គូបលេខអវិជ្ជមាន។ បង្កើនអំណាចមិនសមហេតុផល

  • 05.10.2014

    ប្រសិនបើប្រភពសញ្ញាច្រើនជាងពីរមិនត្រូវបានគេសន្មត់ថាត្រូវបានប្រើប្រាស់ទេ វាសមហេតុផលក្នុងការប្រើឧបករណ៍ជ្រើសរើសដោយស្វ័យប្រវត្តិដែលភ្ជាប់ទៅនឹងការបញ្ចូលរបស់ preamplifier ប្រភពនៅទិន្នផលដែលសញ្ញាបានបង្ហាញខ្លួន។ ដូចដែលអាចមើលឃើញពីដ្យាក្រាមឧបករណ៍ជ្រើសរើសមាន flip-flop នៅលើត្រង់ស៊ីស្ទ័រ VT1, VT2 និងម៉ាស៊ីនភ្លើងពីរនៃសញ្ញាដែលគ្រប់គ្រងវា។ ជា​មួយ​គ្នា​នេះ​អ្នក​ធ្វើ​រូប​រាង...

  • 29.10.2014

    បន្ទះឈីប - TDA2822 គឺជាឧបករណ៍បំពងសំឡេងស្តេរ៉េអូដែលមានថាមពលទាប op-amp នេះត្រូវបានប្រើនៅក្នុងអ្នកលេង Walkman និងឧបករណ៍ជំនួយការស្តាប់។ TDA2822 អាចបញ្ចេញបានរហូតដល់ 0.25W TDA2822 គឺជាដំណោះស្រាយទិន្នផល impedance ទាបដ៏ល្អ។ អ្នកនិពន្ធ — D. Mohankumar ប្រភព — http://electroschematics.com

  • 04.10.2014

    សៀគ្វីដែលមិនមានការផ្គត់ផ្គង់ choke នៃចង្កៀង fluorescent ត្រូវបានបង្ហាញនៅក្នុងរូបភព។ ចង្កៀង incandescent ត្រូវបានភ្ជាប់ជាស៊េរីជាមួយ rectifier ( rectifier ត្រូវបានជួបប្រជុំគ្នាបើយោងតាមសៀគ្វីទ្វេវ៉ុល) ។ ការប្រើប្រាស់ចង្កៀង incandescent ជំនួសឱ្យ capacitors ballast គឺជាក់ស្តែងជាង វាឆេះនៅជាន់ភ្លឺ នៅពេលដែល capacitors មួយខូច វាឆេះពេញដោយកំដៅ ជាហេតុបង្ហាញសញ្ញាថាដំណើរការខុសប្រក្រតី។ សរសៃអំបោះ...

  • 06.10.2014

    preamplifier ត្រូវបានផលិតនៅលើ IC K1401UD2A មួយដែលមាន 4 op amps នៅក្នុងកំណែស្តេរ៉េអូ 2 op amps ក្នុងមួយឆានែល។ មេគុណផ្ទេរសរុប (ទទួលបាន) គឺស្មើនឹង 5 វ៉ុលបញ្ចូលអតិបរមាគឺ 0.5V នាមករណ៍គឺ 0.2V ។ ការបញ្ចូល impedance 100 kOhm ។ ជួរប្រេកង់គឺ 30 ... 20000 Hz ជាមួយនឹងការឆ្លើយតបប្រេកង់មិនស្មើគ្នានៃ 2 dB ។ ការលៃតម្រូវការឆ្លើយតបប្រេកង់ 6-band ជាមួយប្រេកង់កណ្តាល 60, 200, 1000, ...


នៅក្នុងអត្ថបទនេះយើងនឹងយល់ពីអ្វីដែលជាអ្វី ដឺក្រេនៃ. នៅទីនេះ យើងនឹងផ្តល់និយមន័យនៃកម្រិតនៃចំនួនមួយ ខណៈពេលដែលពិចារណាលម្អិតអំពីនិទស្សន្តដែលអាចធ្វើបានទាំងអស់នៃសញ្ញាបត្រ ដោយចាប់ផ្តើមដោយនិទស្សន្តធម្មជាតិ បញ្ចប់ដោយអសមហេតុផលមួយ។ នៅក្នុងសម្ភារៈអ្នកនឹងឃើញឧទាហរណ៍ជាច្រើននៃដឺក្រេដែលគ្របដណ្តប់ subtleties ទាំងអស់ដែលកើតឡើង។

ការរុករកទំព័រ។

សញ្ញាប័ត្រជាមួយនិទស្សន្តធម្មជាតិ ការ៉េនៃចំនួនមួយ គូបនៃចំនួនមួយ។

ចូរចាប់ផ្តើមជាមួយ។ ក្រឡេកមើលខាងមុខ ចូរនិយាយថានិយមន័យនៃដឺក្រេនៃ a ជាមួយនឹងនិទស្សន្តធម្មជាតិ n ត្រូវបានផ្តល់ឱ្យសម្រាប់ a ដែលយើងនឹងហៅ មូលដ្ឋាននៃសញ្ញាបត្រនិង n ដែលយើងនឹងហៅ និទស្សន្ត. យើងក៏កត់សម្គាល់ផងដែរថាសញ្ញាបត្រដែលមានសូចនាករធម្មជាតិត្រូវបានកំណត់ដោយផលិតផលដូច្នេះដើម្បីយល់ពីសម្ភារៈខាងក្រោមអ្នកត្រូវមានគំនិតអំពីការគុណលេខ។

និយមន័យ។

អំណាចនៃចំនួន a ជាមួយនិទស្សន្តធម្មជាតិ nគឺជាកន្សោមនៃទម្រង់ a n ដែលតម្លៃរបស់វាស្មើនឹងផលគុណនៃកត្តា n ដែលនីមួយៗស្មើនឹង a ពោលគឺ .
ជាពិសេសកម្រិតនៃលេខ a ដែលមាននិទស្សន្ត 1 គឺជាលេខ a ខ្លួនវា នោះគឺ a 1 = a ។

ភ្លាមៗវាមានតម្លៃនិយាយអំពីច្បាប់សម្រាប់ការអានដឺក្រេ។ វិធីសកលដើម្បីអានធាតុ a n គឺ៖ "a ដល់អំណាចនៃ n" ។ ក្នុងករណីខ្លះជម្រើសបែបនេះក៏អាចទទួលយកបានដែរ៖ "a ដល់ nth power" និង "nth power of number a" ។ ឧទាហរណ៍ ចូរយើងយកអំណាចនៃ 8 12 នេះគឺជា "ប្រាំបីទៅអំណាចនៃដប់ពីរ" ឬ "ប្រាំបីទៅដប់ពីរអំណាច" ឬ "ដប់ពីរនៃអំណាចប្រាំបី" ។

អំណាចទីពីរនៃលេខមួយ ក៏ដូចជាអំណាចទីបីនៃលេខមួយ មានឈ្មោះរៀងៗខ្លួន។ អំណាចទីពីរនៃលេខត្រូវបានគេហៅថា ការ៉េនៃចំនួនមួយ។ឧទាហរណ៍ 7 2 ត្រូវបានអានថា "ប្រាំពីរការ៉េ" ឬ "ការេនៃលេខប្រាំពីរ" ។ អំណាចទីបីនៃលេខត្រូវបានគេហៅថា លេខគូបឧទាហរណ៍ 5 3 អាចត្រូវបានអានជា "ប្រាំគូប" ឬនិយាយថា "គូបនៃលេខ 5" ។

ដល់ពេលនាំយកហើយ។ ឧទាហរណ៍នៃដឺក្រេជាមួយសូចនាកររាងកាយ. ចូរចាប់ផ្តើមដោយអំណាចនៃ 5 7 ដែល 5 គឺជាមូលដ្ឋាននៃអំណាច ហើយ 7 គឺជានិទស្សន្ត។ សូមលើកឧទាហរណ៍មួយទៀត៖ ៤.៣២ ជាគោល ហើយលេខធម្មជាតិ ៩ ជានិទស្សន្ត (៤.៣២) ៩។

សូមចំណាំថាក្នុងឧទាហរណ៍ចុងក្រោយ គោលនៃសញ្ញាប័ត្រ 4.32 ត្រូវបានសរសេរជាតង្កៀប៖ ដើម្បីជៀសវាងភាពមិនស្របគ្នា យើងនឹងយកតង្កៀបរាល់មូលដ្ឋាននៃដឺក្រេដែលខុសពីលេខធម្មជាតិ។ ជាឧទាហរណ៍ យើងផ្តល់សញ្ញាប័ត្រខាងក្រោមជាមួយនឹងសូចនាករធម្មជាតិ មូលដ្ឋានរបស់ពួកគេមិនមែនជាលេខធម្មជាតិទេ ដូច្នេះពួកគេត្រូវបានសរសេរក្នុងវង់ក្រចក។ ជាការប្រសើរណាស់ សម្រាប់ភាពច្បាស់លាស់ពេញលេញនៅចំណុចនេះ យើងនឹងបង្ហាញពីភាពខុសគ្នាដែលមាននៅក្នុងកំណត់ត្រានៃទម្រង់ (−2) 3 និង −2 3 ។ កន្សោម (−2) 3 គឺជាអំណាចនៃ −2 ជាមួយនឹងនិទស្សន្តធម្មជាតិ 3 ហើយកន្សោម −2 3 (វាអាចត្រូវបានសរសេរជា −(2 3)) ត្រូវនឹងលេខ តម្លៃនៃថាមពល 2 3 ។

ចំណាំថាមានសញ្ញាណសម្រាប់ដឺក្រេនៃ a ជាមួយនិទស្សន្ត n នៃទម្រង់ a^n ។ ជាងនេះទៅទៀត ប្រសិនបើ n គឺជាចំនួនធម្មជាតិដែលមានគុណតម្លៃច្រើន នោះនិទស្សន្តត្រូវបានយកជាតង្កៀប។ ឧទាហរណ៍ 4^9 គឺជាសញ្ញាណមួយផ្សេងទៀតសម្រាប់អំណាចនៃ 4 9 ។ ហើយនេះគឺជាឧទាហរណ៍ជាច្រើនទៀតនៃការសរសេរដឺក្រេដោយប្រើនិមិត្តសញ្ញា "^": 14^(21), (−2,1)^(155) ។ នៅក្នុងអ្វីដែលខាងក្រោម យើងនឹងប្រើប្រាស់ជាចម្បងនូវសញ្ញាណនៃកម្រិតនៃទម្រង់ a n ។

បញ្ហាមួយ ការបញ្ច្រាសនៃនិទស្សន្តជាមួយនិទស្សន្តធម្មជាតិ គឺជាបញ្ហានៃការស្វែងរកមូលដ្ឋាននៃដឺក្រេពីតម្លៃដែលគេស្គាល់នៃដឺក្រេ និងនិទស្សន្តដែលគេស្គាល់។ ភារកិច្ចនេះនាំឱ្យ។

វាត្រូវបានគេដឹងថា សំណុំនៃលេខសនិទានភាពមានចំនួនគត់ និងលេខប្រភាគ ហើយចំនួនប្រភាគនីមួយៗអាចត្រូវបានតំណាងថាជាប្រភាគធម្មតាវិជ្ជមាន ឬអវិជ្ជមាន។ យើងបានកំណត់សញ្ញាប័ត្រជាមួយនិទស្សន្តចំនួនគត់នៅក្នុងកថាខណ្ឌមុន ដូច្នេះដើម្បីបំពេញនិយមន័យនៃសញ្ញាប័ត្រជាមួយនឹងនិទស្សន្តនិទស្សន្ត យើងត្រូវផ្តល់អត្ថន័យនៃដឺក្រេនៃចំនួន a ជាមួយនឹងនិទស្សន្តប្រភាគ m/n ។ ដែល m ជាចំនួនគត់ ហើយ n គឺជាលេខធម្មជាតិ។ តោះ​ធ្វើ​វា។

ពិចារណាដឺក្រេជាមួយនិទស្សន្តប្រភាគនៃទម្រង់។ ដើម្បីឱ្យទ្រព្យសម្បត្តិនៃសញ្ញាបត្រមួយនៅតែមានសុពលភាពនោះ សមភាពត្រូវតែរក្សា . ប្រសិនបើយើងយកទៅក្នុងគណនីសមភាពលទ្ធផល និងវិធីដែលយើងបានកំណត់ នោះវាសមហេតុផលក្នុងការទទួលយក ប្រសិនបើសម្រាប់ m, n និង a កន្សោមមានន័យ។

វាងាយស្រួលក្នុងការពិនិត្យមើលថាលក្ខណៈសម្បត្តិទាំងអស់នៃសញ្ញាបត្រដែលមាននិទស្សន្តចំនួនគត់មានសុពលភាពសម្រាប់ជា (នេះត្រូវបានធ្វើនៅក្នុងផ្នែកលើលក្ខណៈសម្បត្តិនៃសញ្ញាបត្រដែលមាននិទស្សន្តសមហេតុផល)។

ហេតុផលខាងលើអនុញ្ញាតឱ្យយើងធ្វើដូចខាងក្រោម ការសន្និដ្ឋាន៖ ប្រសិនបើសម្រាប់ m, n និងកន្សោមមានអត្ថន័យ នោះអំណាចនៃលេខ a ដែលមាននិទស្សន្តប្រភាគ m/n គឺជាឫសគល់នៃដឺក្រេទី n នៃ a ដល់អំណាច m ។

សេចក្តីថ្លែងការណ៍នេះនាំយើងឱ្យជិតទៅនឹងនិយមន័យនៃសញ្ញាប័ត្រដែលមាននិទស្សន្តប្រភាគ។ វានៅសល់តែពណ៌នាអំពីអ្វីដែល m, n និងកន្សោមសមហេតុផល។ ដោយផ្អែកលើការរឹតបន្តឹងដែលដាក់លើ m , n និង a មានវិធីសាស្រ្តសំខាន់ពីរ។

    មធ្យោបាយងាយស្រួលបំផុតក្នុងការរឹតបន្តឹង a គឺសន្មត់ a≥0 សម្រាប់ m វិជ្ជមាន និង a> 0 សម្រាប់ m អវិជ្ជមាន (ព្រោះ m≤0 មិនមានថាមពល 0 m) ។ បន្ទាប់មកយើងទទួលបាននិយមន័យខាងក្រោមនៃដឺក្រេជាមួយនឹងនិទស្សន្តប្រភាគ។

    និយមន័យ។

    អំណាចនៃចំនួនវិជ្ជមាន a ជាមួយនឹងនិទស្សន្តប្រភាគ m/nដែល m ជាចំនួនគត់ ហើយ n ជាចំនួនធម្មជាតិ ត្រូវបានគេហៅថាឫសនៃលេខ n នៃចំនួន a ដល់អំណាចនៃ m នោះគឺ .

    ដឺក្រេប្រភាគនៃសូន្យក៏ត្រូវបានកំណត់ជាមួយការព្រមានតែមួយគត់ដែលនិទស្សន្តត្រូវតែវិជ្ជមាន។

    និយមន័យ។

    អំណាចនៃសូន្យជាមួយនឹងនិទស្សន្តវិជ្ជមានប្រភាគ m/nដែល m ជាចំនួនគត់វិជ្ជមាន ហើយ n ជាចំនួនធម្មជាតិ ត្រូវបានកំណត់ជា .
    នៅពេលដែលសញ្ញាប័ត្រមិនត្រូវបានកំណត់ នោះមានន័យថា កម្រិតនៃលេខសូន្យជាមួយនឹងនិទស្សន្តអវិជ្ជមានប្រភាគមិនសមហេតុផលទេ។

    វាគួរតែត្រូវបានកត់សម្គាល់ថាជាមួយនឹងនិយមន័យនៃដឺក្រេជាមួយនឹងនិទស្សន្តប្រភាគ មានភាពខុសប្លែកគ្នាមួយ: សម្រាប់អវិជ្ជមានមួយចំនួន a និង m និង n មួយចំនួន កន្សោមគឺសមហេតុផល ហើយយើងបានបោះបង់ករណីទាំងនេះដោយការណែនាំលក្ខខណ្ឌ a≥0 ។ ឧទាហរណ៍វាសមហេតុផលក្នុងការសរសេរ ឬ ហើយនិយមន័យខាងលើបង្ខំយើងឱ្យនិយាយថាដឺក្រេជាមួយនឹងនិទស្សន្តប្រភាគនៃទម្រង់ គ្មានន័យទេ ព្រោះមូលដ្ឋានមិនត្រូវអវិជ្ជមានទេ។

    វិធីសាស្រ្តមួយផ្សេងទៀតក្នុងការកំណត់ដឺក្រេជាមួយនិទស្សន្តប្រភាគ m/n គឺត្រូវពិចារណាដោយឡែកពីគ្នានូវនិទស្សន្តគូ និងសេសនៃឫស។ វិធីសាស្រ្តនេះតម្រូវឱ្យមានលក្ខខណ្ឌបន្ថែម៖ កម្រិតនៃចំនួន a ដែលនិទស្សន្តគឺត្រូវបានចាត់ទុកថាជាកម្រិតនៃលេខ a ដែលជានិទស្សន្តនៃប្រភាគដែលមិនអាចកាត់ថ្លៃបាន (សារៈសំខាន់នៃលក្ខខណ្ឌនេះនឹងត្រូវបានពន្យល់ខាងក្រោម) ។ នោះគឺប្រសិនបើ m/n គឺជាប្រភាគដែលមិនអាចកាត់ថ្លៃបាន នោះសម្រាប់លេខធម្មជាតិណាមួយ k ដឺក្រេត្រូវបានជំនួសដោយ .

    សម្រាប់សូម្បីតែ n និង m វិជ្ជមាន កន្សោមធ្វើឱ្យយល់បានចំពោះអ្វីដែលមិនអវិជ្ជមាន a (ឫសនៃដឺក្រេគូពីលេខអវិជ្ជមានមិនសមហេតុផលទេ) សម្រាប់ m អវិជ្ជមាន លេខ a នៅតែខុសពីសូន្យ (បើមិនដូច្នេះទេមាន នឹងត្រូវបែងចែកដោយសូន្យ) ។ ហើយសម្រាប់សេស n និង m វិជ្ជមាន លេខ a អាចជារបស់អ្វីក៏បាន (ឫសនៃសញ្ញាប័ត្រសេសត្រូវបានកំណត់សម្រាប់ចំនួនពិតណាមួយ) ហើយសម្រាប់ m អវិជ្ជមាន លេខ a ត្រូវតែខុសពីសូន្យ (ដូច្នេះមិនមានការបែងចែកដោយ សូន្យ)។

    ការវែកញែកខាងលើនាំយើងទៅរកនិយមន័យនៃសញ្ញាបត្រនេះជាមួយនឹងនិទស្សន្តប្រភាគ។

    និយមន័យ។

    អនុញ្ញាតឱ្យ m/n ជាប្រភាគដែលមិនអាចកាត់ថ្លៃបាន m ជាចំនួនគត់ និង n ជាចំនួនធម្មជាតិ។ សម្រាប់ប្រភាគធម្មតាដែលអាចកាត់បន្ថយបាន សញ្ញាបត្រត្រូវបានជំនួសដោយ . អំណាចនៃ a ដែលមាននិទស្សន្តប្រភាគដែលមិនអាចកាត់ថ្លៃបាន m/n គឺសម្រាប់

    ចូរយើងពន្យល់ពីមូលហេតុដែលសញ្ញាបត្រដែលមាននិទស្សន្តប្រភាគកាត់បន្ថយត្រូវបានជំនួសដោយសញ្ញាប័ត្រជាមួយនិទស្សន្តមិនអាចកាត់បន្ថយបាន។ ប្រសិនបើ​យើង​កំណត់​កម្រិត​ជា​ធម្មតា ហើយ​មិន​បាន​ធ្វើការ​កក់ទុក​អំពី​ភាព​មិន​អាច​កែប្រែ​បាន​នៃ​ប្រភាគ m/n នោះ​យើង​នឹង​ជួប​នឹង​ស្ថានភាព​ដូច​ខាងក្រោម៖ ចាប់តាំងពី 6/10=3/5 នោះ​សមភាព , ប៉ុន្តែ , ក .

គោលដៅចម្បង

ដើម្បីស្គាល់សិស្សជាមួយនឹងលក្ខណៈសម្បត្តិនៃដឺក្រេជាមួយនឹងសូចនាករធម្មជាតិហើយបង្រៀនពួកគេឱ្យអនុវត្តសកម្មភាពជាមួយនឹងដឺក្រេ។

ប្រធានបទ "សញ្ញាបត្រ និងលក្ខណៈសម្បត្តិរបស់វា"រួមបញ្ចូលសំណួរចំនួនបី៖

  • ការកំណត់សញ្ញាបត្រជាមួយនឹងសូចនាករធម្មជាតិ។
  • គុណនិងការបែងចែកអំណាច។
  • និទស្សន្តនៃផលិតផល និងសញ្ញាបត្រ។

សំណួរសាកល្បង

  1. បង្កើតនិយមន័យនៃសញ្ញាប័ត្រដែលមាននិទស្សន្តធម្មជាតិធំជាង 1។ សូមផ្តល់ឧទាហរណ៍មួយ។
  2. បង្កើតនិយមន័យនៃសញ្ញាបត្រដែលមានសូចនាករ 1. ផ្តល់ឧទាហរណ៍មួយ។
  3. តើអ្វីជាលំដាប់នៃប្រតិបត្តិការនៅពេលវាយតម្លៃតម្លៃនៃកន្សោមដែលមានអំណាច?
  4. បង្កើតលក្ខណៈសំខាន់នៃសញ្ញាបត្រ។ ផ្តល់ឧទាហរណ៍មួយ។
  5. បង្កើតច្បាប់សម្រាប់គុណអំណាចដែលមានមូលដ្ឋានដូចគ្នា។ ផ្តល់ឧទាហរណ៍មួយ។
  6. បង្កើតច្បាប់សម្រាប់ការបែងចែកអំណាចដោយមូលដ្ឋានដូចគ្នា។ ផ្តល់ឧទាហរណ៍មួយ។
  7. បង្កើតច្បាប់សម្រាប់និទស្សន្តនៃផលិតផល។ ផ្តល់ឧទាហរណ៍មួយ។ បញ្ជាក់អត្តសញ្ញាណ (ab) n = a n b n ។
  8. បង្កើត​ច្បាប់​សម្រាប់​ដំឡើង​សញ្ញាបត្រ​ដល់​អំណាច។ ផ្តល់ឧទាហរណ៍មួយ។ បញ្ជាក់អត្តសញ្ញាណ (a m) n = a m n ។

និយមន័យនៃសញ្ញាបត្រ។

កម្រិតនៃលេខ ជាមួយនឹងសូចនាករធម្មជាតិ ធំជាង 1 ត្រូវបានគេហៅថាផលគុណនៃកត្តា n ដែលនីមួយៗស្មើនឹង . កម្រិតនៃលេខ ជាមួយនឹងនិទស្សន្ត 1 លេខខ្លួនឯងត្រូវបានគេហៅថា .

សញ្ញាប័ត្រជាមួយមូលដ្ឋាន និងសូចនាករ ត្រូវបានសរសេរដូចនេះ៖ មួយ n. វាអាន " ដើម្បី​វិសាលភាព ”; " n-th អំណាចនៃចំនួនមួយ។ ”.

តាមនិយមន័យនៃសញ្ញាបត្រ៖

a 4 = a a a a ក

. . . . . . . . . . . .

ការស្វែងរកតម្លៃនៃសញ្ញាបត្រត្រូវបានគេហៅថា និទស្សន្ត .

1. ឧទាហរណ៍នៃនិទស្សន្ត៖

3 3 = 3 3 3 = 27

0 4 = 0 0 0 0 = 0

(-5) 3 = (-5) (-5) (-5) = -125

25 ; 0,09 ;

25 = 5 2 ; 0,09 = (0,3) 2 ; .

27 ; 0,001 ; 8 .

27 = 3 3 ; 0,001 = (0,1) 3 ; 8 = 2 3 .

4. ស្វែងរកតម្លៃកន្សោម៖

ក) 3 10 3 = 3 10 10 10 = 3 1000 = 3000

ខ) −2 4 + (−3) 2 = 7
2 4 = 16
(-3) 2 = 9
-16 + 9 = 7

ជម្រើសទី 1

ក) 0.3 0.3 0.3

គ) b b b b b b b

ឃ) (-x) (-x) (-x) (-x)

e) (ab) (ab) (ab)

2. ការេ​លេខ​:

3. គូបលេខ:

4. ស្វែងរកតម្លៃកន្សោម៖

គ) -1 4 + (-2) ៣

ឃ) -4 3 + (-3) ២

ង) ១០០ - ៥ ២ ៤

គុណនៃអំណាច។

សម្រាប់លេខណាមួយ a និងលេខបំពាន m និង n ខាងក្រោមគឺពិត៖

a m a n = a m + n ។

ភស្តុតាង៖

ក្បួន : នៅពេលគុណអំណាចជាមួយមូលដ្ឋានដូចគ្នា មូលដ្ឋាននៅតែដដែល ហើយនិទស្សន្តត្រូវបានបន្ថែម។

a m a n a k = a m + n a k = a (m + n) + k = a m + n + k

ក) x 5 x 4 = x 5 + 4 = x 9

ខ) y y 6 = y 1 y 6 = y 1 + 6 = y 7

គ) b 2 b 5 b 4 \u003d ខ 2 + 5 + 4 \u003d ខ 11

ឃ) 3 4 9 = 3 4 3 2 = 3 6

e) 0.01 0.1 3 = 0.1 2 0.1 3 = 0.1 5

ក) 2 3 2 = 2 4 = 16

ខ) 3 2 3 5 = 3 7 = 2187

ជម្រើសទី 1

1. បង្ហាញសញ្ញាប័ត្រ៖

ក) x 3 x 4 e) x 2 x 3 x 4

b) a 6 a 2 g) ៣ ៣ ៩

គ) y 4 y h) 7 4 49

ឃ) a a 8 i) 16 2 7

e) 2 3 2 4 j) 0.3 3 0.09

2. បង្ហាញជាដឺក្រេ និងស្វែងរកតម្លៃក្នុងតារាង៖

ក) ២ ២ ២ ៣ គ) ៨ ២ ៥

b) 3 4 3 2 ឃ) 27 243

ការបែងចែកដឺក្រេ។

សម្រាប់លេខណាមួយ a0 និងលេខធម្មជាតិតាមអំពើចិត្ត m និង n ដូចនេះ m>n ខាងក្រោមនេះនឹងទទួល៖

a m : a n = a m − n

ភស្តុតាង៖

a m − n a n = a (m − n) + n = a m − n + n = a m

តាមនិយមន័យឯកជន៖

a m: a n \u003d a m - n ។

ក្បួន: ពេលបែងចែកអំណាចជាមួយមូលដ្ឋានដូចគ្នា មូលដ្ឋានត្រូវទុកនៅដដែល ហើយនិទស្សន្តនៃការបែងចែកត្រូវបានដកចេញពីនិទស្សន្តនៃភាគលាភ។

និយមន័យ៖ កម្រិតនៃលេខមិនសូន្យដែលមាននិទស្សន្តសូន្យគឺស្មើនឹងមួយ។:

ដោយសារតែ a n: a n = 1 សម្រាប់ a0 ។

ក) x 4: x 2 \u003d x 4 - 2 \u003d x 2

b) y 8: y 3 = y 8 − 3 = y 5

គ) a 7: a \u003d a 7: a 1 \u003d a 7 - 1 \u003d a 6

d) s 5:s 0 = s 5:1 = s 5

a) 5 7:5 5 = 5 2 = 25

ខ) 10 20:10 17 = 10 3 = 1000

ក្នុង)

ឆ)

អ៊ី)

ជម្រើសទី 1

1. បង្ហាញ quotient ជាអំណាចមួយ:

2. ស្វែងរកតម្លៃនៃកន្សោម៖

ការបង្កើនថាមពលនៃផលិតផល។

សម្រាប់ a និង b និង លេខធម្មជាតិ arbitrary n:

(ab) n = a n b n

ភស្តុតាង៖

តាមនិយមន័យនៃសញ្ញាបត្រ

(ab) n =

ការដាក់ក្រុមកត្តា a និងកត្តា b ដាច់ដោយឡែកពីគ្នា យើងទទួលបាន៖

=

ទ្រព្យសម្បត្តិដែលបានបញ្ជាក់នៃកម្រិតនៃផលិតផលពង្រីកដល់កម្រិតនៃផលិតផលនៃកត្តាបី ឬច្រើន។

ឧទាហរណ៍:

(a b c) n = a n b n c n ;

(a b c d) n = a n b n c n d n ។

ក្បួន៖ នៅពេល​បង្កើន​ផលិតផល​ទៅជា​ថាមពល កត្តា​នីមួយៗ​ត្រូវបាន​លើក​ឡើង​ដល់​ថាមពល​នោះ ហើយ​លទ្ធផល​ត្រូវបាន​គុណ។

1. បង្កើនថាមពល:

a) (a b) 4 = a 4 b 4

ខ) (2 x y) 3 \u003d 2 3 x 3 y 3 \u003d 8 x 3 y 3

គ) (3 ក) 4 = 3 4 a 4 = 81 a 4

ឃ) (-5 y) 3 \u003d (-5) 3 y 3 \u003d -125 y 3

e) (-0.2 x y) 2 \u003d (-0.2) 2 x 2 y 2 \u003d 0.04 x 2 y 2

f) (-3 a b c) 4 = (-3) 4 a 4 b 4 c 4 = 81 a 4 b 4 c 4

2. រកតម្លៃនៃកន្សោម៖

ក) (2 10) 4 = 2 4 10 4 = 16 1000 = 16000

ខ) (3 5 20) 2 = 3 2 100 2 = 9 10000= 90000

គ) 2 4 5 4 = (2 5) 4 = 10 4 = 10000

ឃ) 0.25 11 4 11 = (0.25 4) 11 = 1 11 = 1

អ៊ី)

ជម្រើសទី 1

1. បង្កើនថាមពល:

ខ) (២ ក) ៤

e) (−0.1 x y) ៣

2. រកតម្លៃនៃកន្សោម៖

ខ) (៥ ៧ ២០) ២

និទស្សន្ត។

សម្រាប់លេខណាមួយ a និងលេខធម្មជាតិតាមអំពើចិត្ត m និង n៖

(a m) n = a m n

ភស្តុតាង៖

តាមនិយមន័យនៃសញ្ញាបត្រ

(a m) n =

ច្បាប់៖ ពេល​បង្កើន​ថាមពល​ទៅ​អំណាច​មួយ មូលដ្ឋាន​ត្រូវ​ទុក​ដដែល ហើយ​និទស្សន្ត​ត្រូវ​បាន​គុណ.

1. បង្កើនថាមពល:

(a 3) 2 = a 6 (x 5) 4 = x 20

(y 5) 2 = y 10 (b 3) 3 = b 9

2. សម្រួលកន្សោម៖

ក) a 3 (a 2) 5 = a 3 a 10 = a 13

ខ) (ខ ៣) ២ ខ ៧ \u003d ខ ៦ ខ ៧ \u003d ខ ១៣

គ) (x 3) 2 (x 2) 4 \u003d x 6 x 8 \u003d x 14

d) (y y 7) 3 = (y 8) 3 = y 24

ក)

ខ)

ជម្រើសទី 1

1. បង្កើនថាមពល:

a) (a 4) 2 ខ) (x 4) ៥

គ) (y ៣) ២ ឃ) (ខ ៤) ៤

2. សម្រួលកន្សោម៖

ក) ក ៤ (ក ៣) ២

b) (b 4) 3 b 5+

គ) (x 2) 4 (x 4) ៣

ឃ) (y y 9) ២

3. ស្វែងរកអត្ថន័យនៃកន្សោម៖

ឧបសម្ព័ន្ធ

និយមន័យនៃសញ្ញាបត្រ។

ជម្រើសទី 2

ទី១ សរសេរផលិតផលក្នុងទម្រង់សញ្ញាបត្រ៖

ក) 0.4 0.4 0.4

គ) a a a a a a a a a a a មួយ។

ឃ) (-y) (-y) (-y) (-y)

e) (bc) (bc) (bc)

2. ការេ​លេខ​:

3. គូបលេខ:

4. ស្វែងរកតម្លៃកន្សោម៖

គ) -1 3 + (-2) ៤

ឃ) -6 2 + (-3) ២

ង) ៤ ៥ ២–១០០

ជម្រើសទី 3

1. សរសេរផលិតផលជាសញ្ញាប័ត្រ៖

ក) 0.5 0.5 0.5

គ) គ.គ.គ.គ

ឃ) (-x) (-x) (-x) (-x)

e) (ab) (ab) (ab)

2. បង្ហាញក្នុងទម្រង់នៃការ៉េនៃចំនួន: 100; ០.៤៩; .

3. គូបលេខ:

4. ស្វែងរកតម្លៃកន្សោម៖

គ) -១ ៥ + (-៣) ២

ឃ) -5 3 + (-4) ២

ង) ៥ ៤ ២ - ១០០

ជម្រើសទី 4

1. សរសេរផលិតផលជាសញ្ញាប័ត្រ៖

ក) 0.7 0.7 0.7

គ) x x x x x x

ឃ) (-а) (-а) (-а)

e) (bc) (bc) (bc) (bc)

2. ការេ​លេខ​:

3. គូបលេខ:

4. ស្វែងរកតម្លៃកន្សោម៖

គ) -1 4 + (-3) ៣

ឃ) -៣ ៤ + (-៥) ២

e) 100 - 3 2 5

គុណនៃអំណាច។

ជម្រើសទី 2

1. បង្ហាញសញ្ញាប័ត្រ៖

ក) x 4 x 5 e) x 3 x 4 x 5

b) a 7 a 3 g) ២ ៣ ៤

គ) y 5 y h) 4 3 16

ឃ) a a 7 i) 4 2 5

e) 2 2 2 5 j) 0.2 3 0.04

2. បង្ហាញជាដឺក្រេ និងស្វែងរកតម្លៃក្នុងតារាង៖

ក) ៣ ២ ៣ ៣ គ) ១៦ ២ ៣

b) 2 4 2 5 ឃ) 9 81

ជម្រើសទី 3

1. បង្ហាញសញ្ញាប័ត្រ៖

ក) a 3 a 5 e) y 2 y 4 y 6

b) x 4 x 7 g) 3 5 9

គ) b 6 b h) 5 3 25

ឃ) y ៨ i) ៤៩ ៧ ៤

e) 2 3 2 6 j) 0.3 4 0.27

2. បង្ហាញជាដឺក្រេ និងស្វែងរកតម្លៃក្នុងតារាង៖

ក) ៣ ៣ ៣ ៤ គ) ២៧ ៣ ៤

b) 2 4 2 6 ឃ) 16 64

ជម្រើសទី 4

1. បង្ហាញសញ្ញាប័ត្រ៖

ក) a 6 a 2 e) x 4 x x 6

b) x 7 x 8 g) 3 4 27

គ) y 6 y h) 4 3 16

d) x x 10 i) 36 6 ៣

e) 2 4 2 5 j) 0.2 2 0.008

2. បង្ហាញជាដឺក្រេ និងស្វែងរកតម្លៃក្នុងតារាង៖

ក) ២ ៦ ២ ៣ គ) ៦៤ ២ ៤

ខ) ៣ ៥ ៣ ២ ឃ) ៨១ ២៧

ការបែងចែកដឺក្រេ។

ជម្រើសទី 2

1. បង្ហាញ quotient ជាអំណាចមួយ:

2. ស្វែងរកអត្ថន័យនៃកន្សោម។

អាចរកបានដោយប្រើការគុណ។ ឧទាហរណ៍៖ ៥+៥+៥+៥+៥+៥=៥x៦។ ពួកគេនិយាយអំពីការបញ្ចេញមតិបែបនេះដែលផលបូកនៃលក្ខខណ្ឌស្មើគ្នាត្រូវបានបត់ចូលទៅក្នុងផលិតផលមួយ។ ហើយផ្ទុយមកវិញ ប្រសិនបើយើងអានសមភាពនេះពីស្តាំទៅឆ្វេង យើងទទួលបានថាយើងបានពង្រីកផលបូកនៃពាក្យស្មើគ្នា។ ស្រដៀងគ្នានេះដែរ អ្នកអាចបត់ផលិតផលនៃកត្តាស្មើគ្នាជាច្រើន 5x5x5x5x5x5=5 6 ។

នោះគឺជំនួសឱ្យការគុណកត្តាដូចគ្នាប្រាំមួយ 5x5x5x5x5x5 ពួកគេសរសេរ 5 6 ហើយនិយាយថា "ប្រាំទៅថាមពលទីប្រាំមួយ" ។

កន្សោម 5 6 គឺជាអំណាចនៃលេខដែល៖

5 - មូលដ្ឋាននៃសញ្ញាបត្រ;

6 - និទស្សន្ត។

ប្រតិបត្តិការដែលផលិតផលនៃកត្តាស្មើគ្នាត្រូវបានបត់ចូលទៅក្នុងថាមពលត្រូវបានគេហៅថា និទស្សន្ត។

ជាទូទៅ អំណាចដែលមានមូលដ្ឋាន "a" និងនិទស្សន្ត "n" ត្រូវបានសរសេរជា

ការបង្កើនចំនួន a ដល់ថាមពលនៃ n មានន័យថាការស្វែងរកផលគុណនៃកត្តា n ដែលនីមួយៗស្មើនឹង a

ប្រសិនបើមូលដ្ឋាននៃដឺក្រេ "a" គឺ 1 នោះតម្លៃនៃដឺក្រេសម្រាប់ n ធម្មជាតិណាមួយនឹងស្មើនឹង 1 ។ ឧទាហរណ៍ 1 5 \u003d 1, 1 256 \u003d 1

ប្រសិនបើអ្នកលើកលេខ "a" កើនឡើង សញ្ញាបត្រដំបូងបន្ទាប់មកយើងទទួលបានលេខដោយខ្លួនឯង៖ a 1 = ក

ប្រសិនបើអ្នកលើកលេខណាមួយទៅ សូន្យដឺក្រេបន្ទាប់មក ជាលទ្ធផលនៃការគណនាយើងទទួលបានមួយ។ a 0 = 1

អំណាចទីពីរ និងទីបីនៃលេខត្រូវបានចាត់ទុកថាពិសេស។ ពួកគេបានបង្កើតឈ្មោះសម្រាប់ពួកគេ: សញ្ញាបត្រទីពីរត្រូវបានគេហៅថា ការ៉េនៃចំនួនមួយ។, ទីបី - គូបលេខនេះ។

លេខណាមួយអាចត្រូវបានលើកទៅជាថាមពល - វិជ្ជមាន អវិជ្ជមាន ឬសូន្យ។ ទោះយ៉ាងណាក៏ដោយ ច្បាប់ខាងក្រោមមិនត្រូវបានប្រើទេ៖

នៅពេលស្វែងរកកម្រិតនៃចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានត្រូវបានទទួល។

នៅពេលគណនាលេខសូន្យ យើងទទួលបានសូន្យ។

x m х ន = x m + n

ឧទាហរណ៍៖ 7 1.7 7 - 0.9 = 7 1.7+(- 0.9) = 7 1.7 - 0.9 = 7 0.8

ទៅ បែងចែកអំណាចដោយមូលដ្ឋានដូចគ្នា។យើងមិនផ្លាស់ប្តូរមូលដ្ឋានទេ ប៉ុន្តែដកនិទស្សន្ត៖

x m / x ន \u003d x m - n កន្លែងណា m > ន

ឧទាហរណ៍៖ 13 3.8 / 13 -0.2 = 13 (3.8 -0.2) = 13 3.6

នៅពេលគណនា និទស្សន្តយើងមិនផ្លាស់ប្តូរមូលដ្ឋានទេ ប៉ុន្តែយើងគុណនិទស្សន្តដោយគ្នាទៅវិញទៅមក។

(នៅ ម ) ន = y m

ឧទាហរណ៍៖ (2 3) 2 = 2 3 2 = 2 6

(X · y) ន = x ន · ,

ឧទាហរណ៍៖ (2 3) 3 = 2 n 3 m ,

នៅពេលអនុវត្តការគណនាសម្រាប់ និទស្សន្តនៃប្រភាគយើងលើកភាគយក និងភាគបែងនៃប្រភាគទៅថាមពលដែលបានផ្តល់ឱ្យ

(x/y) ន = x ន / យ ន

ឧទាហរណ៍៖ (2/5) 3 = (2/5) (2/5) (2/5) = 2 3/5 3 ។

លំដាប់នៃការអនុវត្តការគណនានៅពេលធ្វើការជាមួយកន្សោមដែលមានសញ្ញាប័ត្រ។

នៅពេលអនុវត្តការគណនានៃកន្សោមដោយគ្មានតង្កៀប ប៉ុន្តែមានអំណាច ជាដំបូង និទស្សន្តត្រូវបានអនុវត្ត បន្ទាប់មកប្រតិបត្តិការគុណ និងចែក ហើយមានតែប្រតិបត្តិការបូក និងដកប៉ុណ្ណោះ។

ប្រសិនបើវាចាំបាច់ដើម្បីវាយតម្លៃកន្សោមដែលមានតង្កៀប បន្ទាប់មកដំបូងតាមលំដាប់ដែលបានចង្អុលបង្ហាញខាងលើ យើងធ្វើការគណនាក្នុងតង្កៀប ហើយបន្ទាប់មកសកម្មភាពដែលនៅសល់ក្នុងលំដាប់ដូចគ្នាពីឆ្វេងទៅស្តាំ។

យ៉ាងទូលំទូលាយក្នុងការគណនាជាក់ស្តែង ដើម្បីសម្រួលការគណនា តារាងដឺក្រេដែលត្រៀមរួចជាស្រេចត្រូវបានប្រើប្រាស់។

កម្រិតដំបូង

សញ្ញាប័ត្រនិងលក្ខណៈសម្បត្តិរបស់វា។ មគ្គុទ្ទេសក៍ទូលំទូលាយ (2019)

ហេតុអ្វីបានជាត្រូវការសញ្ញាបត្រ? តើអ្នកត្រូវការពួកគេនៅឯណា? ហេតុអ្វីចាំបាច់ចំណាយពេលសិក្សាពួកគេ?

ដើម្បីរៀនអ្វីគ្រប់យ៉ាងអំពីសញ្ញាបត្រ អ្វីដែលពួកគេសម្រាប់ របៀបប្រើប្រាស់ចំណេះដឹងរបស់អ្នកក្នុងជីវិតប្រចាំថ្ងៃ សូមអានអត្ថបទនេះ។

ហើយជាការពិតណាស់ ការដឹងពីសញ្ញាប័ត្រនឹងនាំឱ្យអ្នកកាន់តែខិតទៅជិតការប្រលង OGE ឬការប្រឡង Unified State ដោយជោគជ័យ និងការចូលទៅក្នុងសាកលវិទ្យាល័យនៃក្តីស្រមៃរបស់អ្នក។

តោះ... (តោះ!)

ចំណាំសំខាន់! ប្រសិនបើជំនួសឱ្យរូបមន្តដែលអ្នកឃើញ gibberish សូមសម្អាតឃ្លាំងសម្ងាត់របស់អ្នក។ ដើម្បីធ្វើដូចនេះចុច CTRL + F5 (នៅលើ Windows) ឬ Cmd + R (នៅលើ Mac) ។

កម្រិតដំបូង

និទស្សន្ត​គឺ​ជា​ប្រតិបត្តិការ​គណិតវិទ្យា​ដូចគ្នា​នឹង​ការបូក ដក គុណ ឬ​ចែក។

ឥឡូវនេះខ្ញុំនឹងពន្យល់អ្វីគ្រប់យ៉ាងជាភាសាមនុស្សដោយប្រើឧទាហរណ៍ដ៏សាមញ្ញបំផុត។ យកចិត្តទុកដាក់។ ឧទាហរណ៍​គឺ​ជា​បឋម ប៉ុន្តែ​ពន្យល់​ពី​រឿង​សំខាន់។

ចូរចាប់ផ្តើមជាមួយនឹងការបន្ថែម។

មិនមានអ្វីត្រូវពន្យល់នៅទីនេះទេ។ អ្នកដឹងអ្វីៗគ្រប់យ៉ាងរួចហើយ៖ មានពួកយើងប្រាំបីនាក់។ នីមួយៗមានកូឡាពីរដប។ កូឡាប៉ុន្មាន? នោះជាការត្រឹមត្រូវ - 16 ដប។

ឥឡូវនេះគុណ។

ឧទាហរណ៍ដូចគ្នាជាមួយកូឡាអាចត្រូវបានសរសេរតាមរបៀបផ្សេង៖ . គណិតវិទូ គឺជាមនុស្សដែលមានល្បិចកល និងខ្ជិលច្រអូស។ ដំបូង​គេ​សម្គាល់​ឃើញ​គំរូ​មួយ​ចំនួន ហើយ​បន្ទាប់​មក​មាន​វិធី "រាប់" ពួក​វា​លឿន​ជាង។ ក្នុងករណីរបស់យើង ពួកគេបានកត់សម្គាល់ឃើញថា មនុស្សម្នាក់ៗក្នុងចំនោមមនុស្សប្រាំបីនាក់មានដបកូឡាដូចគ្នា ហើយបានបង្កើតនូវបច្ចេកទេសមួយហៅថា គុណ។ យល់ស្រប វាត្រូវបានចាត់ទុកថាងាយស្រួលជាង និងលឿនជាង។


ដូច្នេះ ដើម្បីរាប់បានលឿន ងាយស្រួល និងគ្មានកំហុស អ្នកគ្រាន់តែត្រូវចងចាំ តារាងគុណ. ជាការពិតណាស់ អ្នកអាចធ្វើអ្វីៗគ្រប់យ៉ាងយឺតជាង ពិបាកជាង និងមានកំហុស! ប៉ុន្តែ…

នេះគឺជាតារាងគុណ។ ធ្វើម្តងទៀត។

និងមួយទៀតស្អាតជាងនេះ៖

ហើយ​ល្បិច​រាប់​ល្បិច​អ្វី​ទៀត​ដែល​អ្នក​គណិតវិទ្យា​ខ្ជិល​បាន​មក? ត្រឹមត្រូវ - បង្កើន​ចំនួន​មួយ​ទៅ​ជា​អំណាច​មួយ​.

ការបង្កើនលេខទៅជាថាមពល

ប្រសិនបើអ្នកត្រូវការគុណលេខដោយខ្លួនវាប្រាំដង នោះគណិតវិទូនិយាយថា អ្នកត្រូវលើកលេខនេះឡើងដល់អំណាចទីប្រាំ។ ឧទាហរណ៍, ។ អ្នក​គណិត​វិទ្យា​ចាំ​ថា អំណាច​ពីរ​ទៅ​ទី​ប្រាំ​គឺ​ជា។ ហើយពួកគេដោះស្រាយបញ្ហាបែបនេះនៅក្នុងចិត្តរបស់ពួកគេ - លឿនជាងងាយស្រួលនិងដោយគ្មានកំហុស។

ដើម្បីធ្វើដូចនេះអ្នកគ្រាន់តែត្រូវការ ចងចាំអ្វីដែលត្រូវបានបន្លិចជាពណ៌នៅក្នុងតារាងនៃអំណាចនៃលេខ. ជឿខ្ញុំ វានឹងធ្វើឱ្យជីវិតរបស់អ្នកកាន់តែងាយស្រួល។

ដោយវិធីនេះហេតុអ្វីបានជាសញ្ញាបត្រទីពីរត្រូវបានគេហៅថា ការ៉េលេខ និងទីបី គូប? តើ​វា​មានន័យ​យ៉ាង​ដូចម្តេច? សំណួរល្អណាស់។ ឥឡូវនេះអ្នកនឹងមានទាំងការ៉េនិងគូប។

ឧទាហរណ៍ជីវិតពិតលេខ ១

ចូរចាប់ផ្តើមដោយការ៉េ ឬថាមពលទីពីរនៃលេខ។

ស្រមៃមើលអាងទឹកការ៉េដែលវាស់ម៉ែត្រដោយម៉ែត្រ។ អាង​ទឹក​គឺ​នៅ​ក្នុង​សួន​ផ្ទះ​របស់​អ្នក​។ ក្តៅ​ណាស់​ខ្ញុំ​ចង់​ហែល​ទឹក​ណាស់។ ប៉ុន្តែ… អាងទឹកដែលគ្មានបាត! វាចាំបាច់ក្នុងការគ្របដណ្តប់បាតអាងជាមួយក្បឿង។ តើអ្នកត្រូវការក្បឿងប៉ុន្មាន? ដើម្បីកំណត់នេះអ្នកត្រូវដឹងពីតំបន់នៃបាតអាង។

អ្នកគ្រាន់តែអាចរាប់បានដោយចុចម្រាមដៃរបស់អ្នកថា បាតអាងមានគូបម៉ែត្រគុណនឹងម៉ែត្រ។ ប្រសិនបើក្រឡាក្បឿងរបស់អ្នកមានទំហំមួយម៉ែត្រ អ្នកនឹងត្រូវការបំណែក។ ងាយស្រួល... ប៉ុន្តែតើអ្នកឃើញក្បឿងបែបនេះនៅឯណា? ក្រឡាក្បឿងនឹងជាសង់ទីម៉ែត្រជាសង់ទីម៉ែត្រ។ ហើយបន្ទាប់មកអ្នកនឹងត្រូវរងទុក្ខដោយ "រាប់ដោយម្រាមដៃរបស់អ្នក"។ បន្ទាប់មកអ្នកត្រូវគុណ។ ដូច្នេះនៅផ្នែកម្ខាងនៃបាតអាង យើងនឹងដាក់ក្រឡាក្បឿង (បំណែក) ហើយនៅម្ខាងទៀតក៏ដាក់ក្បឿងផងដែរ។ គុណនឹង អ្នកទទួលបានក្រឡា ()។

តើអ្នកបានកត់សម្គាល់ទេថាយើងគុណលេខដូចគ្នាដោយខ្លួនឯងដើម្បីកំណត់ផ្ទៃដីនៃបាតអាង? តើ​វា​មានន័យ​យ៉ាង​ដូចម្តេច? ដោយសារចំនួនដូចគ្នាត្រូវបានគុណ យើងអាចប្រើបច្ចេកទេសនិទស្សន្ត។ (ជា​ការ​ពិត​ណាស់ ពេល​អ្នក​មាន​លេខ​តែ​ពីរ អ្នក​នៅ​តែ​ត្រូវ​គុណ​វា ឬ​បង្កើន​វា​ទៅ​ជា​ថាមពល។ ប៉ុន្តែ​ប្រសិន​បើ​អ្នក​មាន​ច្រើន នោះ​ការ​បង្កើន​ដល់​ថាមពល​គឺ​ងាយ​ស្រួល​ជាង ហើយ​ក៏​មាន​កំហុស​តិច​ជាង​ក្នុង​ការ​គណនា​ដែរ។ សម្រាប់ការប្រឡងនេះគឺសំខាន់ណាស់) ។
ដូច្នេះសាមសិបទៅសញ្ញាបត្រទីពីរនឹងមាន () ។ ឬអ្នកអាចនិយាយថាសាមសិបការ៉េនឹងមាន។ ម្យ៉ាងវិញទៀត អំណាចទីពីរនៃលេខអាចតែងតែត្រូវបានតំណាងជាការ៉េ។ ហើយផ្ទុយមកវិញ ប្រសិនបើអ្នកឃើញការ៉េ វាគឺជាថាមពលទីពីរនៃចំនួនមួយចំនួនជានិច្ច។ ការ៉េគឺជារូបភាពនៃអំណាចទីពីរនៃចំនួនមួយ។

ឧទាហរណ៍ជីវិតពិតលេខ ២

នេះ​ជា​កិច្ចការ​មួយ​សម្រាប់​អ្នក សូម​រាប់​ចំនួន​ការ៉េ​នៅ​លើ​ក្តារ​អុក​ដោយ​ប្រើ​ការ​ការ៉េ​នៃ​ចំនួន... នៅ​ម្ខាង​នៃ​ក្រឡា និង​នៅ​ម្ខាង​ទៀត​ផង​ដែរ។ ដើម្បីរាប់លេខរបស់ពួកគេ អ្នកត្រូវគុណប្រាំបីដោយប្រាំបី ឬ ... ប្រសិនបើអ្នកសម្គាល់ឃើញថាក្តារអុកគឺជាការ៉េដែលមានជ្រុងមួយ នោះអ្នកអាចការ៉េប្រាំបី។ ទទួលបានកោសិកា។ () ដូច្នេះ?

ឧទាហរណ៍ជីវិតពិតលេខ ៣

ឥឡូវនេះគូបឬថាមពលទីបីនៃលេខមួយ។ អាងតែមួយ។ ប៉ុន្តែឥឡូវនេះអ្នកត្រូវរកមើលថាតើទឹកប៉ុន្មាននឹងត្រូវចាក់ចូលទៅក្នុងអាងនេះ។ អ្នកត្រូវគណនាបរិមាណ។ (ដោយវិធីនេះ បរិមាណ និងសារធាតុរាវត្រូវបានវាស់ជាម៉ែត្រគូប។ មិននឹកស្មានដល់មែនទេ?) គូរអាង៖ បាតមួយម៉ែត្រក្នុងទំហំមួយម៉ែត្រ និងជម្រៅមួយម៉ែត្រ ហើយព្យាយាមគណនាថាតើគូបប៉ុន្មានម៉ែត្រនឹងចូលក្នុងអាងរបស់អ្នក។

គ្រាន់តែចង្អុលដៃរបស់អ្នកហើយរាប់! មួយ ពីរ បី បួន… ម្ភៃពីរ ម្ភៃបី… តើវាចេញបានប៉ុន្មាន? មិនបានបាត់ទេ? តើវាពិបាកក្នុងការរាប់ដោយម្រាមដៃរបស់អ្នកទេ? ដូច្នេះ! យកឧទាហរណ៍ពីគណិតវិទូ។ ពួកគេខ្ជិល ដូច្នេះពួកគេបានកត់សម្គាល់ថា ដើម្បីគណនាបរិមាណនៃអាង អ្នកត្រូវគុណប្រវែង ទទឹង និងកម្ពស់របស់វាឱ្យគ្នាទៅវិញទៅមក។ ក្នុងករណីរបស់យើងបរិមាណនៃអាងនឹងស្មើនឹងគូប ... ងាយស្រួលជាងមែនទេ?

ឥឡូវ​ស្រមៃ​មើល​ថា​តើ​អ្នក​គណិត​វិទ្យា​ខ្ជិល​និង​ល្បិចកល​ប៉ុណ្ណា​ប្រសិន​បើ​ពួកគេ​ធ្វើ​វា​ងាយ​ស្រួល​ពេក។ កាត់បន្ថយអ្វីគ្រប់យ៉ាងទៅជាសកម្មភាពមួយ។ គេសង្កេតឃើញថា ប្រវែង ទទឹង និងកំពស់គឺស្មើគ្នា ហើយលេខដូចគ្នាត្រូវគុណដោយខ្លួនវា... ហើយតើនេះមានន័យដូចម្តេច? នេះមានន័យថាអ្នកអាចប្រើសញ្ញាបត្រ។ ដូច្នេះ អ្វីដែលអ្នកធ្លាប់រាប់ដោយម្រាមដៃ ពួកគេធ្វើក្នុងសកម្មភាពមួយ៖ បីក្នុងគូបមួយគឺស្មើគ្នា។ វាត្រូវបានសរសេរដូចនេះ៖

នៅសល់តែ ទន្ទេញតារាងដឺក្រេ. លុះត្រាតែអ្នកខ្ជិល និងឆ្លាតដូចអ្នកគណិតវិទ្យា។ ប្រសិនបើអ្នកចូលចិត្តធ្វើការខ្លាំង ហើយធ្វើខុស អ្នកអាចបន្តរាប់ដោយម្រាមដៃរបស់អ្នក។

ជាការប្រសើរណាស់ ដើម្បីបញ្ចុះបញ្ចូលអ្នកថា សញ្ញាបត្រត្រូវបានបង្កើតឡើងដោយអ្នកបោកខោអាវ និងមនុស្សដែលមានល្បិចកល ដើម្បីដោះស្រាយបញ្ហាជីវិតរបស់ពួកគេ និងមិនបង្កើតបញ្ហាសម្រាប់អ្នក ខាងក្រោមនេះជាឧទាហរណ៍មួយចំនួនទៀតពីជីវិត។

គំរូជីវិតពិត #4

អ្នកមានមួយលានរូប្លិ៍។ នៅដើមឆ្នាំនីមួយៗ អ្នករកបានមួយលានទៀតសម្រាប់រាល់លាន។ នោះគឺ មួយលានរបស់អ្នកនៅដើមឆ្នាំនីមួយៗកើនឡើងទ្វេដង។ តើអ្នកនឹងមានលុយប៉ុន្មានឆ្នាំ? ប្រសិនបើអ្នកកំពុងអង្គុយ ហើយ "រាប់ដោយម្រាមដៃរបស់អ្នក" នោះអ្នកគឺជាមនុស្សឧស្សាហ៍ព្យាយាម និងល្ងង់ខ្លៅ។ ប៉ុន្តែអ្នកទំនងជានឹងផ្តល់ចម្លើយក្នុងរយៈពេលពីរបីវិនាទី ព្រោះអ្នកឆ្លាត! ដូច្នេះនៅឆ្នាំដំបូង - ពីរដងពីរដង ... នៅឆ្នាំទីពីរ - តើមានអ្វីកើតឡើងដោយពីរទៀតនៅឆ្នាំទីបី ... ឈប់! អ្នកបានកត់សម្គាល់ឃើញថាចំនួនត្រូវបានគុណដោយខ្លួនវាម្តង។ ដូច្នេះអំណាចពីរទៅប្រាំគឺមួយលាន! ឥឡូវស្រមៃថាអ្នកមានការប្រកួតប្រជែងហើយអ្នកដែលគណនាលឿនជាងនឹងទទួលបានរាប់លានទាំងនេះ ... តើវាមានតម្លៃចងចាំកម្រិតនៃលេខអ្នកគិតយ៉ាងណា?

ឧទាហរណ៍ជីវិតពិតលេខ ៥

អ្នកមានមួយលាន។ នៅដើមឆ្នាំនីមួយៗ អ្នករកបានពីរបន្ថែមទៀតសម្រាប់រាល់លាន។ ល្អណាស់មែនទេ? រាល់លានគឺកើនឡើងបីដង។ តើអ្នកនឹងមានលុយប៉ុន្មានក្នុងមួយឆ្នាំ? ចូរយើងរាប់។ ឆ្នាំដំបូង - គុណនឹងបន្ទាប់មកលទ្ធផលដោយមួយទៀត ... វាគួរឱ្យធុញណាស់ព្រោះអ្នកយល់គ្រប់យ៉ាងរួចហើយ: បីត្រូវបានគុណដោយខ្លួនវាដង។ ដូច្នេះអំណាចទីបួនគឺមួយលាន។ អ្នកគ្រាន់តែត្រូវចាំថាអំណាចបីទៅទីបួនគឺឬ។

ឥឡូវនេះអ្នកដឹងថាតាមរយៈការបង្កើនលេខទៅជាថាមពល អ្នកនឹងធ្វើឱ្យជីវិតរបស់អ្នកកាន់តែងាយស្រួល។ ចូរយើងពិនិត្យមើលបន្ថែមទៀតនូវអ្វីដែលអ្នកអាចធ្វើបានជាមួយនឹងសញ្ញាបត្រ និងអ្វីដែលអ្នកត្រូវដឹងអំពីពួកគេ។

លក្ខខណ្ឌ ... ដើម្បីកុំឱ្យមានការភ័ន្តច្រឡំ

ដូច្នេះ ជាដំបូង ចូរយើងកំណត់និយមន័យ។ តើ​អ្នក​គិត​អ្វី, តើអ្វីទៅជានិទស្សន្ត? វាសាមញ្ញណាស់ - នេះគឺជាលេខដែល "នៅកំពូល" នៃអំណាចនៃលេខ។ មិនមែនវិទ្យាសាស្ត្រទេ តែច្បាស់ និងងាយចងចាំ...

ជាការប្រសើរណាស់, នៅពេលជាមួយគ្នា, អ្វី មូលដ្ឋាននៃសញ្ញាបត្របែបនេះ? សូម្បីតែសាមញ្ញជាងនេះគឺលេខដែលនៅខាងក្រោមនៅមូលដ្ឋាន។

នេះជារូបភាពសម្រាប់អ្នកដើម្បីប្រាកដ។

ជាការប្រសើរណាស់, នៅក្នុងពាក្យទូទៅ, ក្នុងគោលបំណងដើម្បី generalize និងចងចាំល្អប្រសើរជាងមុន ... សញ្ញាប័ត្រដែលមានមូលដ្ឋាន "" និងសូចនាករមួយ "" ត្រូវបានអានជា "ដឺក្រេ" ហើយត្រូវបានសរសេរដូចខាងក្រោម:

អំណាចនៃលេខដែលមាននិទស្សន្តធម្មជាតិ

អ្នកប្រហែលជាទាយរួចហើយ៖ ព្រោះនិទស្សន្តគឺជាលេខធម្មជាតិ។ បាទ ប៉ុន្តែអ្វីដែលជា លេខធម្មជាតិ? បឋមសិក្សា! លេខធម្មជាតិគឺជាលេខដែលត្រូវបានប្រើក្នុងការរាប់នៅពេលរាយធាតុ៖ មួយ ពីរ បី ... នៅពេលយើងរាប់ធាតុ យើងមិននិយាយថា “ដកប្រាំ” “ដកប្រាំមួយ” “ដកប្រាំពីរ” ទេ។ យើងមិននិយាយថា "មួយភាគបី" ឬ "សូន្យចំនុចប្រាំភាគដប់" នោះទេ។ ទាំងនេះមិនមែនជាលេខធម្មជាតិទេ។ តើអ្នកគិតថាលេខទាំងនេះជាអ្វី?

លេខដូចជា "ដកប្រាំ", "ដកប្រាំមួយ", "ដកប្រាំពីរ" សំដៅលើ លេខទាំងមូល។ជាទូទៅចំនួនគត់រួមមានលេខធម្មជាតិទាំងអស់ លេខទល់មុខនឹងលេខធម្មជាតិ (នោះគឺយកដោយសញ្ញាដក) និងលេខមួយ។ សូន្យគឺងាយស្រួលយល់ - នេះគឺជាពេលដែលគ្មានអ្វីសោះ។ ហើយតើលេខអវិជ្ជមាន ("ដក") មានន័យដូចម្តេច? ប៉ុន្តែពួកគេត្រូវបានបង្កើតជាចម្បងដើម្បីបង្ហាញពីបំណុល៖ ប្រសិនបើអ្នកមានសមតុល្យនៅលើទូរស័ព្ទរបស់អ្នកជាប្រាក់រូពី នេះមានន័យថាអ្នកជំពាក់ប្រាក់រូពីប្រតិបត្តិករ។

ប្រភាគទាំងអស់គឺជាលេខសមហេតុផល។ តើ​ពួក​គេ​មក​យ៉ាង​ម៉េច​ដែរ តើ​អ្នក​គិត​ទេ? សាមញ្ញ​ណាស់។ ជាច្រើនពាន់ឆ្នាំមុន ដូនតារបស់យើងបានរកឃើញថា ពួកវាមិនមានលេខធម្មជាតិគ្រប់គ្រាន់សម្រាប់វាស់ប្រវែង ទម្ងន់ ផ្ទៃដី។ល។ ហើយពួកគេបានមកជាមួយ លេខសមហេតុផល… គួរឱ្យចាប់អារម្មណ៍មែនទេ?

វាក៏មានលេខមិនសមហេតុផលផងដែរ។ តើលេខទាំងនេះជាអ្វី? សរុបមក ប្រភាគទសភាគគ្មានកំណត់។ ឧទាហរណ៍ ប្រសិនបើអ្នកបែងចែករង្វង់នៃរង្វង់ដោយអង្កត់ផ្ចិតរបស់វា នោះអ្នកនឹងទទួលបានលេខមិនសមហេតុផល។

សង្ខេប៖

ចូរកំណត់គោលគំនិតនៃដឺក្រេ ដែលជានិទស្សន្តនៃចំនួនធម្មជាតិ (នោះគឺចំនួនគត់ និងវិជ្ជមាន)។

  1. លេខណាមួយទៅអំណាចទីមួយគឺស្មើនឹងខ្លួនវា៖
  2. ដើម្បី​ការេ​លេខ​មួយ​គឺ​ត្រូវ​គុណ​វា​ដោយ​ខ្លួន​វា​ផ្ទាល់៖
  3. ដើម្បីគូបលេខគឺត្រូវគុណវាដោយខ្លួនវាបីដង៖

និយមន័យ។ដើម្បីលើកលេខទៅជាថាមពលធម្មជាតិ គឺត្រូវគុណលេខដោយខ្លួនឯងដង៖
.

លក្ខណៈសម្បត្តិសញ្ញាបត្រ

តើអចលនទ្រព្យទាំងនេះមកពីណា? ខ្ញុំនឹងបង្ហាញអ្នកឥឡូវនេះ។

តោះមើលថាជាអ្វី និង ?

A-priory៖

សរុបមានមេគុណប៉ុន្មាន?

វាសាមញ្ញណាស់៖ យើងបានបន្ថែមកត្តាទៅកត្តា ហើយលទ្ធផលគឺកត្តា។

ប៉ុន្តែតាមនិយមន័យ នេះគឺជាកម្រិតនៃលេខដែលមាននិទស្សន្ត នោះគឺ៖ ដែលត្រូវបានទាមទារដើម្បីបញ្ជាក់។

ឧទាហរណ៍៖ សម្រួលការបញ្ចេញមតិ។

ការសម្រេចចិត្ត៖

ឧទាហរណ៍៖សម្រួលការបញ្ចេញមតិ។

ការសម្រេចចិត្ត៖វាជាការសំខាន់ក្នុងការកត់សម្គាល់ថានៅក្នុងការគ្រប់គ្រងរបស់យើង។ ចាំបាច់ត្រូវតែហេតុផលដូចគ្នា!
ដូច្នេះ យើងផ្សំដឺក្រេជាមួយមូលដ្ឋាន ប៉ុន្តែនៅតែជាកត្តាដាច់ដោយឡែកមួយ៖

សម្រាប់តែផលិតផលនៃអំណាច!

មិនស្ថិតក្រោមកាលៈទេសៈណាក៏ដោយ អ្នកគួរសរសេរបែបនោះ។

2. នោះគឺ - អំណាចនៃលេខមួយ។

ដូចគ្នានឹងទ្រព្យសម្បត្តិមុនដែរ ចូរយើងងាកទៅរកនិយមន័យនៃសញ្ញាបត្រ៖

វាប្រែថាកន្សោមត្រូវបានគុណដោយខ្លួនវាម្តង ពោលគឺយោងទៅតាមនិយមន័យនេះគឺជាអំណាចទី 1 នៃចំនួន:

ជាការពិតនេះអាចត្រូវបានគេហៅថា "ការតង្កៀបសូចនាករ" ។ ប៉ុន្តែអ្នកមិនអាចធ្វើដូចនេះសរុបបានទេ៖

ចូរយើងរំលឹករូបមន្តគុណអក្សរកាត់៖ តើយើងចង់សរសេរប៉ុន្មានដង?

ប៉ុន្តែវាមិនមែនជាការពិតទេ។

សញ្ញាបត្រដែលមានមូលដ្ឋានអវិជ្ជមាន

រហូតមកដល់ចំណុចនេះ យើងទើបតែបានពិភាក្សាអំពីអ្វីដែលនិទស្សន្តគួរជា។

ប៉ុន្តែតើអ្វីគួរជាមូលដ្ឋាន?

ជាដឺក្រេចាប់ពី សូចនាករធម្មជាតិមូលដ្ឋានអាចជា លេខណាមួយ។. ជាការពិត យើងអាចគុណលេខណាមួយដោយគ្នាទៅវិញទៅមក មិនថាលេខវិជ្ជមាន អវិជ្ជមាន ឬសូម្បីតែលេខ។

ចូរយើងគិតអំពីអ្វីដែលសញ្ញា ("" ឬ "") នឹងមានដឺក្រេនៃចំនួនវិជ្ជមាននិងអវិជ្ជមាន?

ឧទាហរណ៍ តើលេខនឹងវិជ្ជមាន ឬអវិជ្ជមាន? ប៉ុន្តែ? ? ជាមួយនឹងទីមួយ អ្វីគ្រប់យ៉ាងគឺច្បាស់៖ មិនថាយើងគុណលេខវិជ្ជមានប៉ុន្មានទេ លទ្ធផលនឹងវិជ្ជមាន។

ប៉ុន្តែអវិជ្ជមានគឺគួរឱ្យចាប់អារម្មណ៍ជាងបន្តិច។ យ៉ាងណាមិញ យើងចងចាំនូវច្បាប់សាមញ្ញមួយពីថ្នាក់ទី៦៖ “ដកដង ដកមួយនឹងបូក”។ នោះគឺឬ។ ប៉ុន្តែប្រសិនបើយើងគុណនឹងវាប្រែចេញ។

កំណត់ដោយខ្លួនឯងថាតើសញ្ញាណាដែលកន្សោមខាងក្រោមនឹងមាន៖

1) 2) 3)
4) 5) 6)

តើអ្នកបានគ្រប់គ្រងទេ?

ខាងក្រោមនេះជាចម្លើយ៖ ក្នុងឧទាហរណ៍ទាំងបួនដំបូង ខ្ញុំសង្ឃឹមថាអ្វីៗនឹងច្បាស់? យើងគ្រាន់តែមើលមូលដ្ឋាន និងនិទស្សន្ត ហើយអនុវត្តច្បាប់សមស្រប។

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

ក្នុងឧទាហរណ៍ទី 5) អ្វីគ្រប់យ៉ាងគឺមិនគួរឱ្យខ្លាចដូចដែលវាហាក់ដូចជា: វាមិនមានបញ្ហាអ្វីដែលមូលដ្ឋានស្មើនឹង - កម្រិតគឺសូម្បីតែដែលមានន័យថាលទ្ធផលនឹងតែងតែវិជ្ជមាន។

ជាការប្រសើរណាស់, លើកលែងតែនៅពេលដែលមូលដ្ឋានគឺសូន្យ។ មូលដ្ឋានមិនដូចគ្នាទេ? ច្បាស់ណាស់មិនមែនមកពី (ព្រោះ)។

ឧទាហរណ៍ ៦) លែងសាមញ្ញទៀតហើយ!

6 ឧទាហរណ៍នៃការអនុវត្ត

ការវិភាគនៃដំណោះស្រាយ 6 ឧទាហរណ៍

បើ​យើង​មិន​យក​ចិត្ត​ទុក​ដាក់​នឹង​សញ្ញាបត្រ​ទី ៨ តើ​យើង​ឃើញ​អ្វី​នៅ​ទី​នេះ? តោះមើលកម្មវិធីថ្នាក់ទី៧ទាំងអស់គ្នា។ អញ្ចឹងចាំទេ? នេះ​ជា​រូបមន្ត​គុណ​សង្ខេប​គឺ​ភាព​ខុស​គ្នា​នៃ​ការេ​! យើង​ទទួល​បាន:

យើងពិនិត្យមើលដោយយកចិត្តទុកដាក់លើភាគបែង។ វាមើលទៅដូចជាកត្តាមួយក្នុងចំនោមកត្តាភាគយក ប៉ុន្តែតើមានអ្វីខុស? ខុសលំដាប់នៃលក្ខខណ្ឌ។ ប្រសិនបើពួកគេត្រូវបានផ្លាស់ប្តូរ ច្បាប់អាចអនុវត្តបាន។

ប៉ុន្តែ​ធ្វើ​ដូច​ម្តេច​ទៅ? វាប្រែថាវាងាយស្រួលណាស់: កម្រិតសូម្បីតែនៃភាគបែងជួយយើងនៅទីនេះ។

លក្ខខណ្ឌបានផ្លាស់ប្តូរកន្លែងដ៏អស្ចារ្យ។ "បាតុភូត" នេះអនុវត្តចំពោះកន្សោមណាមួយដល់កម្រិតស្មើគ្នា៖ យើងអាចផ្លាស់ប្តូរសញ្ញានៅក្នុងតង្កៀបដោយសេរី។

ប៉ុន្តែវាសំខាន់ក្នុងការចងចាំ៖ សញ្ញាទាំងអស់ផ្លាស់ប្តូរក្នុងពេលតែមួយ!

ចូរយើងត្រលប់ទៅឧទាហរណ៍៖

ហើយម្តងទៀតរូបមន្ត៖

ទាំងមូលយើងដាក់ឈ្មោះលេខធម្មជាតិ ភាពផ្ទុយគ្នា (នោះគឺយកដោយសញ្ញា "") និងលេខ។

ចំនួនគត់វិជ្ជមានហើយវាមិនខុសពីធម្មជាតិទេ អ្វីៗមើលទៅដូចក្នុងផ្នែកមុនៗ។

ឥឡូវនេះសូមក្រឡេកមើលករណីថ្មី។ ចូរចាប់ផ្តើមជាមួយនឹងសូចនាករស្មើនឹង។

លេខណាមួយទៅថាមពលសូន្យគឺស្មើនឹងមួយ។:

ដូចរាល់ដង យើងសួរខ្លួនឯងថាៈ ហេតុអ្វីក៏ដូច្នេះ?

ពិចារណាអំណាចមួយចំនួនជាមួយនឹងមូលដ្ឋានមួយ។ យកឧទាហរណ៍ ហើយគុណនឹង៖

ដូច្នេះ យើង​គុណ​លេខ​ដោយ ហើយ​ទទួល​បាន​ដូច​គ្នា​នឹង​វា​ដែរ។ តើ​លេខ​មួយ​ណា​ត្រូវ​គុណ​នឹង​មិន​មាន​អ្វី​ប្រែប្រួល? នោះហើយជាសិទ្ធិ។ មធ្យោបាយ។

យើងអាចធ្វើដូចគ្នាជាមួយនឹងលេខបំពាន៖

តោះធ្វើច្បាប់ម្តងទៀត៖

លេខណាមួយទៅថាមពលសូន្យគឺស្មើនឹងមួយ។

ប៉ុន្តែមានករណីលើកលែងចំពោះច្បាប់ជាច្រើន។ ហើយនៅទីនេះវាក៏នៅទីនោះផងដែរ - នេះគឺជាលេខ (ជាមូលដ្ឋាន) ។

នៅលើដៃមួយវាត្រូវតែស្មើនឹងដឺក្រេណាមួយ - មិនថាអ្នកគុណសូន្យដោយខ្លួនវាប៉ុណ្ណាក៏ដោយអ្នកនៅតែទទួលបានសូន្យនេះច្បាស់ណាស់។ ប៉ុន្តែម្យ៉ាងវិញទៀត ដូចជាលេខណាមួយដល់សូន្យដឺក្រេ វាត្រូវតែស្មើគ្នា។ ដូច្នេះតើការពិតនេះជាអ្វី? គណិតវិទូ​បាន​សម្រេច​ចិត្ត​មិន​ចូល​រួម ហើយ​បដិសេធ​មិន​លើក​សូន្យ​ទៅ​អំណាច​សូន្យ។ នោះគឺឥឡូវនេះយើងមិនត្រឹមតែអាចបែងចែកដោយសូន្យប៉ុណ្ណោះទេប៉ុន្តែថែមទាំងបង្កើនវាទៅសូន្យអំណាចផងដែរ។

តោះទៅទៀត។ បន្ថែមពីលើលេខធម្មជាតិ និងលេខចំនួនគត់រួមបញ្ចូលលេខអវិជ្ជមាន។ ដើម្បីយល់ពីកម្រិតអវិជ្ជមាន ចូរយើងធ្វើដូចគ្នានឹងលើកមុន៖ យើងគុណលេខធម្មតាមួយចំនួនដោយដូចគ្នាក្នុងដឺក្រេអវិជ្ជមាន៖

ពីទីនេះវាងាយស្រួលក្នុងការបង្ហាញការចង់បាន៖

ឥឡូវនេះយើងពង្រីកច្បាប់លទ្ធផលទៅកម្រិតបំពាន៖

ដូច្នេះ ចូរយើងបង្កើតច្បាប់នេះ៖

លេខ​មួយ​ទៅ​ថាមពល​អវិជ្ជមាន​គឺ​ជា​ការ​បញ្ច្រាស​នៃ​ចំនួន​ដូចគ្នា​ទៅ​ជា​ថាមពល​វិជ្ជមាន។ ប៉ុន្តែនៅពេលជាមួយគ្នា មូលដ្ឋានមិនអាចចាត់ទុកជាមោឃៈ(ព្រោះវាមិនអាចបែងចែកបាន)។

ចូរយើងសង្ខេប៖

I. កន្សោមមិនត្រូវបានកំណត់ក្នុងករណីទេ។ បើអញ្ចឹង។

II. លេខណាមួយទៅថាមពលសូន្យគឺស្មើនឹងមួយ៖ .

III. លេខដែលមិនស្មើនឹងសូន្យទៅថាមពលអវិជ្ជមានគឺបញ្ច្រាសនៃចំនួនដូចគ្នាទៅជាថាមពលវិជ្ជមាន៖ .

ភារកិច្ចសម្រាប់ដំណោះស្រាយឯករាជ្យ៖

ជាឧទាហរណ៍ឧទាហរណ៍សម្រាប់ដំណោះស្រាយឯករាជ្យ៖

ការវិភាគភារកិច្ចសម្រាប់ដំណោះស្រាយឯករាជ្យ៖

ដឹង​តែ​ដឹង​លេខ​គួរ​ឱ្យ​ខ្លាច ប៉ុន្តែ​ពេល​ប្រឡង​ត្រូវ​ត្រៀម​ខ្លួន​ឲ្យ​រួច​រាល់! ដោះស្រាយឧទាហរណ៍ទាំងនេះ ឬវិភាគដំណោះស្រាយរបស់ពួកគេ ប្រសិនបើអ្នកមិនអាចដោះស្រាយវា ហើយអ្នកនឹងរៀនពីរបៀបដោះស្រាយជាមួយពួកគេយ៉ាងងាយស្រួលនៅក្នុងការប្រឡង!

ចូរបន្តពង្រីកជួរនៃលេខ "សមរម្យ" ជានិទស្សន្ត។

ឥឡូវពិចារណា លេខសមហេតុផល។តើលេខអ្វីទៅដែលហៅថាសមហេតុផល?

ចម្លើយ៖ ទាំងអស់ដែលអាចត្រូវបានតំណាងជាប្រភាគ កន្លែង និងជាចំនួនគត់ លើសពីនេះទៀត។

ដើម្បីយល់ពីអ្វីដែលជាអ្វី "សញ្ញាបត្រប្រភាគ"តោះពិចារណាប្រភាគ៖

ចូរលើកផ្នែកទាំងពីរនៃសមីការទៅជាថាមពលមួយ៖

ឥឡូវចងចាំច្បាប់ "ដឺក្រេទៅសញ្ញាបត្រ":

តើ​ចំនួន​ប៉ុន្មាន​ត្រូវ​លើក​ឡើង​ដើម្បី​ទទួល​បាន​អំណាច?

រូបមន្តនេះគឺជានិយមន័យនៃឫសនៃសញ្ញាបត្រទី។

ខ្ញុំសូមរំលឹកអ្នក៖ ឫសនៃអំណាចទីនៃចំនួនមួយ () គឺជាលេខដែលនៅពេលលើកឡើងជាអំណាចគឺស្មើគ្នា។

នោះគឺឫសនៃសញ្ញាបត្រទី គឺជាប្រតិបត្តិការបញ្ច្រាសនៃនិទស្សន្ត៖ .

វាប្រែថា។ ជាក់ស្តែង ករណីពិសេសនេះអាចបន្តបាន៖ .

ឥឡូវបន្ថែមលេខភាគ៖ តើវាជាអ្វី? ចំលើយគឺងាយស្រួលក្នុងការទទួលបានជាមួយនឹងច្បាប់អំណាចទៅអំណាច៖

ប៉ុន្តែតើមូលដ្ឋានអាចជាលេខណាមួយទេ? បន្ទាប់ពីទាំងអស់, root មិនអាចត្រូវបានស្រង់ចេញពីលេខទាំងអស់។

គ្មាន!

ចងចាំច្បាប់៖ លេខណាមួយដែលឡើងដល់អំណាចគូគឺជាលេខវិជ្ជមាន។ នោះគឺវាមិនអាចទៅរួចទេក្នុងការទាញយកឫសនៃដឺក្រេគូពីលេខអវិជ្ជមាន!

ហើយនេះមានន័យថា លេខបែបនេះមិនអាចត្រូវបានលើកឡើងទៅជាអំណាចប្រភាគជាមួយនឹងភាគបែងទេ ពោលគឺការបញ្ចេញមតិមិនសមហេតុផល។

ចុះការបញ្ចេញមតិ?

ប៉ុន្តែនៅទីនេះមានបញ្ហាកើតឡើង។

លេខអាចត្រូវបានតំណាងជាប្រភាគផ្សេងទៀត កាត់បន្ថយឧទាហរណ៍ ឬ។

ហើយវាប្រែថាវាមាន ប៉ុន្តែមិនមានទេ ហើយទាំងនេះគ្រាន់តែជាកំណត់ត្រាពីរផ្សេងគ្នានៃចំនួនដូចគ្នាប៉ុណ្ណោះ។

ឬឧទាហរណ៍មួយទៀត៖ ម្តង នោះអ្នកអាចសរសេរវាចុះ។ ប៉ុន្តែនៅពេលយើងសរសេរសូចនាករតាមរបៀបផ្សេង យើងមានបញ្ហាម្តងទៀត៖ (នោះគឺយើងទទួលបានលទ្ធផលខុសគ្នាទាំងស្រុង!)

ដើម្បីជៀសវាងការប្រៀបធៀបបែបនេះ សូមពិចារណា មានតែនិទស្សន្តមូលដ្ឋានវិជ្ជមានដែលមាននិទស្សន្តប្រភាគ.

អញ្ចឹង​បើ:

  • - លេខធម្មជាតិ;
  • គឺជាចំនួនគត់;

ឧទាហរណ៍:

អំណាចដែលមាននិទស្សន្តសមហេតុផលគឺមានប្រយោជន៍ខ្លាំងណាស់សម្រាប់ការបំប្លែងកន្សោមជាមួយឫស ឧទាហរណ៍៖

5 ឧទាហរណ៍នៃការអនុវត្ត

ការវិភាគឧទាហរណ៍ 5 សម្រាប់ការបណ្តុះបណ្តាល

មែនហើយឥឡូវនេះ - ពិបាកបំផុត។ ឥឡូវនេះយើងនឹងវិភាគ សញ្ញាប័ត្រជាមួយនិទស្សន្តមិនសមហេតុផល.

ច្បាប់ និងលក្ខណៈសម្បត្តិទាំងអស់នៃដឺក្រេនៅទីនេះគឺដូចគ្នាទៅនឹងដឺក្រេដែលមាននិទស្សន្តនិទស្សន្ត លើកលែងតែ

ជាការពិតណាស់ តាមនិយមន័យ លេខមិនសមហេតុផល គឺជាលេខដែលមិនអាចត្រូវបានតំណាងថាជាប្រភាគ ដែលជាកន្លែងដែល និងជាចំនួនគត់ (នោះមានន័យថា លេខមិនសមហេតុផល គឺជាចំនួនពិតទាំងអស់ លើកលែងតែលេខសមហេតុផល)។

នៅពេលសិក្សាដឺក្រេជាមួយនឹងសូចនាករធម្មជាតិ ចំនួនគត់ និងសមហេតុផល រាល់ពេលដែលយើងបង្កើត "រូបភាព" "ការប្រៀបធៀប" ឬការពិពណ៌នាជាក់លាក់នៅក្នុងពាក្យដែលធ្លាប់ស្គាល់។

ឧទាហរណ៍ និទស្សន្តធម្មជាតិគឺជាលេខដែលគុណដោយខ្លួនវាច្រើនដង។

...ថាមពលសូន្យ- នេះ​គឺ​ដូច​ជា​ចំនួន​ដែល​គុណ​ដោយ​ខ្លួន​ឯង​ម្តង ពោល​គឺ​វា​មិន​ទាន់​ចាប់​ផ្តើម​គុណ​នៅ​ឡើយ​ទេ ដែល​មាន​ន័យ​ថា​ចំនួន​ខ្លួន​វា​មិន​ទាន់​លេច​ឡើង​នៅ​ឡើយ​ទេ ដូច្នេះ​លទ្ធផល​គឺ​គ្រាន់​តែ​ជា "ការ​រៀបចំ​នៃ លេខមួយ” ពោលគឺលេខមួយ;

...និទស្សន្តចំនួនគត់អវិជ្ជមាន- វាដូចជាប្រសិនបើ "ដំណើរការបញ្ច្រាស" ជាក់លាក់មួយបានកើតឡើង ពោលគឺចំនួនមិនត្រូវបានគុណដោយខ្លួនវាទេ ប៉ុន្តែត្រូវបានបែងចែក។

ដោយវិធីនេះ ក្នុងវិទ្យាសាស្ត្រ សញ្ញាបត្រដែលមាននិទស្សន្តស្មុគ្រស្មាញ ត្រូវបានគេប្រើជាញឹកញាប់ ពោលគឺនិទស្សន្តមិនមែនជាចំនួនពិតទេ។

ប៉ុន្តែ​នៅ​សាលា យើង​មិន​គិត​អំពី​ការ​លំបាក​បែប​នេះ​ទេ អ្នក​នឹង​មាន​ឱកាស​ដើម្បី​យល់​ពី​គោល​គំនិត​ថ្មី​ទាំង​នេះ​នៅ​វិទ្យាស្ថាន។

កន្លែងដែលយើងប្រាកដថាអ្នកនឹងទៅ! (ប្រសិនបើអ្នករៀនពីរបៀបដោះស្រាយឧទាហរណ៍បែបនេះ :))

ឧទាហរណ៍:

សម្រេចចិត្តដោយខ្លួនឯង៖

ការវិភាគដំណោះស្រាយ៖

1. ចូរចាប់ផ្តើមជាមួយនឹងច្បាប់ធម្មតារួចទៅហើយសម្រាប់ការបង្កើនសញ្ញាបត្រដល់កម្រិតមួយ:

ឥឡូវនេះមើលពិន្ទុ។ តើគាត់រំលឹកអ្នកពីអ្វីទេ? យើងរំលឹករូបមន្តសម្រាប់គុណសង្ខេបនៃភាពខុសគ្នានៃការ៉េ៖

ក្នុងករណី​នេះ,

វាប្រែថា:

ចម្លើយ៖ .

2. យើងនាំយកប្រភាគជានិទស្សន្តទៅជាទម្រង់ដូចគ្នា៖ ទាំងទសភាគ ឬទាំងពីរធម្មតា។ យើងទទួលបានឧទាហរណ៍៖

ចម្លើយ៖ ១៦

3. គ្មានអ្វីពិសេសទេ យើងអនុវត្តលក្ខណៈសម្បត្តិធម្មតានៃដឺក្រេ៖

កម្រិតកម្រិតខ្ពស់

និយមន័យនៃសញ្ញាបត្រ

សញ្ញាបត្រគឺជាកន្សោមនៃទម្រង់៖ , ដែល៖

  • មូលដ្ឋាននៃសញ្ញាបត្រ;
  • - និទស្សន្ត។

សញ្ញាប័ត្រជាមួយនិទស្សន្តធម្មជាតិ (n = 1, 2, 3, ... )

ការបង្កើនលេខទៅថាមពលធម្មជាតិ n មានន័យថាការគុណលេខដោយខ្លួនឯងដង៖

ថាមពលជាមួយនិទស្សន្តចំនួនគត់ (0, ±1, ±2,...)

ប្រសិនបើនិទស្សន្តគឺ ចំនួនគត់វិជ្ជមានចំនួន:

ការឡើងរឹងរបស់លិង្គ ដល់សូន្យថាមពល:

កន្សោម​គឺ​មិន​កំណត់​ទេ ព្រោះ​នៅ​លើ​ដៃ​ម្ខាង​ទៅ​កម្រិត​ណា​មួយ​គឺ​នេះ ហើយ​ម្យ៉ាង​វិញ​ទៀត​លេខ​ដល់​ដឺក្រេ​គឺ​ជា​លេខ​នេះ។

ប្រសិនបើនិទស្សន្តគឺ ចំនួនគត់អវិជ្ជមានចំនួន:

(ព្រោះវាមិនអាចបែងចែកបាន)។

មួយ​ទៀត​អំពី​មោឃៈ៖ កន្សោម​មិន​ត្រូវ​បាន​កំណត់​ក្នុង​ករណី​នោះ​ទេ។ បើអញ្ចឹង។

ឧទាហរណ៍:

សញ្ញាប័ត្រជាមួយនិទស្សន្តសមហេតុផល

  • - លេខធម្មជាតិ;
  • គឺជាចំនួនគត់;

ឧទាហរណ៍:

លក្ខណៈសម្បត្តិសញ្ញាបត្រ

ដើម្បី​ឱ្យ​ងាយ​ស្រួល​ក្នុង​ការ​ដោះ​ស្រាយ​បញ្ហា ចូរ​យើង​ព្យាយាម​យល់​ថា តើ​ទ្រព្យ​សម្បត្តិ​ទាំង​នេះ​មក​ពី​ណា? ចូរយើងបញ្ជាក់ពួកគេ។

តោះមើល៖ តើវាជាអ្វី និង?

A-priory៖

ដូច្នេះ នៅផ្នែកខាងស្តាំនៃកន្សោមនេះ ផលិតផលខាងក្រោមត្រូវបានទទួល៖

ប៉ុន្តែតាមនិយមន័យ នេះគឺជាអំណាចនៃលេខដែលមាននិទស្សន្ត នោះគឺ៖

Q.E.D.

ឧទាហរណ៍ ៖ សម្រួលការបញ្ចេញមតិ។

ការសម្រេចចិត្ត : .

ឧទាហរណ៍ ៖ សម្រួលការបញ្ចេញមតិ។

ការសម្រេចចិត្ត ៖ វាសំខាន់ក្នុងការកត់សម្គាល់ថានៅក្នុងការគ្រប់គ្រងរបស់យើង។ ចាំបាច់ត្រូវតែនៅលើមូលដ្ឋានដូចគ្នា។ ដូច្នេះ យើងផ្សំដឺក្រេជាមួយមូលដ្ឋាន ប៉ុន្តែនៅតែជាកត្តាដាច់ដោយឡែកមួយ៖

ចំណាំសំខាន់មួយទៀត៖ ច្បាប់នេះ - សម្រាប់តែផលិតផលនៃអំណាច!

មិន​ស្ថិត​ក្នុង​កាលៈទេសៈ​ណា​ដែល​ខ្ញុំ​គួរ​សរសេរ​នោះ​ទេ។

ដូចគ្នានឹងទ្រព្យសម្បត្តិមុនដែរ ចូរយើងងាកទៅរកនិយមន័យនៃសញ្ញាបត្រ៖

ចូរយើងរៀបចំវាឡើងវិញដូចនេះ៖

វាប្រែថាកន្សោមត្រូវបានគុណដោយខ្លួនវាម្តង ពោលគឺយោងទៅតាមនិយមន័យ នេះគឺជាអំណាចទី -th នៃលេខ៖

ជាការពិតនេះអាចត្រូវបានគេហៅថា "ការតង្កៀបសូចនាករ" ។ ប៉ុន្តែអ្នកមិនអាចធ្វើបែបនេះសរុបបានទេ៖!

ចូរយើងរំលឹករូបមន្តគុណអក្សរកាត់៖ តើយើងចង់សរសេរប៉ុន្មានដង? ប៉ុន្តែវាមិនមែនជាការពិតទេ។

ថាមពលជាមួយមូលដ្ឋានអវិជ្ជមាន។

រហូត​មក​ដល់​ចំណុច​នេះ យើង​បាន​ពិភាក្សា​គ្នា​តែ​ពី​អ្វី​ដែល​គួរ​ធ្វើ សូចនាករសញ្ញាបត្រ។ ប៉ុន្តែតើអ្វីគួរជាមូលដ្ឋាន? ជាដឺក្រេចាប់ពី ធម្មជាតិ សូចនាករ មូលដ្ឋានអាចជា លេខណាមួយ។ .

ជាការពិត យើងអាចគុណលេខណាមួយដោយគ្នាទៅវិញទៅមក មិនថាលេខវិជ្ជមាន អវិជ្ជមាន ឬសូម្បីតែលេខ។ ចូរយើងគិតអំពីអ្វីដែលសញ្ញា ("" ឬ "") នឹងមានដឺក្រេនៃចំនួនវិជ្ជមាននិងអវិជ្ជមាន?

ឧទាហរណ៍ តើលេខនឹងវិជ្ជមាន ឬអវិជ្ជមាន? ប៉ុន្តែ? ?

ជាមួយនឹងទីមួយ អ្វីគ្រប់យ៉ាងគឺច្បាស់៖ មិនថាលេខវិជ្ជមានប៉ុន្មានដែលយើងគុណនឹងគ្នាទៅវិញទៅមក លទ្ធផលនឹងវិជ្ជមាន។

ប៉ុន្តែអវិជ្ជមានគឺគួរឱ្យចាប់អារម្មណ៍ជាងបន្តិច។ យ៉ាងណាមិញ យើងចងចាំនូវច្បាប់សាមញ្ញមួយពីថ្នាក់ទី៦៖ “ដកដង ដកមួយនឹងបូក”។ នោះគឺឬ។ ប៉ុន្តែប្រសិនបើយើងគុណនឹង () យើងទទួលបាន - ។

ដូច្នេះហើយនៅលើការផ្សាយពាណិជ្ជកម្មគ្មានដែនកំណត់៖ ជាមួយនឹងគុណជាបន្តបន្ទាប់នីមួយៗ សញ្ញានឹងផ្លាស់ប្តូរ។ អ្នកអាចបង្កើតច្បាប់សាមញ្ញទាំងនេះ៖

  1. សូម្បីតែសញ្ញាប័ត្រ, - លេខ វិជ្ជមាន.
  2. ចំនួន​អវិជ្ជមាន​ត្រូវ​បាន​លើក​ឡើង​ទៅ សេសសញ្ញាប័ត្រ, - លេខ អវិជ្ជមាន.
  3. លេខវិជ្ជមានទៅថាមពលណាមួយគឺជាលេខវិជ្ជមាន។
  4. សូន្យទៅថាមពលណាមួយគឺស្មើនឹងសូន្យ។

កំណត់ដោយខ្លួនឯងថាតើសញ្ញាណាដែលកន្សោមខាងក្រោមនឹងមាន៖

1. 2. 3.
4. 5. 6.

តើអ្នកបានគ្រប់គ្រងទេ? នេះគឺជាចម្លើយ៖

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

ក្នុង​ឧទាហរណ៍​ទាំង​បួន​ដំបូង ខ្ញុំ​សង្ឃឹម​ថា​អ្វី​គ្រប់​យ៉ាង​ច្បាស់​លាស់? យើងគ្រាន់តែមើលមូលដ្ឋាន និងនិទស្សន្ត ហើយអនុវត្តច្បាប់សមស្រប។

ក្នុងឧទាហរណ៍ទី 5) អ្វីគ្រប់យ៉ាងគឺមិនគួរឱ្យខ្លាចដូចដែលវាហាក់ដូចជា: វាមិនមានបញ្ហាអ្វីដែលមូលដ្ឋានស្មើនឹង - កម្រិតគឺសូម្បីតែដែលមានន័យថាលទ្ធផលនឹងតែងតែវិជ្ជមាន។ ជាការប្រសើរណាស់, លើកលែងតែនៅពេលដែលមូលដ្ឋានគឺសូន្យ។ មូលដ្ឋានមិនដូចគ្នាទេ? ច្បាស់ណាស់មិនមែនមកពី (ព្រោះ)។

ឧទាហរណ៍ ៦) លែងសាមញ្ញទៀតហើយ។ នៅទីនេះអ្នកត្រូវស្វែងយល់ថាមួយណាតិចជាង: ឬ? ប្រសិនបើអ្នកចាំវាច្បាស់ថា មានន័យថាមូលដ្ឋានគឺតិចជាងសូន្យ។ នោះគឺយើងអនុវត្តច្បាប់ទី 2៖ លទ្ធផលនឹងអវិជ្ជមាន។

ហើយម្តងទៀតយើងប្រើនិយមន័យនៃសញ្ញាបត្រ៖

អ្វីគ្រប់យ៉ាងគឺដូចធម្មតា - យើងសរសេរនិយមន័យនៃដឺក្រេហើយបែងចែកពួកវាទៅគ្នាទៅវិញទៅមកចែកជាគូហើយទទួលបាន:

មុននឹងវិភាគច្បាប់ចុងក្រោយ ចូរយើងដោះស្រាយឧទាហរណ៍មួយចំនួន។

គណនាតម្លៃនៃកន្សោម៖

ដំណោះស្រាយ :

បើ​យើង​មិន​យក​ចិត្ត​ទុក​ដាក់​នឹង​សញ្ញាបត្រ​ទី ៨ តើ​យើង​ឃើញ​អ្វី​នៅ​ទី​នេះ? តោះមើលកម្មវិធីថ្នាក់ទី៧ទាំងអស់គ្នា។ អញ្ចឹងចាំទេ? នេះ​ជា​រូបមន្ត​គុណ​សង្ខេប​គឺ​ភាព​ខុស​គ្នា​នៃ​ការេ​!

យើង​ទទួល​បាន:

យើងពិនិត្យមើលដោយយកចិត្តទុកដាក់លើភាគបែង។ វាមើលទៅដូចជាកត្តាមួយក្នុងចំនោមកត្តាភាគយក ប៉ុន្តែតើមានអ្វីខុស? ខុសលំដាប់នៃលក្ខខណ្ឌ។ ប្រសិនបើពួកគេត្រូវបានបញ្ច្រាស ច្បាប់ទី 3 អាចត្រូវបានអនុវត្ត។ ប៉ុន្តែតើធ្វើដូចម្តេច? វាប្រែថាវាងាយស្រួលណាស់: កម្រិតសូម្បីតែនៃភាគបែងជួយយើងនៅទីនេះ។

បើគុណនឹង គ្មានអ្វីផ្លាស់ប្តូរទេមែនទេ? ប៉ុន្តែឥឡូវនេះវាមើលទៅដូចនេះ:

លក្ខខណ្ឌបានផ្លាស់ប្តូរកន្លែងដ៏អស្ចារ្យ។ "បាតុភូត" នេះអនុវត្តចំពោះកន្សោមណាមួយដល់កម្រិតស្មើគ្នា៖ យើងអាចផ្លាស់ប្តូរសញ្ញានៅក្នុងតង្កៀបដោយសេរី។ ប៉ុន្តែវាសំខាន់ក្នុងការចងចាំ៖ សញ្ញាទាំងអស់ផ្លាស់ប្តូរក្នុងពេលតែមួយ!វាមិនអាចជំនួសបានដោយការផ្លាស់ប្តូរដកតែមួយគត់ដែលមិនជំទាស់ចំពោះយើង!

ចូរយើងត្រលប់ទៅឧទាហរណ៍៖

ហើយម្តងទៀតរូបមន្ត៖

ដូច្នេះឥឡូវនេះច្បាប់ចុងក្រោយ៖

តើយើងនឹងបញ្ជាក់វាដោយរបៀបណា? ជាការពិតណាស់ដូចធម្មតា៖ ចូរយើងពង្រីកគោលគំនិតនៃសញ្ញាបត្រ និងធ្វើឱ្យសាមញ្ញ៖

ឥឡូវ​នេះ​សូម​បើក​តង្កៀប។ តើនឹងមានអក្សរប៉ុន្មាន? ដងដោយមេគុណ - តើវាមើលទៅដូចអ្វី? នេះមិនមែនជានិយមន័យនៃប្រតិបត្តិការទេ។ គុណ: សរុបនៅទីនោះបានប្រែទៅជាមេគុណ។ នោះគឺតាមនិយមន័យ អំណាចនៃលេខដែលមាននិទស្សន្ត៖

ឧទាហរណ៍៖

សញ្ញាប័ត្រជាមួយនិទស្សន្តមិនសមហេតុផល

បន្ថែមពីលើព័ត៌មានអំពីដឺក្រេសម្រាប់កម្រិតមធ្យម យើងនឹងវិភាគសញ្ញាបត្រជាមួយនឹងសូចនាករមិនសមហេតុផល។ ច្បាប់ និងលក្ខណៈសម្បត្តិទាំងអស់នៃដឺក្រេនៅទីនេះគឺដូចគ្នាទៅនឹងសញ្ញាប័ត្រដែលមាននិទស្សន្តសមហេតុសមផល ដោយមានករណីលើកលែង - តាមនិយមន័យ លេខមិនសមហេតុផល គឺជាលេខដែលមិនអាចត្រូវបានតំណាងជាប្រភាគ កន្លែងណា និងជាចំនួនគត់ (នោះគឺ លេខមិនសមហេតុផល គឺជាចំនួនពិតទាំងអស់ លើកលែងតែលេខសមហេតុផល)។

នៅពេលសិក្សាដឺក្រេជាមួយនឹងសូចនាករធម្មជាតិ ចំនួនគត់ និងសមហេតុផល រាល់ពេលដែលយើងបង្កើត "រូបភាព" "ការប្រៀបធៀប" ឬការពិពណ៌នាជាក់លាក់នៅក្នុងពាក្យដែលធ្លាប់ស្គាល់។ ឧទាហរណ៍ និទស្សន្តធម្មជាតិគឺជាលេខដែលគុណដោយខ្លួនវាច្រើនដង។ លេខមួយទៅសូន្យគឺដូចដែលវាជាលេខដែលគុណដោយខ្លួនវាម្តង ពោលគឺវាមិនទាន់ចាប់ផ្តើមគុណទេ ដែលមានន័យថាចំនួនខ្លួនវាមិនទាន់លេចចេញនៅឡើយ ដូច្នេះហើយលទ្ធផលគឺត្រឹមតែ ជាក់លាក់ "ការរៀបចំលេខ" ពោលគឺលេខមួយ; សញ្ញាប័ត្រដែលមានចំនួនគត់អវិជ្ជមាន - វាដូចជាប្រសិនបើ "ដំណើរការបញ្ច្រាស" ជាក់លាក់មួយបានកើតឡើង ពោលគឺចំនួនមិនត្រូវបានគុណដោយខ្លួនវាទេ ប៉ុន្តែបែងចែក។

វាជាការលំបាកខ្លាំងណាស់ក្នុងការស្រមៃមើលដឺក្រេជាមួយនឹងនិទស្សន្តមិនសមហេតុផល (ដូចដែលវាពិបាកក្នុងការស្រមៃមើលលំហ 4 វិមាត្រ)។ ផ្ទុយទៅវិញ វាគឺជាវត្ថុគណិតវិទ្យាសុទ្ធសាធ ដែលគណិតវិទូបានបង្កើត ដើម្បីពង្រីកគោលគំនិតនៃដឺក្រេ ដល់ចន្លោះទាំងមូលនៃលេខ។

ដោយវិធីនេះ ក្នុងវិទ្យាសាស្ត្រ សញ្ញាបត្រដែលមាននិទស្សន្តស្មុគ្រស្មាញ ត្រូវបានគេប្រើជាញឹកញាប់ ពោលគឺនិទស្សន្តមិនមែនជាចំនួនពិតទេ។ ប៉ុន្តែ​នៅ​សាលា យើង​មិន​គិត​អំពី​ការ​លំបាក​បែប​នេះ​ទេ អ្នក​នឹង​មាន​ឱកាស​ដើម្បី​យល់​ពី​គោល​គំនិត​ថ្មី​ទាំង​នេះ​នៅ​វិទ្យាស្ថាន។

ដូច្នេះតើយើងធ្វើដូចម្តេចប្រសិនបើយើងឃើញនិទស្សន្តមិនសមហេតុផល? យើងកំពុងព្យាយាមឱ្យអស់ពីសមត្ថភាពដើម្បីកម្ចាត់វា! :)

ឧទាហរណ៍:

សម្រេចចិត្តដោយខ្លួនឯង៖

1) 2) 3)

ចម្លើយ៖

  1. ចងចាំភាពខុសគ្នានៃរូបមន្តការ៉េ។ ចម្លើយ៖ ។
  2. យើងនាំយកប្រភាគទៅជាទម្រង់ដូចគ្នា៖ ទាំងទសភាគ ឬទាំងពីរសាមញ្ញ។ យើងទទួលបានឧទាហរណ៍៖ ។
  3. គ្មានអ្វីពិសេសទេ យើងអនុវត្តលក្ខណៈសម្បត្តិធម្មតានៃដឺក្រេ៖

ផ្នែកសង្ខេប និងរូបមន្តមូលដ្ឋាន

សញ្ញាបត្រត្រូវបានគេហៅថាកន្សោមនៃទម្រង់៖ , ដែល៖

សញ្ញាប័ត្រជាមួយនិទស្សន្តចំនួនគត់

ដឺក្រេ ដែលជានិទស្សន្តនៃចំនួនធម្មជាតិ (ឧ. ចំនួនគត់ និងវិជ្ជមាន)។

សញ្ញាប័ត្រជាមួយនិទស្សន្តសមហេតុផល

ដឺក្រេ សូចនាករដែលជាលេខអវិជ្ជមាន និងប្រភាគ។

សញ្ញាប័ត្រជាមួយនិទស្សន្តមិនសមហេតុផល

និទស្សន្តដែលនិទស្សន្តគឺជាប្រភាគទសភាគ ឬឫសគ្មានកំណត់។

លក្ខណៈសម្បត្តិសញ្ញាបត្រ

លក្ខណៈពិសេសនៃសញ្ញាបត្រ។

  • ចំនួន​អវិជ្ជមាន​ត្រូវ​បាន​លើក​ឡើង​ទៅ សូម្បីតែសញ្ញាប័ត្រ, - លេខ វិជ្ជមាន.
  • ចំនួន​អវិជ្ជមាន​ត្រូវ​បាន​លើក​ឡើង​ទៅ សេសសញ្ញាប័ត្រ, - លេខ អវិជ្ជមាន.
  • លេខវិជ្ជមានទៅថាមពលណាមួយគឺជាលេខវិជ្ជមាន។
  • សូន្យស្មើនឹងអំណាចណាមួយ។
  • លេខណាមួយទៅថាមពលសូន្យគឺស្មើគ្នា។

ឥឡូវនេះអ្នកមានពាក្យមួយ ...

តើអ្នកចូលចិត្តអត្ថបទដោយរបៀបណា? ប្រាប់ខ្ញុំនៅក្នុងមតិយោបល់ខាងក្រោមថាតើអ្នកចូលចិត្តវាឬអត់។

ប្រាប់យើងអំពីបទពិសោធន៍របស់អ្នកជាមួយនឹងលក្ខណៈសម្បត្តិថាមពល។

ប្រហែលជាអ្នកមានសំណួរ។ ឬសំណូមពរ។

សរសេរនៅក្នុងមតិយោបល់។

និងសំណាងល្អជាមួយនឹងការប្រឡងរបស់អ្នក!