точки.
  • Ѳ 0 - угол бросания.
  • V 0 - начальная скорость.

Благодаря указанной формуле появляется возможность описать баллистическую траекторию полета в безвоздушном пространстве. Получится она в форме параболы, что характерно для большинства вариантов свободного движения в подобных условиях и при наличии гравитации. Можно выделить следующие характерные особенности такой траектории:

  • Самый оптимальный угол возвышения для максимальной дистанции - 45 градусов.
  • Объект имеет одинаковую скорость движения как во время старта, так и в момент приземления.
  • Угол броска идентичен углу, под которым произойдет падение.
  • Объект долетает до вершины траектории за точно такое же время, за которое потом упадет вниз.

В подавляющем большинстве расчетов подобного рода принято пренебрегать сопротивлением воздушных масс и некоторых других факторов. Если их учитывать, то формула выйдет слишком уж сложной, а погрешность не так велика, чтобы значительно влиять на эффективность попадания.

Отличия от настильной

Под таким названием понимают другой вариант пути объекта. Настильная и баллистическая траектория - это несколько разные понятия, хотя общий принцип у них одинаков. Фактически такой вид движения подразумевает максимально возможное перемещение в горизонтальной плоскости. И на всем протяжении пути объект сохраняет достаточное ускорение. Баллистический вариант движения необходим для перемещения на большие дистанции. Например, настильная траектория наиболее важна для пули. Она должна лететь достаточно прямо максимально долго и пробивать все, что попадется у нее на пути. С другой стороны, ракета или снаряд из пушки наносят максимум разрушений именно в конце движения, так как набирают максимально возможную скорость. В промежутке своего движения они не столь сокрушительны.

Использование в современности

Баллистическая траектория чаще всего применяется в военной сфере. пули и так далее - все они летают далеко, и для точного выстрела нужно учитывать множество переменных. Кроме того, космическая программа также основана на баллистике. Без нее точно запустить ракету так, чтобы она в конечном итоге не упала на землю, а совершила несколько витков вокруг планеты (или вообще оторвалась от нее и отправилась дальше в космос), невозможно. В целом практически все, что умеет летать (вне зависимости от того, каким способом это делает), так или иначе связано с баллистической траекторией.

Заключение

Умение рассчитать все элементы и запустить какой-либо объект в нужное место - крайне важно в современности. Даже если не брать вооруженные силы, которые традиционно нуждаются в таких возможностях больше всех остальных, останется еще много вполне гражданских применений.

Траектория - это линия, которую тело описывает при движении.

Траектория пчелы

Путь - это длина траектории. То есть длина той, возможно, кривой линии, по которой двигалось тело. Путь скалярная величина ! Перемещение - векторная величина ! Это вектор, который проведен из начальной точки отправления тела в конечную точку. Имеет численное значение, равное длине вектора. Путь и перемещение - это существенно разные физические величины.

Обозначения пути и перемещения вы можете встретить разное:

Сумма перемещений

Пусть в течение промежутка времени t 1 тело совершило перемещение s 1 , а в течение следующего промежутка времени t 2 - перемещение s 2 . Тогда за все время движения перемещение s 3 - это векторная сумма

Равномерное движение

Движение с постоянной по модулю и по направлению скоростью. Что это значит? Рассмотрим движение машины. Если она едет по прямой линии, на спидометре одно и то же значение скорости (модуль скорости), то это движение равномерное. Стоит машине изменить направление (повернуть), это будет означать, что вектор скорости изменил свое направление. Вектор скорости направлен туда же, куда едет машина. Такое движение нельзя считать равномерным, несмотря на то, что спидометр показывает одно и то же число.

Направление вектора скорости всегда совпадает с направлением движения тела

Можно ли движение на карусели считать равномерным (если не происходит ускорение или торможение)? Нельзя, постоянно изменяется направление движения, а значит и вектор скорости. Из рассуждений можно сделать вывод, что равномерное движение - это всегда движение по прямой линии! А значит при равномерном движении путь и перемещение одинаковы (поясни почему).

Нетрудно представить, что при равномерном движении за любые равные промежутки времени тело будет перемещаться на одинаковое расстояние.

Траектория

Траекто́рия материа́льной то́чки - линия в трёхмерном пространстве , представляющая собой множество точек, в которых находилась, находится или будет находиться материальная точка при своём перемещении в пространстве. . Существенно, что понятие о траектории имеет физический смысл даже при отсутствии какого-либо по ней движения.

Кроме того, и при наличии движущегося по ней объекта, траектория, изображаемая в наперёд заданной системе пространственных координат, сама по себе не может ничего определённого сказать в отношении причин его движения, пока не проведён анализ конфигурации поля действующих на него сил в той же координатной системе.

Не менее существенно, что форма траектории неотрывно связана и зависит от конкретной системы отсчёта, в которой описывается движение.

Возможно наблюдение траектории при неподвижности объекта, но при движении системы отсчёта. Так, звёздное небо считается хорошей моделью инерциальной и неподвижной системы отсчёта. Однако при длительной экспозиции эти звёзды представляются движущимися по круговым траекториям (Рис.2)

Возможен и случай, когда тело явно движется, но траектория в проекции на плоскость наблюдения является одной неподвижной точкой. Это, например, случай летящей прямо в глаз наблюдателя пули или уходящего от него поезда.

Траектория свободной материальной точки

В соответствии с Первым законом Ньютона, иногда называемым законом инерции должна существовать такая система, в которой свободное тело сохраняет (как вектор) свою скорость. Такая система отсчёта называется инерциальной . Траекторией такого движения является прямая линия , а само движение называется равномерным и прямолинейным.

Описание траектории

Рис.2 Прямолинейное равномерно ускоряющееся движение в одной инерциальной системе в общем случае будет параболическим в другой равномерно двигающейся инерциальной системе отсчёта.Разложение действующей силы на составляющие произведено формально правильно и обсуждается в тексте

Принято описывать траекторию материальной точки в наперёд заданной системе координат при помощи радиус-вектора , направление, длина и начальная точка которого зависят от времени . При этом кривая, описываемая концом радиус-вектора в пространстве может быть представлена в виде сопряжённых дуг различной кривизны , находящихся в общем случае в пересекающихся плоскостях . При этом кривизна каждой дуги определяется её радиусом кривизны , направленном к дуге из мгновенного центра поворота, находящегося в той же плоскости, что и сама дуга. При том прямая линия рассматривается как предельный случай кривой , радиус кривизны которой может считаться равным бесконечности . И потому траектория в общем случае может быть представлена как совокупность сопряжённых дуг.

Существенно, что форма траектории зависит от системы отсчёта , избранной для описания движения материальной точки. Так прямолинейное равномерно ускоряющееся движение в инерциальной системе в общем случае будет параболическим (до тех пор, пока набираемая скорость тела сравнима по величине со скоростью относительного движения равномерно двигающейся инерциальной системе отсчёта. См. Рисунок 2).

Связь со скоростью и нормальным ускорением

Рис.3 Суточное движение светил в системе отсчёта, связанной с фотоаппаратом в проекции на плоскость рисунка

Скорость материальной точки всегда направлена по касательной к дуге, используемой для описания траектории точки. При этом существует связь между величиной скорости , нормальным ускорением и радиусом кривизны траектории в данной точке:

Однако, не всякое движение с известной скоростью по кривой известного радиуса и найденное по приведённой выше формуле нормальное (центростремительное) ускорение связано с проявлением силы, направленной по нормали к траектории (центростремительной силы). Так, найденное по данным фотографии суточного движения светил ускорение любой из звёзд отнюдь не говорит о существовании вызывающей это ускорение силы, притягивающей её к Полярной звезде, как центру вращения.

Связь с уравнениями динамики

Представление траектории как следа, оставляемого движением материальной точки, связывает чисто кинематическое понятие о траектории, как геометрической проблеме, с динамикой движения материальной точки, то есть проблемой определения причин её движения. Фактически, решение уравнений Ньютона (при наличии полного набора исходных данных) даёт траекторию материальной точки.

В общем случае тело не бывает свободно в своём движении, и на его положение, а в некоторых случаях и на скорость , налагаются ограничения - связи . Если связи накладывают ограничения только на координаты тела, то такие связи называются геометрическими. Если же они распространяются и на скорости, то они называются кинематическими. Если уравнение связи может быть проинтегрировано во времени, то такая связь называется голономной .

Действие связей на систему движущихся тел описывается силами, называемыми реакциями связей. В таком случае сила, входящая в левую часть уравнения (1), есть векторная сумма активных (внешних) сил и реакции связей.

Существенно, что в случае голономных связей становится возможным описать движение механических систем в обобщённых координатах , входящих в уравнения Лагранжа . Число этих уравнений зависит лишь от числа степеней свободы системы и не зависит от количества входящих в систему тел, положение которых необходимо определять для полного описания движения.

Если же связи, действующие в системе идеальны, то есть в них не происходит переход энергии движения в другие виды энергии, то при решении уравнений Лагранжа автоматически исключаются все неизвестные реакции связей.

Наконец, если действующие силы принадлежат к классу потенциальных, то при соответствующем обобщении понятий становится возможным использования уравнений Лагранжа не только в механике, но и других областях физики.

Действующие на материальную точку силы в этом понимании однозначно определяют форму траектории её движения (при известных начальных условиях). Обратное утверждение в общем случае не справедливо, поскольку одна и та же траектория может иметь место при различных комбинациях активных сил и реакций связи.

Движение под действием внешних сил в неинерциальной системе отсчёта

Если система отсчёта неинерциальна (то есть движется с неким ускорением относительно инерциальной системы отсчёта), то в ней также возможно использование выражения (1), однако в левой части необходимо учесть так называемые силы инерции (в том числе, центробежную силу и силу Кориолиса , связанные с вращением неинерциальной системы отсчёта) .

Иллюстрация

Траектории одного и того же движения в неподвижной и вращающейся системах отсчёта. Вверху в инерциальной системе видно, что тело двигается по прямой. Внизу в неинерциальной видно, что тело повернуло в сторону от наблюдателя по кривой.

Как пример, рассмотрим работника театра, передвигающегося в колосниковом пространстве над сценой по отношению к зданию театра равномерно и прямолинейно и несущего над вращающейся сценой дырявое ведро с краской. Он будет оставлять на ней след от падающей краски в форме раскручивающейся спирали (если движется от центра вращения сцены) и закручивающейся - в противоположном случае. В это время его коллега, отвечающий за чистоту вращающейся сцены и на ней находящийся, будет поэтому вынужден нести под первым недырявое ведро, постоянно находясь под первым. И его движение по отношению к зданию также будет равномерным и прямолинейным , хотя по отношению к сцене, которая является неинерциальной системой , его движение будет искривлённым и неравномерным . Более того, для того, чтобы противодействовать сносу в направлении вращения, он должен мышечным усилием преодолевать действие силы Кориолиса , которое не испытывает его верхний коллега над сценой, хотя траектории обоих в инерциальной системе здания театра будут представлять прямые линии .

Но можно себе представить, что задачей рассматривающихся здесь коллег является именно нанесение прямой линии на вращающейся сцене . В этом случае нижний должен потребовать от верхнего движения по кривой, являющейся зеркальным отражением следа от ранее пролитой краски,оставаясь при этом над любой точкой прямой, проходящей в избранном радиальном направлении. Следовательно, прямолинейное движение в неинерциальной системе отсчёта не будет являться таковым для наблюдателя в инерциальной системе .

Более того, равномерное движение тела в одной системе, может быть неравномерным в другой. Так, две капли краски, упавшие в разные моменты времени из дырявого ведра, как в собственной системе отсчёта, так и в системе неподвижного по отношению к зданию нижнего коллеги (на уже прекратившей вращение сцене), будут двигаться по прямой (к центру Земли). Различие будет заключаться в том, что для нижнего наблюдателя это движение будет ускоренным , а для верхнего его коллеги, если он, оступившись, будет падать , двигаясь вместе с любой из капель, расстояние между каплями будет увеличиваться пропорционально первой степени времени, то есть взаимное движение капель и их наблюдателя в его ускоренной системе координат будет равномерным со скоростью , определяемой задержкой между моментами падения капель:

.

Где - ускорение свободного падения .

Поэтому форма траектории и скорость движения по ней тела, рассматриваемая в некоторой системе отсчёта, о которой заранее ничего не известно , не даёт однозначного представления о силах, действующих на тело. Решить вопрос о том, является ли эта система в достаточной степени инерциальной, можно лишь на основе анализа причин возникновения действующих сил.

Таким образом, в неинерциальной системе:

  • Кривизна траектории и/или непостоянство скорости являются недостаточным аргументом в пользу утверждения о том, что на движущееся по ней тело действуют внешние силы, которые в конечном случае могут быть объяснены гравитационными или электромагнитными полями.
  • Прямолинейность траектории является недостаточным аргументом в пользу утверждения о том, что на движущееся по ней тело не действуют никакие силы.

Примечания

В физике есть ещё одна формула измерения траектории (пути): s=4Atv, где A - амплитуда, t - время, v - частота колебаний

Литература

  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989
  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов, Том I. М.: ГИТТЛ, 1957

Ссылки

  • Траектория и вектор перемещения, раздел учебника по физике [неавторитетный источник? ]

Wikimedia Foundation . 2010 .

Синонимы :
  • Мне не больно (фильм)
  • Американская история Икс (фильм)

Смотреть что такое "Траектория" в других словарях:

    ТРАЕКТОРИЯ - (от лат. trajicere перебрасывать, пересекать), в геометрии: прямая или кривая линия, которую описывает движущееся или падающее тело, напр., ядро, по выходе из пушки. 2) кривая, пересекающая систему однородных кривых под одним и тем же углом.… … Словарь иностранных слов русского языка

ТРАЕКТОРИЯ (в физике) ТРАЕКТОРИЯ (в физике)

ТРАЕКТО́РИЯ (от ср.-век. лат. trajectorius - относящийся к перемещению), линия, которую описывает точка при своем движении. Если траектория - прямая линия, то движение называется прямолинейным, в противном случае - криволинейным.


Энциклопедический словарь . 2009 .

Смотреть что такое "ТРАЕКТОРИЯ (в физике)" в других словарях:

    Рис.1 Траектории трёх объектов (угол запуска 70°, Distance расстояние, Height высота), разное лобовое сопротивление Запрос «Траектория» перенаправляется сюда; см. также другие значения. Траектория материальной точки линия … Википедия

    Траектории трёх объектов (угол запуска 70°, Distance расстояние, Height высота), разное лобовое сопротивление Запрос «Траектория» перенаправляется сюда; см. также другие значения. Траектория материальной точки линия в… … Википедия

    История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… … Википедия

    Многомерное пространство, осями которого служат все обобщённые координаты qi и импульсы рi (i=1, 2, ..., N) механич. системы с N степенями свободы. Т. о., Ф. п. имеет размерность 2N. Состояние системы изображается в Ф. п. точкой с координатами q1 … Физическая энциклопедия

    Две осн. формы закономерной связи явлений, которые отличаются по характеру вытекающих из них предсказаний. В законах динамич. типа предсказания имеют точно определённый, однозначный характер. Так, в механике, если известен закон движения… … Философская энциклопедия

    Кибернетическая физика область науки на стыке кибернетики и физики, изучающая физические системы кибернетическими методами. Под кибернетическими методами понимаются методы решения задач управления, оценивания переменных и параметров… … Википедия

    В физике принцип действия является утверждением о природе движения, из которого может быть определена траектория объекта, на который действуют внешние силы. Траектория объекта та, которая приводит к постоянному значению для физической величины,… … Википедия

    У этого термина существуют и другие значения, см. Действие (физика). Действие Размерность L2MT−1 Действие в физике скалярная физическая величина, являющаяс … Википедия

    В статистической физике, состоит в предположении, что средние по времени значения физ. величин, характеризующих систему, равны их средним статистич. значениям; служит для обоснования статистич. физики. Физ. системы, для к рых справедлива Э. г.,… … Физическая энциклопедия

    - (от греч. βάλλειν бросать) наука о движении тел, брошенных в пространстве, основанная на математике и физике. Она занимается, главным образом, исследованием движения снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и… … Википедия