Окружность на координатной плоскости.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

На тригонометрическом круге помимо углов в градусы мы наблюдаем .

Подробнее про радианы:

Радиан определяется как угловая величина дуги, длина которой равна её радиусу. Соответственно, так как длина окружности равна , то очевидно, что в окружности укладывается радиан, то есть

1 рад ≈ 57,295779513° ≈ 57°17′44,806″ ≈ 206265″.

Все знают, что радиан – это

Так вот, например, , а . Так, мы научились переводить радианы в углы .

Теперь наоборот, давайте переводить градусы в радианы .

Допустим, нам надо перевести в радианы. Нам поможет . Поступаем следующим образом:

Так как, радиан, то заполним таблицу:

Тренируемся находить значения синуса и косинуса по кругу

Давайте еще уточним следующее.

Ну хорошо, если нас просят вычислить, скажем, , – здесь обычно путаницы не возникает – все начинают первым делом искать на круге.

А если просят вычислить, например, … Многие, вдруг, начинают не понимают где искать этот ноль… Частенько ищут его в начале координат. Почему?

1) Давайте договоримся раз и навсегда! То, что стоит после или – это аргумент=угол, а углы у нас располагаются на круге, не ищите их на осяx! (Просто отдельные точки попадают и на круг, и на ось…) А сами значения синусов и косинусов – ищем на осях!

2) И еще! Если мы от точки «старт» отправляемся против часовой стрелки (основное направление обхода тригонометрического круга), то мы откладываем положительные значения углов , значения углов растут при движении в этом направлении.

Если же мы от точки «старт» отправляемся по часовой стрелке, то мы откладываем отрицательные значения углов.

Пример 1.

Найти значение .

Решение:

Находим на круге . Проецируем точку на ось синусов (то есть проводим перпендикуляр из точки к оси синусов (оу)).

Приходим в 0. Значит, .

Пример 2.

Найти значение .

Решение:

Находим на круге (проходим против часовой стрелки и еще ). Проецируем точку на ось синусов (а она уже лежит на оси синусов).

Попадаем в -1 по оси синусов.

Заметим, за точкой «скрываются» такие точки, как (мы могли бы пойти в точку, помеченную как , по часовой стрелке, а значит появляется знак минус), и бесконечно много других.

Можно привести такую аналогию:

Представим тригонометрический круг как беговую дорожку стадиона.


Вы ведь можете оказаться в точке «Флажок», отправляюсь со старта против часовой стрелки, пробежав, допустим, 300 м. Или пробежав, скажем, 100м по часовой стрелке (считаем длину дорожки 400 м).

А также вы можете оказаться в точке «Флажок» (после «старт»), пробежав, скажем, 700 м, 1100 м, 1500 м и т. д. против часовой стрелки. Вы можете оказаться в точке «Флажок», пробежав 500 м или 900 м и т. д. по часовой стрелке от «старт».

Разверните мысленно беговую дорожку стадиона в числовую прямую. Представьте, где на этой прямой будут, например, значения 300, 700, 1100, 1500 и т.д. Мы увидим точки на числовой прямой, равноотстоящие друг от друга. Свернем обратно в круг. Точки «cлепятся» в одну.

Так и с тригонометрическим кругом. За каждой точкой скрыто бесконечно много других.

Скажем, углы , , , и т.д. изображаются одной точкой. И значения синуса, косинуса в них, конечно же, совпадают. (Вы заметили, что мы прибавляли/вычитали или ? Это период для функции синус и косинус.)

Пример 3.

Найти значение .

Решение:

Переведем для простоты в градусы

(позже, когда вы привыкнете к тригонометрическому кругу, вам не потребуется переводить радианы в градусы):

Двигаться будем по часовой стрелки от точки Пройдем полкруга () и еще

Понимаем, что значение синуса совпадает со значением синуса и равняется

Заметим, если б мы взяли, например, или и т.д., то мы получили бы все тоже значение синуса.

Пример 4.

Найти значение .

Решение:

Все же, не будем переводить радианы в градусы, как в предыдущем примере.

То есть нам надо пройти против часовой стрелки полкруга и еще четверть полкруга и спроецировать полученную точку на ось косинусов (горизонтальная ось).

Пример 5.

Найти значение .

Решение:

Как отложить на тригонометрическом круге ?


Если мы пройдем или , да хоть , мы все равно окажемся в точке, которую мы обозначили как «старт». Поэтому, можно сразу пройти в точку на круге

Пример 6.

Найти значение .

Решение:

Мы окажемся в точке ( приведет нас все равно в точку ноль). Проецируем точку круга на ось косинусов (смотри тригонометрический круг), попадаем в . То есть .

Тригонометрический круг – у вас в руках

Вы же уже поняли, что главное – запомнить значения тригонометрических функций первой четверти. В остальных четвертях все аналогично, нужно лишь следить за знаками. А «цепочку-лесенку» значений тригонометрических функций, вы, надеюсь уже не забудете.

Как находить значения тангенса и котангенса основных углов .

После чего, познакомившись с основными значениями тангенса и котангенса, вы можете пройти

На пустой шаблон круга. Тренируйтесь!

При изучении тригонометрии в школе каждый ученик сталкивается с весьма интересным понятием «числовая окружность». От умения школьного учителя объяснить, что это такое, и для чего она нужна, зависит, насколько хорошо ученик пойдём тригонометрию впоследствии. К сожалению, далеко не каждый учитель может доступно объяснить этот материал. В результате многие ученики путаются даже с тем, как отмечать точки на числовой окружности . Если вы дочитаете эту статью до конца, то научитесь делать это без проблем.

Итак, приступим. Нарисуем окружность, радиус которой равен 1. Самую «правую» точку этой окружности обозначим буквой O :

Поздравляю, вы только что нарисовали единичную окружность. Поскольку радиус этой окружности равен 1, то её длина равна .

Каждому действительному числу можно поставить в соответствие длину траектории вдоль числовой окружности от точки O . За положительное направление принимается направление движения против часовой стрелки. За отрицательное – по часовой стрелке:

Расположение точек на числовой окружности

Как мы уже отмечали, длина числовой окружности (единичной окружности) равна . Где тогда будет располагаться на этой окружности число ? Очевидно, от точки O против часовой стрелки нужно пройти половину длины окружности, и мы окажемся в нужной точке. Обозначим её буквой B :

Обратите внимание, что в ту же точку можно было бы попасть, пройдя полуокружность в отрицательном направлении. Тогда бы мы отложили на единичной окружности число . То есть числам и соответствует одна и та же точка.

Причём этой же точке соответствуют также числа , , , и, вообще, бесконечное множество чисел, которые можно записать в виде , где , то есть принадлежит множеству целых чисел. Всё это потому, что из точки B можно совершить «кругосветное» путешествие в любую сторону (добавить или вычесть длину окружности ) и попасть в ту же самую точку. Получаем важный вывод, который нужно понять и запомнить.

Каждому числу соответствует единственная точка на числовой окружности. Но каждой точке на числовой окружности соответствует бесконечно много чисел.

Разобьем теперь верхнюю полуокружность числовой окружности на дуги равной длины точкой C . Легко видеть, что длина дуги OC равна . Отложим теперь от точки C дугу той же длины в направлении против часовой стрелки. В результате попадём в точку B . Результат вполне ожидаемый, поскольку . Отложим эту дугу в том же направлении ещё раз, но теперь уже от точки B . В результате попадём в точку D , которая будет уже соответствовать числу :

Заметим опять, что эта точка соответствует не только числу , но и, например, числу , потому что в эту точку можно попасть, отложив от точки O четверть окружности в направлении движения часовой стрелки (в отрицательном направлении).

И, вообще, отметим снова, что этой точке соответствует бесконечно много чисел, которые можно записать в виде . Но их также можно записать в виде . Или, если хотите, в виде . Все эти записи абсолютно равнозначны, и они могут быть получены одна из другой.

Разобьём теперь дугу на OC пополам точкой M . Сообразите теперь, чему равна длина дуги OM ? Правильно, вдвое меньше дуги OC . То есть . Каким числам соответствует точка M на числовой окружности? Уверен, что теперь вы сообразите, что эти числа можно записать в виде .

Но можно и иначе. Давайте в представленной формуле возьмём . Тогда получим, что . То есть эти числа можно записать в виде . Этот же результат можно было получить, используя числовую окружность. Как я уже говорил, оба записи равнозначны, и они могут быть получены одна из другой.

Теперь вы легко можете привести пример чисел, которым соответствуют точки N , P и K на числовой окружности. Например, числам , и :

Часто именно минимальные положительные числа и берут для обозначения соответствующих точек на числовой окружности. Хотя это совсем не обязательно, и точке N , как вы уже знаете, соответствует бесконечное множество других чисел. В том числе, например, число .

Если разбить дугу OC на три равные дуги точками S и L , так что точка S будет лежать между точками O и L , то длина дуги OS будет равна , а длина дуги OL будет равна . Используя знания, которые вы получили в предыдущей части урока, вы без труда сообразите, как получились остальные точки на числовой окружности:

Числа не кратные π на числовой окружности

Зададимся теперь вопросом, где на числовой прямой отметить точку, соответствующую числу 1? Чтобы это сделать, надо от самой «правой» точки единичной окружности O отложить дугу, длина которой была бы равна 1. Указать место искомой точки мы можем лишь приблизительно. Поступим следующим образом.

>> Числовая окружность


Изучая курс алгебры 7-9-го классов, мы до сих пор имели дело с алгебраическими функциями, т.е. функциями, заданными аналитически выражениями, в записи которых использовались алгебраические операции над числами и переменной (сложение, вычитание, умножение, деление , возведение в степень, извлечение квадратного корня). Но математические модели реальных ситуаций часто бывают связаны с функциями другого типа, не алгебраическими. С первыми представителями класса неалгебраических функций - тригонометрическими функциями - мы познакомимся в этой главе. Более детально изучать тригонометрические функции и другие виды неалгебраических функций (показательные и логарифмические) вам предстоит в старших классах.
Для введения тригонометрических функций нам понадобится новая математическая модель - числовая окружность, с которой вы до сих пор не встречались, зато хорошо знакомы с числовой прямой. Напомним, что числовая прямая - это прямая, на которой заданы начальная точка О, масштаб (единичный отрезок) и положительное направление. Любое действительное число мы можем сопоставить с точкой на прямой и обратно.

Как по числу х найти на прямой соответствующую точку М? Числу 0 соответствует начальная точка О. Если х > 0, то, двигаясь по прямой из точки 0 в положительном направлении, нужно пройти п^ть длиной х; конец этого пути и будет искомой точкой М(х). Если х < 0, то, двигаясь по прямой из точки О в отрицательном направлении, нужно пройти путь 1*1; конец этого пути и будет искомой точкой М(х). Число х - координата точки М.

А как мы решали обратную задачу, т.е. как искали координату х заданной точки М на числовой прямой? Находили длину отрезка ОМ и брали ее со знаком «+» или * - » в зависимости от того, с какой стороны от точки О расположена на прямой точка М.

Но в реальной жизни двигаться приходится не только по прямой. Довольно часто рассматривается движение по окружности . Вот конкретный пример. Будем считать беговую дорожку стадиона окружностью (на самом деле это, конечно, не окружность, но вспомните, как обычно говорят спортивные комментаторы: «бегун пробежал круг», «до финиша осталось пробежать полкруга» и т.д.), ее длина равна 400 м. Отмечен старт - точка А (рис. 97). Бегун из точки А движется по окружности против часовой стрелки. Где он будет через 200 м? через 400 м? через 800 м? через 1500 м? А где провести финишную черту, если он бежит марафонскую дистанцию 42 км 195 м?

Через 200 м он будет находиться в точке С, диаметрально противоположной точке А (200 м - это длина половины беговой дорожки, т.е. длина половины окружности). Пробежав 400 м (т.е. «один круг», как говорят спортсмены), он вернется в точку А. Пробежав 800 м (т.е. «два круга»), он вновь окажется в точке А. А что такое 1500 м? Это «три круга» (1200 м) плюс еще 300 м, т.е. 3

Беговой дорожки - финиш этой дистанции будет в точке 2) (рис. 97).

Нам осталось разобраться с марафоном. Пробежав 105 кругов, спортсмен преодолеет путь 105-400 = 42 000 м, т.е. 42 км. До финиша остается 195 м, это на 5 м меньше половины длины окружности. Значит, финиш марафонской дистанции будет в точке М, расположенной около точки С (рис. 97).

Замечание. Вы, разумеется, понимаете условность последнего примера. Марафонскую дистанцию по стадиону никто не бегает, максимум составляет 10 000 м, т.е. 25 кругов.

По беговой дорожке стадиона можно пробежать или пройти путь любой длины. Значит, любому положительному числу соответствует какая-то точка - «финиш дистанции». Более того, можно и любому отрицательному числу поставить в соответствие точку окружности: просто надо заставить спортсмена бежать в противоположном направлении, т.е. стартовать из точки А не в направлении против,ав направлении по часовой стрелке. Тогда беговую дорожку стадиона можно рассматривать как числовую окружность.

В принципе, любую окружность можно рассматривать как числовую, но в математике условились использовать для этой цели единичную окружность - окружность с радиусом 1. Это будет наша «беговая дорожка». Длина Ь окружности с радиусом К вычисляется по формуле Длина половины окружности равна n, а длина четверти окружности - АВ, ВС, СБ, DА на рис. 98 - равна Условимся называть дугу АВ первой четвертью единичной окружности, дугу ВС - второй четвертью, дугу СB - третьей четвертью, дугу DА - четвертой четвертью (рис. 98). При этом обычно речь идет об Открытой дуге, т.е. о дуге без ее концов (что-то вроде интервала на числовой прямой).


Определение. Дана единичная окружность, на ней отмечена начальная точка А - правый конец горизонтального диаметра (рис. 98). Поставим в соответствие каждому действительному числу I точку окружности по следующему правилу:

1) если x > 0, то, двигаясь из точки А в направлении против часовой стрелки (положительное направление обхода окружности), опишем по окружности путь длиной и конечная точка М этого пути и будет искомой точкой: М = М(x);

2) если x < 0, то, двигаясь из точки А в направлении по часовой стрелке (отрицательное направление обхода окружности), опишем по окружности путь длиной и |; конечная точка М этого пути и будет искомой точкой: М = М(1);

0 поставим в соответствие точку А: А = А(0).

Единичную окружность с установленным соответствием (между действительными числами и точками окружности) будем называть числовой окружностью.
Пример 1. Найти на числовой окружности
Так как первые шесть из заданных семи чисел положительны, то для отыскания соответствующих им точек на окружности нужно пройти по окружности путь заданной длины, двигаясь из точки А в положительном направлении. Учтем при этом, что


Числу 2 соответствует точка А, так как, пройдя по окружности путь длиной 2, т.е. ровно одну окружность, мы снова попадем в начальную точку А Итак, А = А(2).
Что такое Значит, двигаясь из точки А в положительном направлении, нужно пройти целую окружность.

Замечание. Когда мы в 7-8-м классах работали с числовой прямой, то условились, ради краткости, не говорить «точка прямой, соответствующая числу х», а говорить «точка х». Точно такой же договоренности будем придерживаться и при работе с числовой окружностью: «точка f» - это значит, что речь идет о точке окружности, которая соответствует числу
Пример 2.
Разделив первую четверть АВ на три равные части точками К и Р, получим:

Пример 3. Найти на числовой окружности точки, соответствующие числам
Построения будем делать, пользуясь рис. 99. Отложив дугу АМ (ее длина равна -) от точки А пять раз в отрицательном направлении, получим точку!, - середину дуги ВС. Итак,

Замечание. Обратите внимание на некоторую вольность, которую мы позволяем себе в использовании математического языка. Ясно, что дуга АК и д л ина дуги АК - разные вещи (первое понятие - геометрическая фигура, а второе понятие - число). Но обозначается и то и другое одинаково: АК. Более того, если точки А и К соединить отрезком, то и полученный отрезок, и его длина обозначаются так же: АК. Обычно из контекста бывает ясно, какой смысл вкладывается в обозначение (дуга, длина дуги, отрезок или длина отрезка).

Поэтому нам очень пригодятся два макета числовой окружности.

ПЕРВЫЙ МАКЕТ
Каждая из четырех четвертей числовой окружности разделена на две равные части, и около каждой из имеющихся восьми точек записаны их «имена» (рис. 100).

ВТОРОЙ МАКЕТ Каждая из четырех четвертей числовой окружности разделена на три равные части, и около каждой из имеющихся двенадцати точек записаны их «имена» (рис. 101).


Учтите, что на обоих макетах мы могли бы заданным точкам присвоить и другие «имена».
Заметили ли вы, что во всех разобранных примерах длины дуг
выражались некоторыми долями числа п? Это неудивительно: ведь длина единичной окружности равна 2п, и если мы окружность или ее четверть делим на равные части, то получаются дуги, длины которых выражаются долями числа и. А как вы думаете, можно ли найти на единичной окружности такую точку Е, что длина дуги АЕ будет равна 1? Давайте прикинем:

Рассуждая аналогичным образом, делаем вывод, что на единичной окружности можно найти и точку Ег, для которой АЕ, = 1, и точку Е2, для которой АЕг = 2, и точку Е3, для которой АЕ3 = 3, и точку Е4, для которой АЕ4 = 4, и точку Еь, для которой АЕЪ = 5, и точку Е6, для которой АЕ6 = 6. На рис. 102 отмечены (приблизительно) соответствующие точки (причем для ориентировки каждая из четвертей единичной окружности разделена черточками на три равные части).


Пример 4. Найти на числовой окружности точку, соответствующую числу -7.

Нам нужно, отправляясь из точки А(0) и двигаясь в отрицательном направлении (в направлении по часовой стрелке), пройти по окружности путь длиной 7. Если пройти одну окружность, то получим (приближенно) 6,28, значит, нужно еще пройти (в том же направлении) путь длиной 0,72. Что же это за дуга? Немного меньше половины четверти окружности, т.е. ее длина меньше числа -.

Итак, начисловой окружности, как и начисловой прямой, каждому действительному числу соответствует одна точка (только, разумеется, на прямой ее найти легче, чем на окружности). Но для прямой верно и обратное: каждая точка соответствует единственному числу. Для числовой окружности такое утверждение неверно, выше мы неоднократно убеждались в этом. Для числовой окружности справедливо следующее утверждение.
Если точка М числовой окружности соответствует числу I, то она соответствует и числу вида I + 2як, где к - любое целое число (к е 2).

В самом деле, 2п - длина числовой (единичной) окружности, а целое число |й| можно рассматривать как количество полных обходов окружности в ту или другую сторону. Если, например, к = 3, то это значит, что мы делаем три обхода окружности в положительном направлении; если к = -7, то это значит, что мы делаем семь (| к | = | -71 = 7) обходов окружности в отрицательном направлении. Но если мы находимся в точке М(1), то, выполнив еще | к | полных обходов окружности, мы снова окажемся в точке М.

А.Г. Мордкович Алгебра 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям - 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей - π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей - π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого - это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x 2 + y 2 = 1 2 . Поскольку x = y, а 1 2 = 1, то уравнение упрощается до x 2 + x 2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M 1 (π/4) = M 1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M 2 ((3π)/4) = M 2 (-√2/2; √2/2)
M 3 ((5π)/4) = M 3 (-√2/2; -√2/2)
M 4 ((7π)/4) = M 4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x 2 + (½) 2 = 1 2
x 2 = 1 - ¼ = ¾
x = √3/2

Таким образом T 1 (π/6) = T 1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T 2 (π/3) = T 2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T 3 ((2π)/3) = T 3 (-½; √3/2)
T 4 ((5π)/6) = T 4 (-√3/2; ½)
T 5 ((7π)/6) = T 5 (-√3/2; -½)
T 6 ((4π)/3) = T 6 (-½; -√3/2)
T 7 ((5π)/3) = T 7 (½; -√3/2)
T 8 ((11π)/6) = T 8 (√3/2; -½)