Какую гипотезу доказал григорий перельман. Как Перельман был удостоен премии Клэя

Математический институт Клэя присудил Григорию Перельману Премию тысячелетия (Millennium Prize), тем самым официально признав верным доказательство гипотезы Пуанкаре, выполненное российским математиком. Примечательно, что при этом институту пришлось нарушить собственные правила - по ним на получение примерно миллиона долларов, именно таков размер премии, может претендовать только автор, опубликовавший свои работы в рецензируемых журналах. Работа Григория Перельмана формально так и не увидела свет - она осталась набором нескольких препринтов на сайте arXiv.org (один , два и три). Впрочем, не так важно, что стало причиной решения института - присуждение Премии тысячелетия ставит точку в истории длиной более чем в 100 лет.

Кружка, пончик и немного топологии

Прежде чем выяснить, в чем состоит гипотеза Пуанкаре, необходимо разобраться, что это за раздел математики - топология, - к которому эта самая гипотеза относится. Топология многообразий занимается свойствами поверхностей, которые не меняются при определенных деформациях. Поясним на классическом примере. Предположим, что перед читателем лежит пончик и стоит пустая чашка. С точки зрения геометрии и здравого смысла - это разные объекты хотя бы потому, что попить кофе из пончика не получится при всем желании.

Однако тополог скажет, что чашка и пончик - это одно и то же. И объяснит это так: вообразим, что чашка и пончик представляют собой полые внутри поверхности, изготовленные из очень эластичного материала (математик бы сказал, что имеется пара компактных двумерных многообразий). Проведем умозрительный эксперимент: сначала раздуем дно чашки, а потом ее ручку, после чего она превратится в тор (именно так математически называется форма пончика). Посмотреть, как примерно выглядит этот процесс можно .

Разумеется, у пытливого читателя возникает вопрос: раз поверхности можно мять, то как же их различать? Ведь, например, интуитивно понятно - как ни мни тор, без разрывов и склеек сферу из него не получишь. Тут в игру вступают так называемые инварианты - характеристики поверхности, которые не меняются при деформации, - понятие, необходимое для формулировки гипотезы Пуанкаре.

Здравый смысл подсказывает нам, что тор от сферы отличает дырка. Однако дырка - понятие далеко не математическое, поэтому его надо формализовать. Делается это так - представим, что на поверхности у нас имеется очень тонкая эластичная нить, образующая петлю (саму поверхность в этом умозрительном опыте, в отличие от предыдущего, считаем твердой). Будем двигать петлю, не отрывая ее от поверхности и не разрывая. Если нить можно стянуть до очень маленького кружочка (почти точки), то говорят, что петля стягиваема. В противном случае петля называется нестягиваемой.

Фундаментальная группа тора обозначается п 1 (T 2). Из-за того, что она нетривиальна, руки мыши образуют нестягиваемую петлю. Грусть на лице животного - результат осознания этого факта.

Так вот, легко видеть, что на сфере любая петля стягиваема (как это примерно выглядит, можно посмотреть ), а вот для тора это уже не так: на бублике есть целых две петли - одна продета в дырку, а другая обходит дырку "по периметру", - которые нельзя стянуть. На этой картинке примеры нестягиваемых петель показаны красным и фиолетовым цветом соответственно. Когда на поверхности есть петли, математики говорят, что "фундаментальная группа многообразия нетривиальна", а если таких петель нет - то тривиальна.

Теперь, чтобы честно сформулировать гипотезу Пуанкаре, любознательному читателю осталось потерпеть еще немного: надо разобраться, что такое трехмерное многообразие в общем и трехмерная сфера в частности.

Вернемся на секундочку к поверхностям, которые мы обсуждали выше. Каждую из них можно разрезать на такие мелкие кусочки, что каждый будет почти напоминать кусочек плоскости. Так как у плоскости всего два измерения, то говорят, что и многообразие двумерно. Трехмерное многообразие - это такая поверхность, которую можно разрезать на мелкие кусочки, каждый из которых очень похож на кусочек обычного трехмерного пространства.

Главным "действующим лицом" гипотезы является трехмерная сфера. Представить себе трехмерную сферу как аналог обычной сферы в четырехмерном пространстве, не потеряв при этом рассудок, все-таки, наверное, невозможно. Однако описать этот объект, так сказать, "по частям" достаточно легко. Все, кто видел глобус, знают, что обычную сферу можно склеить из северного и южного полушария по экватору. Так вот, трехмерная сфера склеивается из двух шаров (северного и южного) по сфере, которая представляет собой аналог экватора.

На трехмерных многообразиях можно рассмотреть такие же петли, какие мы брали на обычных поверхностях. Так вот, гипотеза Пуанкаре утверждает: "Если фундаментальная группа трехмерного многообразия тривиальна, то оно гомеоморфно сфере". Непонятное словосочетание "гомеоморфно сфере" в переводе на неформальный язык означает, что поверхность можно продеформировать в сферу.

Немного истории

Вообще говоря, в математике можно сформулировать большое количество сложных утверждений. Однако что делает ту или иную гипотезу великой, отличает ее от остальных? Как это ни странно, но великую гипотезу отличает большое количество неправильных доказательств, в каждом из которых есть по великой ошибке - неточности, которая зачастую приводит к возникновению целого нового раздела математики.

Так, изначально Анри Пуанкаре, который отличался помимо всего прочего умением совершать гениальные ошибки, сформулировал гипотезу немного в другом виде, чем мы написали выше. Спустя некоторое время он привел контрпример к своему утверждению, который стал известен как гомологическая 3-сфера Пуанкаре, и в 1904 году сформулировал гипотезу уже в современном виде. Сферу, кстати, совсем недавно ученые приспособили в астрофизике - оказалось, что Вселенная вполне может оказаться гомологической 3-сферой Пуанкаре.

Надо сказать, что особого ажиотажа среди коллег-геометров гипотеза не вызвала. Так было до 1934 года, когда британский математик Джон Генри Уайтхед представил свой вариант доказательства гипотезы. Очень скоро, однако, он сам нашел в рассуждениях ошибку, которая позже привела к возникновению целой теории многообразий Уайтхеда.

После этого за гипотезой постепенно закрепилась слава крайне сложной задачи. Многие великие математики пытались взять ее приступом. Например, американский Эр Аш Бинг (R.H.Bing), математик, у которого (абсолютно официально) вместо имени в документах были записаны инициалы. Он предпринял несколько безуспешных попыток доказать гипотезу, сформулировав в ходе этого процесса собственное утверждение - так называемую "гипотезу о свойстве П" (Property P conjecture). Примечательно, что это утверждение, которое рассматривалось Бингом как промежуточное, оказалось чуть ли не сложнее доказательства самой гипотезы Пуанкаре.

Были среди ученых и люди, положившие жизнь на доказательство этого математического факта. Например, известный математик греческого происхождения Кристос Папакириакопоулос . В течение более десяти лет, работая в Принстоне, он безуспешно пытался доказать гипотезу. Он умер от рака в 1976 году.

Примечательно, что обобщение гипотезы Пуанкаре на многообразия размерности выше трех оказалось заметно проще оригинала - лишние размерности позволяли легче манипулировать многообразиями. Так, для n-мерных многообразий (при n не меньше 5) гипотеза была доказана Стивеном Смейлом в 1961 году. Для n = 4 гипотеза была доказана методом, совершенно отличным от смейловского, в 1982 году Майклом Фридманом. За свое доказательство последний получил Филдсовскую медаль - высшую награду для математиков.

Описанные работы - это далеко не полный список попыток решения более чем столетней гипотезы. И хотя каждая из работ и привела к возникновению целого направления в математике и может считаться в этом смысле успешной и значимой, доказать гипотезу Пуанкаре окончательно удалось только россиянину Григорию Перельману.

Перельман и доказательство

В 1992 году Григорий Перельман, тогда сотрудник математического института им. Стеклова, попал на лекцию Ричарда Гамильтона. Американский математик рассказывал о потоках Риччи - новом инструменте для изучения гипотезы геометризации Терстона - факта, из которого гипотеза Пуанкаре получалась как простое следствие. Эти потоки, построенные в некотором смысле по аналогии с уравнениями теплопереноса, заставляли поверхности с течением времени деформироваться примерно так же, как в начале этой статьи мы деформировали двумерные поверхности. Оказалось, что в некоторых случаях результатом такой деформации оказывался объект, структуру которого легко понять. Основная трудность заключалась в том, что во время деформации возникали особенности с бесконечной кривизной, аналогичные в некотором смысле черным дырам в астрофизике.

После лекции Перельман подошел к Гамильтону. Позже он рассказывал, что Ричард его приятно удивил: "Он улыбался и был очень терпелив. Он даже рассказал мне несколько фактов, которые были опубликованы спустя лишь несколько лет. Он сделал это без колебаний. Его открытость и доброта поразили меня. Не могу сказать, что большинство современных математиков ведет себя так."

После поездки в США Перельман вернулся в Россию, где принялся трудиться над решением проблемы особенностей потоков Риччи и доказательством гипотезы геометризации (а вовсе не над гипотезой Пуанкаре) втайне от всех. Ничего удивительного, что появление 11 ноября 2002 года первого препринта Перельмана повергло математическую общественность в шок. Спустя некоторое время появилась еще пара работ.

После этого Перельман самоустранился от обсуждения доказательств и даже, говорят, прекратил заниматься математикой. Он не прервал своего уединенного образа жизни даже в 2006 году, когда ему была присуждена Филдсовская премия - самая престижная награда для математиков. Причины такого поведения автора обсуждать не имеет смысла - гений имеет право вести себя странно (например, будучи в Америке Перельман не стриг ногти, позволяя им свободно расти).

Как бы то ни было, доказательство Перельмана зажило отдельной от него жизнью: три препринта не давали покоя математикам современности. Первые результаты проверки идей российского математика появились в 2006 году - крупные геометры Брюс Кляйнер и Джон Лотт из Мичиганского университета опубликовали препринт собственной работы, по размерам больше напоминающей книгу - 213 страниц. В этой работе ученые тщательно проверили все выкладки Перельмана, подробно пояснив различные утверждения, которые в работе российского математика были лишь вскользь обозначены. Вердикт исследователей был однозначен: доказательство абсолютно верное.

Неожиданный поворот в этой истории наступил в июле этого же года. В журнале Asian Journal of Mathematics появилась статья китайских математиков Сипин Чжу и Хуайдун Цао под названием "Полное доказательство гипотезы геометризации Терстона и гипотезы Пуанкаре". В рамках этой работы результаты Перельмана рассматривались как важные, полезные, но исключительно промежуточные. Данная работа вызвала удивление у специалистов на Западе, однако получила очень одобрительные отзывы на Востоке. В частности, результаты поддержал Шинтан Яу - один из основоположников теории Калаби-Яу, положившей начало теории струн, - а также учитель Цао и Джу. По счастливому стечению обстоятельств именно Яу был главным редактором журнала Asian Journal of Mathematics , в котором была опубликована работа.

После этого математик стал ездить по миру с популярными лекциями, рассказывая о достижениях китайских математиков. В результате возникла опасность, что очень скоро результаты Перельмана и даже Гамильтона окажутся отодвинуты на второй план. Такое в истории математики случалось не раз - многие теоремы, носящие имена конкретных математиков, были придуманы совершенно другими людьми.

Однако этого не случилось и, вероятно, теперь не случится. Вручение премии Клэя Перельману (даже если тот откажется) навсегда закрепило в общественном сознании факт: российский математик Григорий Перельман доказал гипотезу Пуанкаре. И неважно, что на самом деле он доказал факт более общий, развив по пути совершенно новую теорию особенностей потоков Риччи. Хотя бы так. Награда нашла героя.

ИГРА РАЗУМА

Еще недавно математика не сулила ни славы, ни богатства своим «жрецам». Им даже Нобелевскую премию не давали. Нет такой номинации. Ведь, по весьма популярной легенде, жена Нобеля однажды изменила ему с математиком. И в отместку богач лишил всю их крючкотворную братию своего уважения и призовых денег.

Ситуация изменилась в 2000 году. Частный математический Институт Клэя (Clay Mathematics Institute) выбрал семь наиболее трудных задач. И пообещал за решение каждой платить по миллиону долларов. На математиков посмотрели с уважением. В 2001 году на экраны даже вышел фильм «Игры разума», главным героем которого стал математик.

Ныне только далекие от цивилизации люди не в курсе: один из обещанных миллионов - самый первый - уже присужден. Приза удостоен российский гражданин, житель Санкт-Петербурга Григорий Перельман за решение гипотезы Пуанкаре , которая его стараниями стала теоремой. 44-летний бородач утер нос всему миру. И теперь продолжает держать его - мир - в напряжении. Поскольку неизвестно, возьмет ли математик честно заслуженный миллион долларов или откажется. Прогрессивная общественность во многих странах натурально волнуется. По крайней мере газеты всех континентов ведут хронику финансово-математической интриги.

И на фоне этих увлекательных занятий - гаданий и дележа чужих денег - как-то потерялся смысл достижения Перельмана. Президент Института Клэя Джим Карлсон, конечно, заявлял в свое время, мол, цель призового фонда - не столько поиск ответов, сколько попытка повысить престиж математической науки и заинтересовать ею молодых людей. Но все-таки в чем суть?

ГИПОТЕЗА ПУАНКАРЕ - ЭТО ЧТО?

Загадка, разгаданная российским гением, затрагивает основы раздела математики, именуемого топологией. Ее - топологию - часто называют «геометрией на резиновом листе». Она имеет дело со свойствами геометрических форм, которые сохраняются, если форма растягивается, скручивается, изгибается. Иными словами, деформируется без разрывов, разрезов и склеек.

Топология важна для математической физики, поскольку позволяет понять свойства пространства. Или оценить его, не имея возможности взглянуть на форму этого пространства со стороны. Например, на нашу Вселенную.

Объясняя про гипотезу Пуанкаре, начинают так: представьте себе двухмерную сферу - возьмите резиновый диск и натяните его на шар. Так, чтобы окружность диска оказалась собранной в одной точке. Аналогичным образом, к примеру, можно стянуть шнуром спортивный рюкзак. В итоге получится сфера: для нас - трехмерная, но с точки зрения математики - всего лишь двухмерная.

Затем предлагают натянуть тот же диск на бублик. Вроде бы получится. Но края диска сойдутся в окружность, которую уже не стянуть в точку - она разрежет бублик.

Как написал в своей популярной книге другой российский математик, Владимир Успенский , «в отличие от двухмерных сфер трехмерные сферы недоступны нашему непосредственному наблюдению, и нам представить себе их так же трудно, как Василию Ивановичу из известного анекдота квадратный трехчлен».

Так вот, согласно гипотезе Пуанкаре, трехмерная сфера - это единственная трехмерная штуковина, поверхность которой может быть стянута в одну точку неким гипотетическим «гипершнуром».

Жюль Анри Пуанкаре предположил такое в 1904 году. Теперь Перельман убедил всех понимающих, что французский тополог был прав. И превратил его гипотезу в теорему.

Доказательство помогает понять, какая форма у нашей Вселенной. И позволяет весьма обоснованно предположить, что она и есть та самая трехмерная сфера. Но если Вселенная - единственная «фигура», которую можно стянуть в точку, то, наверное, можно и растянуть из точки. Что служит косвенным подтверждением теории Большого взрыва, которая утверждает: как раз из точки Вселенная и произошла.

Получается, что Перельман вместе с Пуанкаре огорчили так называемых креационистов - сторонников божественного начала мироздания. И пролили воду на мельницу физиков-материалистов.

А В ЭТО ВРЕМЯ

Гений пока не отказался от миллиона долларов

Математик упорно отказывает в общении журналистам. Нашим - совсем: даже голоса не подает. Западным - бросает реплики через закрытую дверь. Мол, отстаньте. Общается гений, похоже, лишь с президентом Института Клэя Джимом Карлсоном .

Сразу же после того как стало известно про миллион долларов Григория Перельмана, Карлсон на вопрос «Что решил гений?» ответил: «Он даст мне знать в свое время». То есть намекнул, что поддерживает с Григорием связь.

На днях от президента поступило новое сообщение. Его донесла до общественности британская газета The Telegraph: «Он сказал, что в какой-то момент сообщит мне о своем решении. Но он не сказал хотя бы приблизительно, когда это будет. Я не думаю, что это будет прямо завтра».

По словам президента, говорил гений сухо, но вежливо. Был краток. В оправдание Перельмана Карлсон заметил: «Не каждый день человек даже в шутку думает о возможности отказаться от миллиона долларов».

КСТАТИ

За что еще дадут миллион долларов

1. Проблема Кука

Нужно определить, может ли проверка правильности решения какой-либо задачи быть более длительной, чем получение самого решения. Эта логическая задача важна для специалистов по криптографии - шифрованию данных.

2. Гипотеза Римана

Существуют так называемые простые числа, например 2, 3, 5, 7 и т. д., которые делятся только сами на себя. Сколько их всего, неизвестно. Риман полагал, что это можно определить и найти закономерность их распределения. Кто найдет - тоже окажет услугу криптографии.

3. Гипотеза Берча и Свиннертон-Дайера

Проблема связана с решением уравнений с тремя неизвестными, возведенными в степени. Нужно придумать, как их решать, независимо от сложности.

4. Гипотеза Ходжа

В ХХ веке математики открыли метод исследования формы сложных объектов. Идея в том, чтобы использовать вместо самого объекта простые «кирпичики», которые склеиваются между собой и образуют его подобие. Нужно доказать, что такое допустимо всегда.

5. Уравнения Навье - Стокса

О них стоит вспомнить в самолете. Уравнения описывают воздушные потоки, которые удерживают его в воздухе. Сейчас уравнения решают приблизительно, по приблизительным формулам. Нужно найти точные и доказать, что в трехмерном пространстве существует решение уравнений, которое всегда верно.

6. Уравнения Янга - Миллса

В мире физики есть гипотеза: если элементарная частица обладает массой, то существует и ее нижний предел. Но какой - непонятно. Нужно до него добраться. Это, пожалуй, самая сложная задачка. Для ее решения необходимо создать «теорию всего» - уравнения, объединяющие все силы и взаимодействия в природе. Тот, кто сумеет, наверняка получит и Нобелевскую премию.

В 1904 г. Анри Пуанкаре предположил, что любой трехмерный объект, обладающий определенными свойствами трехмерной сферы, можно преобразовать в 3-сферу. На доказательство этой гипотезы ушло 99 лет. (Внимание! Трехмерная сфера – это не то, о чем вы подумали.) Российский математик доказал высказанную сто лет назад гипотезу Пуанкаре и завершил создание каталога форм трехмерных пространств. Возможно, он получит премию в $1 млн.

Оглянитесь вокруг. Окружающие вас предметы, как и вы сами, представляют собой набор частиц, перемещающихся в трехмерном пространстве (3-многообразии), которое простирается во всех направлениях на многие миллиарды световых лет.

Многообразия – это математические построения. Со времен Галилея и Кеплера ученые успешно описывают действительность в терминах той или иной ветви математики. Физики считают, что все на свете происходит в трехмерном пространстве и положение любой частицы можно задать тремя числами, например, широтой, долготой и высотой (оставим пока в стороне высказанное в теории струн предположение о том, что помимо трех наблюдаемых нами измерений существуют еще несколько дополнительных).

Согласно классической и традиционной квантовой физике, пространство фиксировано и неизменно. В то же время общая теория относительности рассматривает его как активного участника событий: расстояние между двумя точками зависит от проходящих гравитационных волн и от того, сколько вещества и энергии расположено вблизи. Но и в ньютоновской, и в эйнштейновской физике пространство – бесконечное или конечное – в любом случае представляет собой 3-многообразие. Поэтому для полного понимания основ, на которые опирается почти вся современная наука, необходимо разобраться в свойствах 3-многообразий (не меньший интерес вызывают 4-многообразия, так как пространство и время вместе образуют одно из них).

Раздел математики, в котором изучаются многообразия, называется топологией. Топологи прежде всего задались фундаментальными вопросами: каков самый простой (т.е. характеризующийся наименее сложной структурой) тип 3-многообразия? Есть ли у него столь же простые собратья или же он уникален? Какие вообще бывают 3-многообразия?

Ответ на первый вопрос известен давно: самым простым компактным 3-многообразием является пространство, называемое 3-сферой (Некомпактные многообразия бесконечны или имеют края. Далее рассматриваются только компактные многообразия). Два других вопроса оставались открытыми на протяжении столетия. Лишь в 2002 г. на них ответил российский математик Григорий Перельман, который, судя по всему, сумел доказать гипотезу Пуанкаре.

Ровно сто лет назад французский математик Анри Пуанкаре предположил, что 3-сфера уникальна и никакое другое компактное 3-многообразие не обладает теми свойствами, которые делают ее столь простой. У более сложных 3-многообразий есть границы, встающие как кирпичная стена, или множественные связи между некоторыми областями, похожие на лесную тропинку, которая то разветвляется, то снова соединяется. Любой трехмерный объект со свойствами 3-сферы можно преобразовать в нее саму, поэтому для топологов он представляется просто ее копией. Доказательство Перельмана также позволяет ответить на третий вопрос и провести классификацию всех существующих 3-многообразий.

Вам потребуется изрядное воображение, чтобы представить себе 3-сферу (см. МНОГОМЕРНАЯ МУЗЫКА СФЕР). К счастью, у нее много общего с 2-сферой, типичный пример которой – резина круглого воздушного шарика: она двухмерна, поскольку любая точка на ней задается всего двумя координатами – широтой и долготой. Если рассмотреть достаточно маленький ее участок под мощной лупой, то он покажется кусочком плоского листа. Крошечному насекомому, ползающему по воздушному шарику, он будет казаться плоской поверхностью. Но если козявка будет достаточно долго двигаться по прямой, то в конечном счете вернется в точку отправления. Точно так же 3-сферу размером с нашу Вселенную мы бы воспринимали как «обычное» трехмерное пространство. Пролетев достаточно далеко в любом направлении, мы бы в конце концов совершили «кругосветное путешествие» по ней и оказались бы в исходной точке.

Как вы уже догадались, n-мерная сфера называется n-сферой. Например, 1-сфера всем знакома: это просто окружность.

Григорий Перельман излагает свое доказательство гипотезы Пуанкаре и завершение программы Терстона по геометризации на семинаре в Принстонском университете в апреле 2003 г.

Проверка гипотез

Прошла половина столетия, прежде чем дело о гипотезе Пуанкаре сдвинулось с мертвой точки. В 60-х гг. XX в. математики доказали аналогичные ей утверждения для сфер пяти и более измерений. В каждом случае n-сфера действительно является единственным и простейшим n-многообразием. Как ни странно, получить результат для многомерных сфер оказалось легче, чем для 3- и 4-сферы. Доказательство для четырех измерений появилось в 1982 г. И только исходная гипотеза Пуанкаре о 3-сфере оставалась неподтвержденной.

Решающий шаг был сделан в ноябре 2002 г., когда Григорий Перельман, математик из Санкт-Петербургского отделения математического института им. Стеклова, отправил статью на сайт www.arxiv.org, где физики и математики со всего мира обсуждают результаты своей научной деятельности. Топологи сразу уловили связь работы российского ученого с гипотезой Пуанкаре, хотя напрямую автор ее не упомянул. В марте 2003 г. Перельман опубликовал вторую статью и весной того же года посетил США и провел несколько семинаров в Массачусетском технологическом институте и в Университете штата Нью-Йорк в Стоуни-Брук. Несколько групп математиков в ведущих институтах тут же занялись детальным изучением представленных работ и поиском ошибок.

ОБЗОР: ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ ПУАНКАРЕ

  • Целое столетие математики пытались доказать предположение Анри Пуанкаре об исключительной простоте и уникальности 3-сферы среди всех трехмерных объектов.
  • Обоснование гипотезы Пуанкаре наконец появилось в работе молодого российского математика Григория Перельмана. Он также завершил обширную программу классификации трехмерных многообразий.
  • Возможно, наша Вселенная имеет форму 3-сферы. Есть и другие интригующие связи математики с физикой элементарных частиц и общей теорией относительности.

В Стоуни-Брук за две недели Перельман прочитал несколько лекций, выступая от трех до шести часов в день. Он очень четко изложил материал и ответил на все возникшие вопросы. До получения окончательного результата остался еще один незначительный шаг, но нет никаких сомнений в том, что он вот-вот будет сделан. Первая статья знакомит читателя с основополагающими идеями и считается полностью проверенной. Во второй статье освещаются прикладные вопросы и технические нюансы; она пока еще не вызывает такого же полного доверия, как ее предшественница.

В 2000 г. Институт математики им. Клея в Кембридже, штат Массачусетс, учредил премию в размере $1 млн. за доказательство каждой из семи «Проблем тысячелетия», одной из которых считается гипотеза Пуанкаре. Прежде чем ученый сможет претендовать на приз, его доказательство должно быть опубликовано и в течение двух лет тщательно проверено.

Работа Перельмана расширяет и завершает программу исследований, проведенных в 90-х гг. прошлого века Ричардом Гамильтоном (Richard S. Hamilton) из Колумбийского университета. В конце 2003 г. труды американского математика были отмечены премией Института Клея. Перельману удалось блестяще преодолеть целый ряд препятствий, с которыми не смог справиться Гамильтон.

На самом деле доказательство Перельмана, правильность которого еще никому не удалось поставить под сомнение, решает гораздо более широкий круг вопросов, чем собственно гипотеза Пуанкаре. Предложенная Уильямом Терстоном (William P. Thurston) из Корнеллского университета процедура геометризации позволяет провести полную классификацию 3-многообразий, в основу которой положена 3-сфера, уникальная в своей возвышенной простоте. Если бы гипотеза Пуанкаре была ложной, т.е. существовало бы множество пространств столь же простых, как сфера, то классификация 3-многообразий превратилась бы в нечто бесконечно более сложное. Благодаря Перельману и Терстону у нас появился полный каталог всех допускаемых математикой форм трехмерного пространства, которые могла бы принять наша Вселенная (если рассматривать только пространство без времени).

Резиновые бублики

Чтобы глубже понять гипотезу Пуанкаре и доказательство Перельмана, следует поближе познакомиться с топологией. В этом разделе математики форма объекта не имеет значения, как будто он сделан из теста, которое можно как угодно растягивать, сжимать и изгибать. Зачем же нам задумываться о вещах или пространствах из воображаемого теста? Дело в том, что точная форма объекта – расстояние между всеми его точками – относится к структурному уровню, который называют геометрией. Рассматривая объект из теста, топологи выявляют его фундаментальные свойства, не зависящие от геометрической структуры. Изучение топологии похоже на поиск наиболее общих черт, присущих людям, методом рассмотрения «пластилинового человека», которого можно превратить в любого конкретного индивида.

В популярной литературе часто встречается избитое утверждение, что с точки зрения топологии чашка ничем не отличается от бублика. Дело в том, что чашку из теста можно превратить в бублик, просто сминая материал, т.е. ничего не слепляя и не проделывая отверстий (см. ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ). С другой стороны, чтобы сделать бублик из шара, в нем непременно нужно сделать дырку или раскатать его в цилиндр и слепить концы, поэтому шар – это совсем не бублик.

Топологов больше всего интересуют поверхности шара и бублика. Поэтому вместо сплошных тел следует представлять себе воздушные шарики. Их топология по-прежнему различна, поскольку сферический воздушный шарик невозможно преобразовать в кольцевой, который называется тором. Сначала ученые решили разобраться, сколько вообще существует объектов с различной топологией и как их можно охарактеризовать. Для 2-многообразий, которые мы привыкли называть поверхностями, ответ изящен и прост: все определяется количеством «дырок» или, что то же самое, количеством ручек (см. ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ).К концу XIX в. математики поняли, как классифицировать поверхности, и установили, что самая простая из них – сфера. Естественно, топологи начали задумываться о трехмерных многообразиях: уникальна ли 3-сфера в своей простоте? Вековая история поисков ответа полна неверных шагов и ошибочных доказательств.

Анри Пуанкаре вплотную занялся этим вопросом. Он был одним из двух сильнейших математиков начала XX в. (другим был Давид Гильберт). Его называли последним универсалом – он успешно работал во всех разделах как чистой, так и прикладной математики. Кроме того, Пуанкаре внес огромный вклад в развитие небесной механики, теорию электромагнетизма, а также в философию науки, о которой написал несколько популярных книг.

Пуанкаре стал основателем алгебраической топологии и, используя ее методы, в 1900 г. сформулировал топологическую характеристику объекта, названную гомотопией. Чтобы определить гомотопию многообразия, нужно мысленно погрузить в него замкнутую петлю (см. ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ). Затем следует выяснить, всегда ли можно стянуть петлю в точку, перемещая ее внутри многообразия. Для тора ответ будет отрицательным: если расположить петлю по окружности тора, то стянуть ее в точку не удастся, т.к. будет мешать «дырка» бублика. Гомотопия – это количество различных путей, которые могут воспрепятствовать стягиванию петли.

МНОГОМЕРНАЯ МУЗЫКА СФЕР

Не так-то просто представить себе 3-сферу. Математикам, доказывающим теоремы о многомерных пространствах, не приходится воображать себе объект изучения: они обращаются с абстрактными свойствами, руководствуясь интуитивными представлениями, основанными на аналогиях с меньшим числом измерений (к таким аналогиям нужно относиться с осторожностью и не принимать их буквально). Мы тоже будем рассматривать 3-сферу, исходя из свойств объектов с меньшим числом измерений.

1. Начнем с рассмотрения круга и ограничивающей его окружности. Для математиков круг – это двумерный шар, а окружность – одномерная сфера. Далее, шар любой размерности – это заполненный объект, напоминающий арбуз, а сфера – это его поверхность, больше похожая на воздушный шарик. Окружность одномерна, потому что положение точки на ней можно задать одним числом.

2. Из двух кругов мы можем построить двумерную сферу, превратив один из них в Северное полушарие, а другой – в Южное. Осталось склеить их, и 2-сфера готова.

3. Представим себе муравья, ползущего с Северного полюса по большому кругу, образованному нулевым и 180-м меридианом (слева). Если мы отобразим его путь на два исходных круга (справа), то увидим, что насекомое движется по прямой линии (1) к краю северного круга (а), затем пересекает границу, попадает в соответствующую точку на южном круге и продолжает следовать по прямой линии (2 и 3). Затем муравей снова достигает края (b), переходит его и снова оказывается на северном круге, устремляясь к исходной точке – Северному полюсу (4). Заметьте, что во время кругосветного путешествия по 2-сфере направление движения сменяется на противоположное при переходе с одного круга на другой.

4. Теперь рассмотрим нашу 2-сферу и содержащийся в ней объем (трехмерный шар) и сделаем с ними то же самое, что с окружностью и кругом: возьмем две копии шара и склеим их границы вместе. Наглядно показать, как шары искажаются в четырех измерениях и превращаются в аналог полушарий, невозможно, да и не нужно. Достаточно знать, что соответствующие точки на поверхностях, т.е. 2-сферах, соединены между собой так же, как в случае с окружностями. Результат соединения двух шаров представляет собой 3-сферу – поверхность четырехмерного шара. (В четырех измерениях, где существуют 3-сфера и 4-шар, поверхность объекта трехмерна.) Назовем один шар северным полушарием, а другой – южным. По аналогии с кругами, полюса теперь находятся в центрах шаров.

5. Вообразите, что рассмотренные шары – большие пустые области пространства. Допустим, из Северного полюса отправляется космонавт на ракете. Со временем он достигает экватора (1), которым теперь является сфера, окружающая северный шар. Пересекая ее, ракета попадает в южное полушарие и движется по прямой линии через его центр – Южный полюс – к противоположной стороне экватора (2 и 3). Там снова происходит переход в северное полушарие, и путешественник возвращается в Северный полюс, т.е. в исходную точку (4). Таков сценарий кругосветного путешествия по поверхности 4-мерного шара! Рассмотренная трехмерная сфера и есть то пространство, о котором идет речь в гипотезе Пуанкаре. Возможно, наша Вселенная представляет собой именно 3-сферу.
Рассуждения можно распространить на пять измерений и построить 4-сферу, но вообразить это чрезвычайно сложно. Если склеить два n-шара по окружающим их (n–1)-сферам, то получится n-сфера, ограничивающая (n+1)-шар.

На n-сфере любую, даже замысловато закрученную петлю всегда можно распутать и стянуть в точку. (Петле разрешается проходить через саму себя.) Пуанкаре предполагал, что 3-сфера – единственное 3-многообразие, на котором в точку можно стянуть любую петлю. К сожалению, он так и не смог доказать свое предположение, которое впоследствии стали называть гипотезой Пуанкаре. За прошедшие сто лет многие предлагали свой вариант доказательства, но лишь для того, чтобы убедиться в его ошибочности. (Для простоты изложения я пренебрегаю двумя особыми случаями: так называемыми неориентируемыми многообразиями и многообразиями с краями. Например, у сферы с вырезанным из нее сегментом есть край, а петля Мебиуса не только имеет края, но также является неориентируемой.)

Геометризация

Проведенный Перельманом анализ 3-многообразий тесно связан с процедурой геометризации. Геометрия имеет дело с фактической формой объектов и многообразий, сделанных уже не из теста, а из керамики. Например, чашка и бублик геометрически различны, поскольку их поверхности изогнуты по-разному. Говорят, что чашка и бублик – два примера топологического тора, которому приданы разные геометрические формы.

Чтобы понять, зачем Перельман использовал геометризацию, рассмотрим классификацию 2-многообразий. Каждой топологической поверхности назначена уникальная геометрия, искривление которой распределено по многообразию равномерно. Например, для сферы – это идеально сферическая поверхность. Другая возможная геометрия для топологической сферы – яйцо, но его кривизна не везде распределена равномерно: острый конец изогнут сильнее, чем тупой.

2-многообразия образуют три геометрических типа (см. ГЕОМЕТРИЗАЦИЯ). Сфера характеризуется положительной кривизной. Геометризированный тор – плоский, ему свойственна нулевая кривизна. Все остальные 2-многообразия с двумя или более «дырками» имеют отрицательную кривизну. Им соответствует поверхность, похожая на седло, которое спереди и сзади изгибается вверх, а слева и справа –вниз. Такую геометрическую классификацию (геометризацию) 2-многообразий Пуанкаре разработал вместе с Паулем Кебе (Paul Koebe) и Феликсом Клейном (Felix Klein), именем которого названа бутылка Клейна.

Возникает естественное желание применить подобный метод к 3-многообразиям. Можно ли найти для каждого из них такую уникальную конфигурацию, у которой кривизна была бы распределена равномерно по всему многообразию?

Оказалось, что 3-многообразия гораздо сложнее своих двумерных собратьев и большинству из них нельзя поставить в соответствие однородную геометрию. Их следует разделять на части, которым соответствует одна из восьми канонических геометрий. Данная процедура напоминает разложение числа на простые множители.

ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ

В ТОПОЛОГИИ точная форма, т.е. геометрия, не имеет значения: объекты рассматриваются так, как будто они сделаны из теста и их можно растягивать, сжимать и перекручивать. Однако резать и склеивать ничего нельзя. Таким образом, любой объект с одним отверстием, например, кофейная чашка (слева), эквивалентен бублику или тору (справа).

ЛЮБОЕ ДВУМЕРНОЕ многообразие или поверхность (ограничиваясь компактными ориентируемыми объектами) можно изготовить, добавляя к сфере (a) ручки. Прилепим одну – сделаем поверхность 1 рода, т.е. тор или бублик (вверху справа), добавим вторую – получим поверхность 2 рода (b) и т.д.

УНИКАЛЬНОСТЬ 2-сферы среди поверхностей заключается в том, что любую вложенную в нее замкнутую петлю можно стянуть в точку (a). На торе этому может препятствовать среднее отверстие (b). У любой поверхности, кроме 2-сферы, есть ручки, препятствующие стягиванию петли. Пуанкаре предположил, что 3-сфера уникальна среди трехмерных многообразий: только на ней любую петлю можно стянуть в точку.

Такая процедура классификации впервые была предложена Терстоном в конце 70-х гг. прошлого века. Вместе с коллегами он обосновал большую ее часть, но доказательство некоторых ключевых моментов (включая гипотезу Пуанкаре) оказалось им не под силу. Уникальна ли 3-сфера? Достоверный ответ на этот вопрос впервые появился в статьях Перельмана.

Каким же образом можно геометризировать многообразие и придать ему повсюду равномерное искривление? Нужно взять некую произвольную геометрию с различными выступами и углублениями, а затем сгладить все неровности. В начале 90-х гг. XX в. к анализу 3-многообразий приступил Гамильтон, который воспользовался уравнением потока Риччи, названным так в честь математика Грегорио Риччи-Курбастро (Gregorio Ricci-Curbastro). Оно в чем-то схоже с уравнением теплопроводности, которое описывает тепловые потоки, протекающие в неравномерно нагретом теле до тех пор, пока его температура не станет везде одинаковой. Точно так же уравнение потока Риччи задает такое изменение кривизны многообразия, которое ведет к выравниванию всех выступов и углублений. Например, если начать с яйца, то оно постепенно станет сферическим.

ГЕОМЕТРИЗАЦИЯ

ДЛЯ КЛАССИФИКАЦИИ 2-многообразий можно воспользоваться униформизацией или геометризацией: поставить им в соответствие определенную геометрию, жесткую форму. В частности, каждое многообразие можно преобразовать так, что его кривизна будет распределена равномерно. Сфера (a) – уникальная форма с постоянной положительной кривизной: она всюду изогнута как вершина холма. Тор (b) можно сделать плоским, т.е. всюду имеющим нулевую кривизну. Для этого его нужно разрезать и выпрямить. Полученный цилиндр следует разрезать вдоль и развернуть, чтобы получилась прямоугольная плоскость. Иными словами, тор можно отобразить на плоскость. Поверхностям 2 рода и выше (c) можно придать постоянную отрицательную кривизну, при этом их геометрия будет зависеть от количества ручек. Ниже изображена седлообразная поверхность с постоянной отрицательной кривизной.

КЛАССИФИЦИРОВАТЬ 3-МНОГООБРАЗИЯ гораздо сложнее. 3-многообразие приходится разделять на части, каждую из которых можно преобразовать в одну из восьми канонических трехмерных геометрий. Приведенный ниже пример (для простоты изображенный в виде 2-многообразия синего цвета) составлен из 3-геометрий с постоянной положительной (a), нулевой (b) и постоянной отрицательной (c) кривизной, а также из «произведений» 2-сферы и окружности (d) и поверхности с отрицательной кривизной и окружности (e).

Однако Гамильтон столкнулся с определенными трудностями: в некоторых случаях поток Риччи приводит к пережиму многообразия и образованию бесконечно тонкой шейки. (В этом его отличие от теплового потока: в точках пережима температура была бы бесконечно большой.) Один из примеров – многообразие в форме гантели. Сферы растут, втягивая материал из перемычки, которая в середине сужается в точку (см. БОРЬБА С ОСОБЕННОСТЯМИ). В другом случае, когда из многообразия выступает тонкий стержень, поток Риччи вызывает появление так называемой сигарообразной особенности. В правильном 3-многообразии окрестность любой точки является кусочком обычного трехмерного пространства, чего нельзя сказать о сингулярных точках пережима. Преодолеть это затруднение помогли работы российского математика.

В 1992 г. после защиты кандидатской диссертации Перельман прибыл в США и провел несколько семестров в университете штата Нью-Йорк в Стоуни-Брук, а затем два года в Калифорнийском университете в Беркли. Он быстро заслужил репутацию восходящей звезды, получив несколько важных и глубоких результатов в одном из разделов геометрии. Перельман был удостоен премии Европейского математического общества (от которой он отказался) и получил престижное приглашение выступить на Международном конгрессе математиков (которое он принял).

Весной 1995 г. ему были предложены должности в нескольких знаменитых математических учреждениях, но он предпочел вернуться в родной Санкт-Петербург и по существу исчез из поля зрения. На протяжении многих лет единственным признаком его деятельности были письма прежним коллегам с указанием ошибок, допущенных в опубликованных ими статьях. Запросы о состоянии его собственных работ оставались без ответа. И вот в конце 2002 г. несколько человек получили от Перельмана электронное письмо, сообщавшее о статье, которую он отправил на математический сервер. Так началось его наступление на гипотезу Пуанкаре.

БОРЬБА С ОСОБЕННОСТЯМИ

ПЫТАЯСЬ ИСПОЛЬЗОВАТЬ уравнение потока Риччи для доказательства гипотезы Пуанкаре и геометризации 3-многообразий, ученые столкнулись с трудностями, которые сумел преодолеть Григорий Перельман. Применение потока Риччи для постепенного изменения формы 3-многообразия иногда приводит к возникновению особенностей. Например, когда часть объекта имеет форму гантели (a), трубка между сферами может оказаться пережатой до точечного сечения, нарушающего свойства многообразия (b). Также не исключено появление так называемой сигарообразной особенности.

ПЕРЕЛЬМАН ПОКАЗАЛ , что над особенностями можно проводить «хирургические операции». Когда многообразие начинает пережиматься, следует вырезать небольшие участки по обе стороны от точки сужения (c), места среза закрыть небольшими сферами, а затем снова использовать поток Риччи (d). Если пережим возникает снова, процедуру нужно повторить. Перельман также доказал, что сигарообразная особенность никогда не появляется.

Перельман добавил к уравнению потока Риччи новый член. Внесенное изменение не устранило проблему особенностей, но позволило провести гораздо более глубокий анализ. Российский ученый показал, что над многообразием в виде гантели можно провести «хирургическую» операцию: отрезать тонкую трубку по обе стороны от появляющегося пережима и заделать торчащие из шаров открытые трубки сферическими колпачками. Затем следует продолжать изменение «прооперированного» многообразия в соответствии с уравнением потока Риччи, а ко всем возникающим пережимам применять вышеописанную процедуру. Перельман также показал, что сигарообразные особенности появляться не могут. Таким образом, любое 3-многообразие можно свести к набору частей с однородной геометрией.

Когда поток Риччи и «хирургическую операцию» применяют ко всем возможным 3-многообразиям, любое из них, если оно столь же простое, как 3-сфера (иначе говоря, характеризуется такой же гомотопией), обязательно сводится к той же самой однородной геометрии, что и 3-сфера. Значит, с топологической точки зрения, рассматриваемое многообразие и есть 3-сфера. Таким образом, 3-сфера уникальна.

Ценность статей Перельмана заключается не только в доказательстве гипотезы Пуанкаре, но и в новых методах анализа. Ученые всего мира уже используют в своих работах результаты, полученные российским математиком, и применяют разработанные им методы в других областях. Оказалось, что поток Риччи связан с так называемой группой перенормировки, которая определяет, как изменяется сила взаимодействий в зависимости от энергии столкновения частиц. Например, при низких энергиях сила электромагнитного взаимодействия характеризуется числом 0,0073 (приблизительно 1/137). Однако когда два электрона сталкиваются лоб в лоб при скорости, почти равной скорости света, значение этой силы приближается к 0,0078. Математика, описывающая изменение физических сил, очень похожа на математику, описывающую геометризацию многообразия.

Увеличение энергии столкновения эквивалентно изучению силы на меньших расстояниях. Поэтому группа перенормировки подобна микроскопу с изменяемым коэффициентом увеличения, который позволяет исследовать процесс на разных уровнях детализации. Точно так же поток Риччи представляет собой микроскоп для рассмотрения многообразий. Выступы и углубления, видимые при одном увеличении, исчезают при другом. Вполне вероятно, что в масштабах длины Планка (около $10^{–35}$ м) пространство, в котором мы живем, выглядит как пена со сложной топологической структурой (см. статью «Атомы пространства и времени», «В мире науки», №4, 2004 г.). Кроме того, уравнения общей теории относительности, которые описывают характеристики гравитации и крупномасштабной структуры Вселенной, тесно связаны с уравнением потока Риччи. Как это ни парадоксально, член, добавленный Перельманом к выражению, которое использовал Гамильтон, возникает в теории струн, претендующей на звание квантовой теории гравитации. Не исключено, что в статьях российского математика ученые найдут еще много полезной информации не только об абстрактных 3-многообразиях, но также и о пространстве, в котором мы живем.

Кандидат физико-математических наук Грэхем Коллинз (Graham P. Collins) работает редактором журнала Scientific American. Дополнительная информация о теореме Пуанкаре доступна на www.sciam.com/ontheweb.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

  1. The Poincare Conjecture 99 Years Later: A Progress Report. John W. Milnor. February 2003. Available at www.math.sunysb.edu/~jack/PREPRINTS/poiproof.pdf
  2. Jules Henri Poincare ’ (biography). October 2003. Available atwww-groups.dcs.st-and.ac.uk/~history/Mathematicians/Poincare.html
  3. Millennium Problems. The Clay Mathematics Institute: www.claymath.org/millennium/
  4. Notes and commentary on Perelman’s Ricci flow papers. Compiled by Bruce Kleiner and John Lott. Available at www.math.lsa.umich.edu/research/ricciflow/perelman.html
  5. Topology. Eric W. Weisstein in Mathworld-A Wolfram Web Resource. Available at

Григорий Перельман окончательно и бесповоротно вошел в историю.


Математический институт Клэя присудил Григорию Перельману Премию тысячелетия (Millennium Prize), тем самым официально признав верным доказательство гипотезы Пуанкаре, выполненное российским математиком. Примечательно, что при этом институту пришлось нарушить собственные правила - по ним на получение примерно миллиона долларов, именно таков размер премии, может претендовать только автор, опубликовавший свои работы в рецензируемых журналах. Работа Григория Перельмана формально так и не увидела свет - она осталась набором нескольких препринтов на сайте arXiv.org (один, два и три). Впрочем, не так важно, что стало причиной решения института - присуждение Премии тысячелетия ставит точку в истории длиной более чем в 100 лет.

Кружка, пончик и немного топологии

Прежде чем выяснить, в чем состоит гипотеза Пуанкаре, необходимо разобраться, что это за раздел математики - топология, - к которому эта самая гипотеза относится. Топология многообразий занимается свойствами поверхностей, которые не меняются при определенных деформациях. Поясним на классическом примере. Предположим, что перед читателем лежит пончик и стоит пустая чашка. С точки зрения геометрии и здравого смысла - это разные объекты хотя бы потому, что попить кофе из пончика не получится при всем желании.

Однако тополог скажет, что чашка и пончик - это одно и то же. И объяснит это так: вообразим, что чашка и пончик представляют собой полые внутри поверхности, изготовленные из очень эластичного материала (математик бы сказал, что имеется пара компактных двумерных многообразий). Проведем умозрительный эксперимент: сначала раздуем дно чашки, а потом ее ручку, после чего она превратится в тор (именно так математически называется форма пончика). Посмотреть, как примерно выглядит этот процесс можно тут.

Разумеется, у пытливого читателя возникает вопрос: раз поверхности можно мять, то как же их различать? Ведь, например, интуитивно понятно - как ни мни тор, без разрывов и склеек сферу из него не получишь. Тут в игру вступают так называемые инварианты - характеристики поверхности, которые не меняются при деформации, - понятие, необходимое для формулировки гипотезы Пуанкаре.


Здравый смысл подсказывает нам, что тор от сферы отличает дырка. Однако дырка - понятие далеко не математическое, поэтому его надо формализовать. Делается это так - представим, что на поверхности у нас имеется очень тонкая эластичная нить, образующая петлю (саму поверхность в этом умозрительном опыте, в отличие от предыдущего, считаем твердой). Будем двигать петлю, не отрывая ее от поверхности и не разрывая. Если нить можно стянуть до очень маленького кружочка (почти точки), то говорят, что петля стягиваема. В противном случае петля называется нестягиваемой.

Так вот, легко видеть, что на сфере любая петля стягиваема (как это примерно выглядит, можно посмотреть тут), а вот для тора это уже не так: на бублике есть целых две петли - одна продета в дырку, а другая обходит дырку "по периметру", - которые нельзя стянуть. На этой картинке примеры нестягиваемых петель показаны красным и фиолетовым цветом соответственно. Когда на поверхности есть петли, математики говорят, что "фундаментальная группа многообразия нетривиальна", а если таких петель нет - то тривиальна.

Теперь, чтобы честно сформулировать гипотезу Пуанкаре, любознательному читателю осталось потерпеть еще немного: надо разобраться, что такое трехмерное многообразие в общем и трехмерная сфера в частности.

Вернемся на секундочку к поверхностям, которые мы обсуждали выше. Каждую из них можно разрезать на такие мелкие кусочки, что каждый будет почти напоминать кусочек плоскости. Так как у плоскости всего два измерения, то говорят, что и многообразие двумерно. Трехмерное многообразие - это такая поверхность, которую можно разрезать на мелкие кусочки, каждый из которых очень похож на кусочек обычного трехмерного пространства.

Главным "действующим лицом" гипотезы является трехмерная сфера. Представить себе трехмерную сферу как аналог обычной сферы в четырехмерном пространстве, не потеряв при этом рассудок, все-таки, наверное, невозможно. Однако описать этот объект, так сказать, "по частям" достаточно легко. Все, кто видел глобус, знают, что обычную сферу можно склеить из северного и южного полушария по экватору. Так вот, трехмерная сфера склеивается из двух шаров (северного и южного) по сфере, которая представляет собой аналог экватора.

На трехмерных многообразиях можно рассмотреть такие же петли, какие мы брали на обычных поверхностях. Так вот, гипотеза Пуанкаре утверждает: "Если фундаментальная группа трехмерного многообразия тривиальна, то оно гомеоморфно сфере". Непонятное словосочетание "гомеоморфно сфере" в переводе на неформальный язык означает, что поверхность можно продеформировать в сферу.

Немного истории

Вообще говоря, в математике можно сформулировать большое количество сложных утверждений. Однако что делает ту или иную гипотезу великой, отличает ее от остальных? Как это ни странно, но великую гипотезу отличает большое количество неправильных доказательств, в каждом из которых есть по великой ошибке - неточности, которая зачастую приводит к возникновению целого нового раздела математики.

Так, изначально Анри Пуанкаре, который отличался помимо всего прочего умением совершать гениальные ошибки, сформулировал гипотезу немного в другом виде, чем мы написали выше. Спустя некоторое время он привел контрпример к своему утверждению, который стал известен как гомологическая 3-сфера Пуанкаре, и в 1904 году сформулировал гипотезу уже в современном виде. Сферу, кстати, совсем недавно ученые приспособили в астрофизике - оказалось, что Вселенная вполне может оказаться гомологической 3-сферой Пуанкаре.

Надо сказать, что особого ажиотажа среди коллег-геометров гипотеза не вызвала. Так было до 1934 года, когда британский математик Джон Генри Уайтхед представил свой вариант доказательства гипотезы. Очень скоро, однако, он сам нашел в рассуждениях ошибку, которая позже привела к возникновению целой теории многообразий Уайтхеда.

После этого за гипотезой постепенно закрепилась слава крайне сложной задачи. Многие великие математики пытались взять ее приступом. Например, американский Эр Аш Бинг (R.H.Bing), математик, у которого (абсолютно официально) вместо имени в документах были записаны инициалы. Он предпринял несколько безуспешных попыток доказать гипотезу, сформулировав в ходе этого процесса собственное утверждение - так называемую "гипотезу о свойстве П" (Property P conjecture). Примечательно, что это утверждение, которое рассматривалось Бингом как промежуточное, оказалось чуть ли не сложнее доказательства самой гипотезы Пуанкаре.

Были среди ученых и люди, положившие жизнь на доказательство этого математического факта. Например, известный математик греческого происхождения Кристос Папакириакопоулос. В течение более десяти лет, работая в Принстоне, он безуспешно пытался доказать гипотезу. Он умер от рака в 1976 году.

Описанные работы - это далеко не полный список попыток решения более чем столетней гипотезы. И хотя каждая из работ и привела к возникновению целого направления в математике и может считаться в этом смысле успешной и значимой, доказать гипотезу Пуанкаре окончательно удалось только россиянину Григорию Перельману.

Перельман и доказательство

В 1992 году Григорий Перельман , тогда сотрудник математического института им. Стеклова, попал на лекцию Ричарда Гамильтона. Американский математик рассказывал о потоках Риччи - новом инструменте для изучения гипотезы геометризации Терстона - факта, из которого гипотеза Пуанкаре получалась как простое следствие. Эти потоки, построенные в некотором смысле по аналогии с уравнениями теплопереноса, заставляли поверхности с течением времени деформироваться примерно так же, как в начале этой статьи мы деформировали двумерные поверхности. Оказалось, что в некоторых случаях результатом такой деформации оказывался объект, структуру которого легко понять. Основная трудность заключалась в том, что во время деформации возникали особенности с бесконечной кривизной, аналогичные в некотором смысле черным дырам в астрофизике.

После лекции Перельман подошел к Гамильтону. Позже он рассказывал, что Ричард его приятно удивил: "Он улыбался и был очень терпелив. Он даже рассказал мне несколько фактов, которые были опубликованы спустя лишь несколько лет. Он сделал это без колебаний. Его открытость и доброта поразили меня. Не могу сказать, что большинство современных математиков ведет себя так."

После поездки в США Перельман вернулся в Россию, где принялся трудиться над решением проблемы особенностей потоков Риччи и доказательством гипотезы геометризации (а вовсе не над гипотезой Пуанкаре) втайне от всех. Ничего удивительного, что появление 11 ноября 2002 года первого препринта Перельмана повергло математическую общественность в шок. Спустя некоторое время появилась еще пара работ.

После этого Перельман самоустранился от обсуждения доказательств и даже, говорят, прекратил заниматься математикой. Он не прервал своего уединенного образа жизни даже в 2006 году, когда ему была присуждена Филдсовская премия - самая престижная награда для математиков. Причины такого поведения автора обсуждать не имеет смысла - гений имеет право вести себя странно (например, будучи в Америке Перельман не стриг ногти, позволяя им свободно расти).

Как бы то ни было, доказательство Перельмана зажило отдельной от него жизнью: три препринта не давали покоя математикам современности. Первые результаты проверки идей российского математика появились в 2006 году - крупные геометры Брюс Кляйнер и Джон Лотт из Мичиганского университета опубликовали препринт собственной работы, по размерам больше напоминающей книгу - 213 страниц. В этой работе ученые тщательно проверили все выкладки Перельмана, подробно пояснив различные утверждения, которые в работе российского математика были лишь вскользь обозначены. Вердикт исследователей был однозначен: доказательство абсолютно верное.

Неожиданный поворот в этой истории наступил в июле этого же года. В журнале Asian Journal of Mathematics появилась статья китайских математиков Сипин Чжу и Хуайдун Цао под названием "Полное доказательство гипотезы геометризации Терстона и гипотезы Пуанкаре". В рамках этой работы результаты Перельмана рассматривались как важные, полезные, но исключительно промежуточные. Данная работа вызвала удивление у специалистов на Западе, однако получила очень одобрительные отзывы на Востоке. В частности, результаты поддержал Шинтан Яу - один из основоположников теории Калаби-Яу, положившей начало теории струн, - а также учитель Цао и Джу. По счастливому стечению обстоятельств именно Яу был главным редактором журнала Asian Journal of Mathematics, в котором была опубликована работа.

После этого математик стал ездить по миру с популярными лекциями, рассказывая о достижениях китайских математиков. В результате возникла опасность, что очень скоро результаты Перельмана и даже Гамильтона окажутся отодвинуты на второй план. Такое в истории математики случалось не раз - многие теоремы, носящие имена конкретных математиков, были придуманы совершенно другими людьми.

Однако этого не случилось и, вероятно, теперь не случится. Вручение премии Клэя Перельману (даже если тот откажется) навсегда закрепило в общественном сознании факт: российский математик Григорий Перельман доказал гипотезу Пуанкаре. И неважно, что на самом деле он доказал факт более общий, развив по пути совершенно новую теорию особенностей потоков Риччи. Хотя бы так. Награда нашла героя.

Анри Пуанкаре (1854-1912), один из величайших математиков, в 1904 г. сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…

Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре — «это центральная проблема математики и физики , попытка понять какой формы может быть Вселенная , к ней очень трудно подобраться».

Раз в неделю Григорий Перельман ездил в Принстон, чтобы принять участие в семинаре «Института углублённых исследований». На семинаре один из математиков Гарвардского университета отвечает на вопрос Перельмана: «Теория Уильяма Тёрстона (1946-2012 гг., математик, труды в области «Трехмерной геометрии и топологии»), получившая название гипотезы геометризации описывает все возможные трёхмерные поверхности и является шагом вперёд по сравнению с гипотезой Пуанкаре. Если Вы докажете предположение Уильяма Тёрстона, то и гипотеза Пуанкаре распахнёт перед Вами все свои двери и более того её решение изменит весь топологический ландшафт современной науки ».

Шесть ведущих американских университетов в марте 2003 г. приглашают Перельмана прочесть цикл лекций, разъясняющих его работу. В апреле 2003 г. Перельман совершает научное турне. Его лекции становятся выдающимся научным событием. В Принстоне послушать его приезжают Джон Болл (председатель международного математического союза), Эндрю Уайлз (математик, работы в области арифметики эллиптических кривых, доказал теорему Ферма в 1994 г.), Джон Нэш (математик, работающий в области теории игр и дифференциальной геометрии).

Григорию Перельману удалось решить одну из семи задач тысячелетия и математически описать так называемою формулу Вселенной , доказать гипотезу Пуанкаре. Над этой гипотезой наиболее светлые умы бились более 100 лет, и за доказательство которой мировым математическим сообществом (математическим институтом имени Клэя) был обещан $1 млн. Её вручение прошло 8 июня 2010 г. Григорий Перельман не появился на ней, и у мирового математического сообщества «поотпадали челюсти».

В 2006 году за решение гипотезы Пуанкаре математику была присуждена высшая математическая награда - Филдсовская премия (медаль Филдса). Джон Болл лично посетил Санкт-Петербург с тем, чтобы уговорить принять премию. Её он принять отказался со словами: «Общество вряд ли способно всерьёз оценить мою работу ».

«Филдсовская премия (и медаль) вручается один раз в 4 года на каждом международном математическом конгрессе молодым учёным (моложе 40 лет), внёсшим заметный вклад в развитие математики. Помимо медали награждённым вручается 15 тыс. канадских долларов ($13 000)»

В исходной формулировке гипотеза Пуанкаре звучит следующим образом: «Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере». В переводе на общедоступный язык , это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений , а Перельман спустя 100 лет математически это доказал .

Выражение Григория Перельмана теоремы Пуанкаре о преобразовании материи в другое состояние, форму имеет сходство со знаниями, изложенными в книге Анастасии Новых «Сэнсэй IV»: «По факту, вся эта бесконечная для нас Вселенная занимает место в миллиарды раз меньше, чем кончик самой тонкой медицинской иглы» . А также возможностью управления материальной Вселенной путём преобразований, вносимых Наблюдателем из контролирующих измерений выше шестого (с 7 по 72 включительно) (доклад « » тема «Эзоосмическая решётка»).

Григория Перельмана отличали аскетичность жизни, суровость предъявляемых как себе, так и к другим этических требований. Глядя на него складывается ощущение, что он только телесно проживает в общем со всеми остальными современниками пространстве , а Духовно в каком-то ином , где даже за $1 млн. не идут на самые «невинные» компромиссы с Совестью . И что это за пространство такое, и можно ли хоть краешком глаза посмотреть на него?..

Исключительная важность гипотезы , выдвинутой около века назад математиком Пуанкаре , касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания . Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.

Перельман, отвергая медали и премии спрашивает: «А зачем они мне? Они мне совершенно ни к чему. Каждому понятно, если доказательство правильное, то никакого другого признания уже не требуется. Пока во мне не развилась подозрительность, у меня был выбор, либо сказать вслух о дезинтеграции математического сообщества в целом, в связи с его низким моральным уровнем, либо ничего не сказать и позволить обращаться с собой, как с быдлом. Теперь же, когда я стал более чем подозрительным, я не могу оставаться быдлом и продолжать молчать, поэтому мне остаётся только уйти».

Для того чтобы заниматься современной математикой нужно иметь тотально чистый ум, без малейшей примеси, которая дезинтегрирует его, дезориентирует, подменяет ценности, и принять эту премию означает продемонстрировать слабость. Идеальный учёный занимается только наукой, не заботится больше ни о чём (власть и капитал), у него должен быть чистый ум, а для Перельмана нет большей важности, чем жить в соответствии с этим идеалом. Полезно ли для математики вся эта затея с миллионами, и нужен ли настоящему учёному такой стимул? И это желание капитала купить и подчинить себе всё в этом мире разве не оскорбительно? Или можно продать свою чистоту за миллион? Деньги, сколько бы там их ни было, эквивалентны истине Души ? Ведь мы имеем дело с априорной оценкой проблем, к которым деньги просто не должны иметь отношения, разве не так?! Делать же из всего этого что-то вроде лото-миллион, или тотализатор, значит потакать дезинтеграции научного, да и человеческого сообщества в целом (см. доклад и в книге «АллатРа» последние 50 страниц о пути построения созидательного общества). И денежные средства (энергия), которые бизнесмены готовы отдавать на науку, если и надо использовать, то корректно, что ли, не унижая Дух подлинного служения , как ни верти, неоценимого денежным эквивалентом: «Что такое миллион, по сравнению , с чистотой, или Величием тех сфер (об измерениях глобальной Вселенной и о Духовном мире см. книгу «АллатРа» и доклад ) , в которые не способно проникнуть даже человеческое воображение (ум) ?! Что такое миллион звёздного неба для времени?!».

Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы :

- Топология - (от греч. topos - место и logos - учение) - раздел математики, изучающий топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т.к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо - двумя.

- Гомеоморфизм (греч. ομοιο - похожий, μορφη - форма) - взаимно однозначное соответствие между двумя топологическим пространствами, при котором оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения называют гомеоморфными, или топологическими отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типу называются гомеоморфными, или топологически эквивалентными.

- Трёхмерное многообразие без края . Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трёхмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру, внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т.е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем - у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.

- Полното́рие (полното́рий) — геометрическое тело, гомеоморфное произведению двумерного диска и окружности D 2 * S 1 . Неформально, полноторие — бублик, тогда как тор — только его поверхность (пустотелая камера колеса).

- Односвязное . Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.

- Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

Ильназ Башаров

Литература:

Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. ;

Новых. А. «АллатРа», К.: АллатРа, 2013 г.