Что такое проводник электрического тока. Классификация материалов по отношению к способности проводить электрический ток

Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.

Что представляют собой проводники?

Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу.

Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод.

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.
Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность.

Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.

Например кабельная продукция : медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу.

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств.

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач.

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц.

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос).

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно.

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы.

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах.

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля.

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника.

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным.

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника.

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы.

Полупроводниками являются кремний и германий.

Вещества, по которым передаются электрические заряды, называют проводниками электричества.

Хорошие проводники электричества — металлы, почва, растворы солей, кислот или щелочей в воде, графит. Тело человека также проводит электричество.

Из металлов лучшие проводники электричества серебро, медь и алюминий, поэтому провода электрической сети чаще всего делают из меди или алюминия.

Вещества, по которым заряды не передаются, называют непроводниками (или изоляторами). К хорошим изоляторам относятся эбонит, янтарь, фарфор, резина, различные , шелк, керосин, масла. Изоляторы (например, резиновую оболочку кабеля) применяют для изоляции проводов, по которым течет ток, от внешних предметов.

Вопросы

  1. Какие вещества называют проводниками электричества?
  2. Какие вещества называют изоляторами?
  3. Назовите проводники и изоляторы электричества.

Электрическая цепь и ее составные части

Источником электрического тока может служить батарея (гальванический элемент).

На электростанции электрический ток вырабатывают генераторы, приводимые в действие от паровых и гидравлических турбин.

Электродвигатели, лампы, плитки, работающие от электрического тока, называют приемниками или потребителями. Электрическую энергию доставляют к приемнику по проводам.

Чтобы включать и выключать в нужное время приемники электричества, применяют выключатели. Источник тока, приемники и выключатели, соединенные между собой проводами, составляют электрическую цепь.

Чтобы в цепи был ток, она должна быть замкнутой, т. е. состоять только из проводников электричества. Если в каком-нибудь месте провод оборвется или вместо него будет поставлен изолятор, ток в цели прекратится. Такую цепь называют разомкнутой.

Вопросы

  1. Какова роль источника тока в цепи?
  2. Из каких частей состоит электрическая цепь?
  3. Что такое замкнутая цепь? разомкнутая?
  4. Какие приемники или потребители вы знаете?

Электрические схемы

Изучая географию, вы пользуетесь планом и картой. На плане и карте при помощи условных топографических знаков нанесены леса, селения, горы и реки.

В электротехнике тоже применяют карту-чертеж. На таком чертеже условными обозначениями изображают источники, приемники, выключатели, провода и изделия, из которых состоит электрическая цепь, а также соединения между ними. Такой чертеж называют электрической схемой.

Зная условные обозначения (смотрите таблицу ниже), нетрудно разобраться в электрической схеме. Если на одной и той же схеме повторяются одинаковые обозначения, то около условных знаков ставят числа, а в прилагаемой к схеме табличке указывают размер, тип и назначение.

Вопросы

  1. Что представляет собой электрическая схема?
  2. Что изображают на электрической схеме?

Условные обозначения составных частей электрической цепи на схемах

Название Условное обозначение

«Слесарное дело», И.Г.Спиридонов,
Г.П.Буфетов, В.Г.Копелевич

В штепсельную розетку при помощи штепсельных вилок включают в электрическую цепь переносные осветительные или соединительные шнуры электробытовых приборов. В основании из изоляционного материала штепсельной розетки укреплены два латунных гнезда, к которым присоединяют провода от электрической сети. Штепсельная розетка Штепсельная вилка состоит из корпуса с отверстием для шнура. В корпусе из изоляционного материала имеются металлические втулки…


В производственных помещениях, помимо выключателей, устанавливают общие рубильники. В больших домах рубильники позволяют отключить сразу целый участок электрической сети (например, этаж или группу квартир). В школе рубильники устанавливают в распределительных закрытых щитах учебных мастерских, где они служат для включения электродвигателей различных станков. Рубильники бывают: одно-, двух- и трехполюсные. Рубильники а — однополюсный; б — двухполюсный;…

Часто приходится присоединять провода электрического шнура к патрону, выключателю, штепсельной розетке и к зажимам электроприборов. Для этого концы подключаемых проводов чаще всего заделывают кольцом, если их надевают на болты, иногда — тычком, когда их вставляют в специальные втулки и крепят винтами. Заделка концов проводов а — кольцом; б — тычком. При заделке кольцом концы проводов…


Если прибор не работает, то следует: включением настольной или специальной контрольной лампы проверить, исправна ли штепсельная розетка; при исправной розетке проконтролировать включением той же лампы, не повреждены ли шнур прибора и контакты штепсельной вилки. Если штепсельные розетка и вилка, а также шнур исправны, поврежден сам прибор. Прибор может не действовать, если перегорел нагревательный элемент или…

К основным электрическим величинам электрической цепи относятся сила тока, напряжение и сопротивление. Сила тока Под силой тока понимают электрический заряд, проходящий через поперечное сечение провода в единицу времени. Пользуясь выражениями «сила тока», «сильный ток», «слабый ток», мы должны знать, что означают эти выражения. Выражение «сильный ток» означает, что по цепи в единицу времени протекает большой…

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), - серебро.

Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица в системе СИ - сименс. Русское обозначение этой единицы - См, интернациональное - S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр - См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора - микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство - высокая теплопроводность.

Топ лучших проводников - металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро - 62 500 000.
  2. Медь - 59 500 000.
  3. Золото - 45 500 000.
  4. Алюминий - 38 000 000.

Видно, что самый электропроводный металл - серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина - высокая стоимость.

Зато медь и алюминий - самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

Самый электропроводный металл - это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

При изучении тепловых явлений говорилось, что по способности проводить теплоту вещества делятся на хорошие и плохие проводники тепла.

По способности передавать электрические заряды вещества также делятся на несколько классов: проводники, полупроводники и непроводники электричества.

    Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному.

Хорошие проводники электричества - это металлы, почва, вода с растворёнными в ней солями, кислотами или щелочами, графит. Тело человека также проводит электричество. Это можно обнаружить на опыте. Дотронемся до заряженного электроскопа рукой. Листочки тотчас опустятся. Заряд с электроскопа уходит по нашему телу через пол комнаты в землю.

а - железо; б - графит

Из металлов лучшие проводники электричества - серебро, медь, алюминий.

    Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному.

Непроводниками электричества, или диэлектриками , являются эбонит, янтарь, фарфор, резина, различные пластмассы, шёлк, капрон, масла, воздух (газы). Изготовленные из диэлектриков тела называют изоляторами (от итал. изоляро - уединять).

а - янтарь; б - фарфор

    Полупроводниками называют тела, которые по способности передавать электрические заряды занимают промежуточное положение между проводниками и диэлектриками.

В природе полупроводники распространены достаточно широко. Это оксиды и сульфиды металлов, некоторые органические вещества и др. Наибольшее применение в технике нашли германий и кремний.

Полупроводники при низкой температуре не проводят электрический ток и являются диэлектриками. Однако при повышении температуры в полупроводнике начинает резко увеличиваться число носителей электрического заряда, и он становится проводником.

Почему это происходит? У полупроводников, таких как кремний и германий, в узлах кристаллической решётки атомы колеблются около своих положений равновесия, и уже при температуре 20 °С это движение становится настолько интенсивным, что химические связи между соседними атомами могут разорваться. При дальнейшем повышении температуры валентные электроны (электроны, находящиеся на внешней оболочке атома) атомов полупроводников становятся свободными, и под действием электрического поля в полупроводнике возникает электрический ток.

Характерной особенностью полупроводников является возрастание их проводимости с повышением температуры. У металлов же при повышении температуры проводимость уменьшается.

Способность полупроводников проводить электрический ток возникает также при воздействии на них света, потока быстрых частиц, введении примесей и др.

а - германий; б- кремний

Изменение электропроводности полупроводников под действием температуры позволило применять их в качестве термометров для замера температуры окружающей среды, широко применяют в технике. С его помощью контролируют и поддерживают температуру на определённом уровне.

Повышение электропроводности вещества под воздействием света носит название фотопроводимость . Основанные на этом явлении приборы называют фотосопротивлениями . Фотосопротивления применяются для сигнализации и в управлении производственными процессами на расстоянии, сортировке изделий. С их помощью в экстренных ситуациях автоматически останавливаются станки и конвейеры, предупреждая несчастные случаи.

Благодаря удивительным свойствам полупроводников, они широко используются при создании транзисторов, тиристоров, полупроводниковых диодов, фоторезисторов и другой сложнейшей аппаратуры. Применение интегральных микросхем в теле-, радио- и компьютерных приборах позволяет создавать устройства небольших, а порой и ничтожно малых размеров.

Вопросы

  1. На какие группы делят вещества по способности передавать электрические заряды?
  2. Какой характерной особенностью обладают полупроводники?
  3. Перечислите области применения полупроводниковых приборов.

Упражнение 22

  1. Почему заряженный электроскоп разряжается, если его шарика коснуться рукой?
  2. Почему стержень электроскопа изготавливают из металла?
  3. К шарику незаряженного электроскопа подносят тело, заряженное положительно, не касаясь его. Какой заряд возникнет на листочках электроскопа?

Это любопытно...

Способность тела к электризации определяется наличием свободных зарядов. В полупроводниках концентрация носителей свободного заряда увеличивается с ростом температуры.

Проводимость, которая осуществляется свободными электронами (рис. 43), называется электронной проводимостью полупроводника или проводимостью n-типа (от лат. negativus - отрицательный). При отрыве электронов от атомов германия в местах разрыва образуются свободные места, которые не заняты электронами. Эти вакансии получили название «дырки». В области образования дырки возникает избыточный положительный заряд. Вакантное место может быть занято другим электроном.

Электрон, перемещаясь в полупроводнике, создаёт возможность заполнения одних дырок и образования других. Возникновение новой дырки сопровождается появлением свободного электрона, т. е. идёт непрерывное образование пар электрон - дырка. В свою очередь, заполнение дырок приводит к уменьшению числа свободных электронов. Если кристалл поместить в электрическое поле, то будет происходить перемещение не только электронов, но и дырок. Направление перемещения дырок противоположно направлению движения электронов.

Проводимость, которая возникает в результате перемещения дырок в полупроводнике, называется дырочной проводимостью или проводимостью р-типа (от лат. positivus - положительный). Полупроводники подразделяют на чистые полупроводники, примесные полупроводники n-типа, примесные полупроводники р-типа.

Чистые полупроводники обладают собственной проводимостью. В создании тока участвуют свободные заряды двух типов: отрицательные (электроны) и положительные (дырки). В чистом полупроводнике концентрация свободных электронов и дырок одинакова.

При введении в полупроводник примесей возникает примесная проводимость. Изменяя концентрацию примеси, можно менять и число носителей заряда того или иного знака, т. е. создавать полупроводники с преимущественной концентрацией отрицательного или положительного заряда. Примесные полупроводники n-типа обладают электронной проводимостью. Основными носителями заряда являются электроны, а неосновными - дырки.

Примесные полупроводники р-типа обладают дырочной проводимостью. Основными носителями заряда являются дырки, а неосновными - электроны.

Представляет собой соединение полупроводников р- и л-типа. Сопротивление области контакта зависит от направления тока. Если диод включить в цепь, чтобы область кристалла с электронной проводимостью n-типа была подсоединена к положительному полюсу, а область с дырочной проводимостью р-типа к отрицательному полюсу, то тока в цепи не будет, так как переход электронов из n-области в р-область затрудняется.

Если р-область полупроводника подключить к положительному полюсу, а n-область к отрицательному, то в этом случае ток проходит через диод. За счёт диффузии основных носителей тока в чужой полупроводник в области контакта образуется двойной электрический слой, препятствующий движению зарядов. Внешнее поле, направленное от р к n, частично компенсирует действие этого слоя, и при увеличении напряжения ток быстро возрастает.

Cтраница 1


Проводник электричества - это твердое тело, в котором есть много свободных электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В металле бывает так много свободных электронов, что всякое электрическое поле приводит многие из них в движение. И либо возникший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие поле вначале. В условиях электростатики мы не рассматриваем непрерывных источников тока (о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое электрическое поле. Как правило, это происходит в малые доли секунды. Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.  


Проводник электричества характеризуется тем, что его электроны очень подвижны.  


Проводники электричества бывают двух родов - соответственно характеру движения - по ним электрического тока.  

Проводники электричества - тела, в которых могут быть созданы электрические токи проводимости.  

Проводники электричества - тола, п которых могут возникать электрические токи. Электрические токи могут возникать в том случае, когда в телах существуют или образуются носители электрических зарядов. Такое упорядоченное движение электрических зарядов и представляет собой электрический ток. В электролитах носителями зарядов являются ионы - части молекул растворенного вещества.  

Проводники электричества - тела, в которых могут быть созданы электрические токи.  

Пусть проводник электричества, заключенный в трубку (см. рис. VIII.  


Поскольку проводником электричества является вода, заключенная в порах породы, для интерпретации кривых электрического каротажа необходимо знать факторы, влияющие на сопротивление воды. Чистая от примесей вода не проводит электрический ток. Растворенные в воде соли образуют заряженные ионы, которые переносят электроны или электрические заряды. Проводимость раствора определяется концентрацией и мобильностью ионов. Мобильность ионов в растворе зависит от двух факторов - природы ионов и температуры. Ион каждого химического соединения обладает своей подвижностью. Однако определение проводимости раствора на основании химического анализа и использования данных о мобильности отдельных ионов является непрактичным.  

У всех проводников электричества наблюдаются флуктуации электрического напряжения (тока), или шумы. В полупроводниковых диодах следует различать четыре основные составляющие внутреннего шума: тепловой шум, дробовой шум, 1 / / - шум, шум в области пробоя р-п перехода на обратной ветви вольтамперной характеристики.