Произведение чисел арифметической прогрессии. Формула n-го члена арифметической прогрессии

Арифметическая и геометрическая прогрессии

Теоретические сведения

Теоретические сведения

Арифметическая прогрессия

Геометрическая прогрессия

Определение

Арифметической прогрессией a n называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d (d - разность прогрессий)

Геометрической прогрессией b n называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и тоже число q (q - знаменатель прогрессии)

Рекуррентная формула

Для любого натурального n
a n + 1 = a n + d

Для любого натурального n
b n + 1 = b n ∙ q, b n ≠ 0

Формула n-ого члена

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Характеристическое свойство
Сумма n-первых членов

Примеры заданий с комментариями

Задание 1

В арифметической прогрессии (a n ) a 1 = -6, a 2

По формуле n-ого члена:

a 22 = a 1 + d (22 - 1) = a 1 + 21 d

По условию:

a 1 = -6, значит a 22 = -6 + 21 d .

Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = - 48.

Ответ : a 22 = -48.

Задание 2

Найдите пятый член геометрической прогрессии: -3; 6;....

1-й способ (с помощью формулы n -члена)

По формуле n-ого члена геометрической прогрессии:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4 .

Так как b 1 = -3,

2-й способ (с помощью рекуррентной формулы)

Так как знаменатель прогрессии равен -2 (q = -2), то:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Ответ : b 5 = -48.

Задание 3

В арифметической прогрессии (a n ) a 74 = 34; a 76 = 156. Найдите семьдесят пятый член этой прогрессии.

Для арифметической прогрессии характеристическое свойство имеет вид .

Из этого следует:

.

Подставим данные в формулу:

Ответ : 95.

Задание 4

В арифметической прогрессии (a n ) a n = 3n - 4. Найдите сумму семнадцати первых членов.

Для нахождения суммы n-первых членов арифметической прогрессии используют две формулы:

.

Какую из них в данном случае удобнее применять?

По условию известна формула n-ого члена исходной прогрессии (a n ) a n = 3n - 4. Можно найти сразу и a 1 , и a 16 без нахождения d . Поэтому воспользуемся первой формулой.

Ответ : 368.

Задание 5

В арифметической прогрессии(a n ) a 1 = -6; a 2 = -8. Найдите двадцать второй член прогрессии.

По формуле n-ого члена:

a 22 = a 1 + d (22 – 1) = a 1 + 21d .

По условию, если a 1 = -6, то a 22 = -6 + 21d . Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = -48.

Ответ : a 22 = -48.

Задание 6

Записаны несколько последовательных членов геометрической прогрессии:

Найдите член прогрессии, обозначенный буквой x .

При решении воспользуемся формулой n-го члена b n = b 1 ∙ q n - 1 для геометрических прогрессий. Первый член прогрессии. Чтобы найти знаменатель прогрессии q необходимо взять любой из данных членов прогрессии и разделить на предыдущий. В нашем примере можно взять и разделить на. Получим, что q = 3. Вместо n в формулу подставим 3, так как необходимо найти третий член, заданной геометрической прогрессии.

Подставив найденные значения в формулу, получим:

.

Ответ : .

Задание 7

Из арифметических прогрессий, заданных формулой n-го члена, выберите ту, для которой выполняется условие a 27 > 9:

Так как заданное условие должно выполняться для 27-го члена прогрессии, подставим 27 вместо n в каждую из четырех прогрессий. В 4-й прогрессии получим:

.

Ответ : 4.

Задание 8

В арифметической прогрессии a 1 = 3, d = -1,5. Укажите наибольшее значение n , для которого выполняется неравенство a n > -6.

Многие слышали об арифметической прогрессии, но не все хорошо представляют, что это такое. В данной статье дадим соответствующее определение, а также рассмотрим вопрос, как найти разность прогрессии арифметической, и приведем ряд примеров.

Математическое определение

Итак, если речь идет о прогрессии арифметической или алгебраической (эти понятия определяют одно и то же), то это означает, что имеется некоторый числовой ряд, удовлетворяющий следующему закону: каждые два соседних числа в ряду отличаются на одно и то же значение. Математически это записывается так:

Здесь n означает номер элемента a n в последовательности, а число d - это разность прогрессии (ее название следует из представленной формулы).

О чем говорит знание разности d? О том, как "далеко" друг от друга отстоят соседние числа. Однако знание d является необходимым, но не достаточным условием для определения (восстановления) всей прогрессии. Необходимо знать еще одно число, которым может быть совершенно любой элемент рассматриваемого ряда, например, a 4 , a10, но, как правило, используют первое число, то есть a 1 .

Формулы для определения элементов прогрессии

В общем, информации выше уже достаточно, чтобы переходить к решению конкретных задач. Тем не менее до того, как будет дана прогрессия арифметическая, и найти разность ее будет необходимо, приведем пару полезных формул, облегчив тем самым последующий процесс решения задач.

Несложно показать, что любой элемент последовательности с номером n может быть найден следующим образом:

a n = a 1 + (n - 1) * d

Действительно, проверить эту формулу может каждый простым перебором: если подставить n = 1, то получится первый элемент, если подставить n = 2, тогда выражение выдает сумму первого числа и разности, и так далее.

Условия многих задач составляются таким образом, что по известной паре чисел, номера которых в последовательности также даны, необходимо восстановить весь числовой ряд (найти разность и первый элемент). Сейчас мы решим эту задачу в общем виде.

Итак, пусть даны два элемента с номерами n и m. Пользуясь полученной выше формулой, можно составить систему из двух уравнений:

a n = a 1 + (n - 1) * d;

a m = a 1 + (m - 1) * d

Для нахождения неизвестных величин воспользуемся известным простым приемом решения такой системы: вычтем попарно левую и правую части, равенство при этом останется справедливым. Имеем:

a n = a 1 + (n - 1) * d;

a n - a m = (n - 1) * d - (m - 1) * d = d * (n - m)

Таким образом, мы исключили одну неизвестную (a 1). Теперь можно записать окончательное выражение для определения d:

d = (a n - a m) / (n - m), где n > m

Мы получили очень простую формулу: чтобы вычислить разность d в соответствии с условиями задачи, необходимо лишь взять отношение разностей самих элементов и их порядковых номеров. Следует обратить на один важный момент внимание: разности берутся между "старшим" и "младшим" членами, то есть n > m ("старший" - имеется в виду стоящий дальше от начала последовательности, его абсолютное значение может быть как больше, так и меньше более "младшего" элемента).

Выражение для разности d прогрессии следует подставить в любое из уравнений в начале решения задачи, чтобы получить значение первого члена.

В наш век развития компьютерных технологий многие школьники стараются найти решения для своих заданий в Интернете, поэтому часто возникают вопросы такого типа: найти разность арифметической прогрессии онлайн. По подобному запросу поисковик выдаст ряд web-страниц, перейдя на которые, нужно будет ввести известные из условия данные (это могут быть как два члена прогрессии, так и сумма некоторого их числа) и моментально получить ответ. Тем не менее такой подход к решению задачи является непродуктивным в плане развития школьника и понимания сути поставленной перед ним задачи.

Решение без использования формул

Решим первую задачу, при этом не будем использовать никакие из приведенных формул. Пусть даны элементы ряда: а6 = 3, а9 = 18. Найти разность прогрессии арифметической.

Известные элементы стоят близко друг к другу в ряду. Сколько раз нужно добавить разность d к наименьшему, чтобы получить наибольшее из них? Три раза (первый раз добавив d, мы получим 7-й элемент, второй раз - восьмой, наконец, третий раз - девятый). Какое число нужно добавить к трем три раза, чтобы получить 18? Это число пять. Действительно:

Таким образом, неизвестная разность d = 5.

Конечно же, решение можно было выполнить с применением соответствующей формулы, но этого не было сделано намеренно. Подробное объяснение решения задачи должно стать понятным и ярким примером, что такое арифметическая прогрессия.

Задача, подобная предыдущей

Теперь решим похожую задачу, но изменим входные данные. Итак, следует найти если а3 = 2, а9 = 19.

Конечно, можно прибегнуть снова к методу решения "в лоб". Но поскольку даны элементы ряда, которые стоят относительно далеко друг от друга, такой метод станет не совсем удобным. А вот использование полученной формулы быстро приведет нас к ответу:

d = (а 9 - а 3) / (9 - 3) = (19 - 2) / (6) = 17 / 6 ≈ 2,83

Здесь мы округлили конечное число. Насколько это округление привело к ошибке, можно судить, проверив полученный результат:

a 9 = a 3 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 = 18,98

Этот результат отличается всего на 0,1 % от значения, данного в условии. Поэтому использованное округление до сотых можно считать успешным выбором.

Задачи на применение формулы для an члена

Рассмотрим классический пример задачи на определение неизвестной d: найти разность прогрессии арифметической, если а1 = 12, а5 = 40.

Когда даны два числа неизвестной алгебраической последовательности, причем одним из них является элемент a 1 , тогда не нужно долго думать, а следует сразу же применить формулу для a n члена. В данном случае имеем:

a 5 = a 1 + d * (5 - 1) => d = (a 5 - a 1) / 4 = (40 - 12) / 4 = 7

Мы получили точное число при делении, поэтому нет смысла проверять точность рассчитанного результата, как это было сделано в предыдущем пункте.

Решим еще одну аналогичную задачу: следует найти разность арифметической прогрессии, если а1 = 16, а8 = 37.

Используем аналогичный предыдущему подход и получаем:

a 8 = a 1 + d * (8 - 1) => d = (a 8 - a 1) / 7 = (37 - 16) / 7 = 3

Что еще следует знать о прогрессии арифметической

Помимо задач на нахождение неизвестной разности или отдельных элементов, часто необходимо решать проблемы суммы первых членов последовательности. Рассмотрение этих задач выходит за рамки темы статьи, тем не менее для полноты информации приведем общую формулу для суммы n чисел ряда:

∑ n i = 1 (a i) = n * (a 1 + a n) / 2

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .


Да, да: арифметическая прогрессия — это вам не игрушки:)

Что ж, друзья, если вы читаете этот текст, то внутренний кэп-очевидность подсказывает мне, что вы пока ещё не знаете, что такое арифметическая прогрессия, но очень (нет, вот так: ОООООЧЕНЬ!) хотите узнать. Поэтому не буду мучать вас длинными вступлениями и сразу перейду к делу.

Для начала парочка примеров. Рассмотрим несколько наборов чисел:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt{2};\ 2\sqrt{2};\ 3\sqrt{2};...$

Что общего у всех этих наборов? На первый взгляд — ничего. Но на самом деле кое-что есть. А именно: каждый следующий элемент отличается от предыдущего на одно и то же число .

Судите сами. Первый набор — это просто идущие подряд числа, каждое следующее на единицу больше предыдущего. Во втором случае разница между рядом стоящими числами уже равна пяти, но эта разница всё равно постоянна. В третьем случае вообще корни. Однако $2\sqrt{2}=\sqrt{2}+\sqrt{2}$, а $3\sqrt{2}=2\sqrt{2}+\sqrt{2}$, т.е. и в этом случае каждый следующий элемент просто возрастает на $\sqrt{2}$ (и пусть вас не пугает, что это число — иррациональное).

Так вот: все такие последовательности как раз и называются арифметическими прогрессиями. Дадим строгое определение:

Определение. Последовательность чисел, в которой каждое следующее отличается от предыдущего ровно на одну и ту же величину, называется арифметической прогрессией. Сама величина, на которую отличаются числа, называется разностью прогрессии и чаще всего обозначается буквой $d$.

Обозначение: $\left({{a}_{n}} \right)$ — сама прогрессия, $d$ — её разность.

И сразу парочка важных замечаний. Во-первых, прогрессией считается лишь упорядоченная последовательность чисел: их разрешено читать строго в том порядке, в котором они записаны — и никак иначе. Переставлять и менять местами числа нельзя.

Во-вторых, сама последовательность может являться как конечной, так и бесконечной. К примеру, набор {1; 2; 3} — это, очевидно, конечная арифметическая прогрессия. Но если записать что-нибудь в духе {1; 2; 3; 4; ...} — это уже бесконечная прогрессия. Многоточие после четвёрки как бы намекает, что дальше идёт ещё довольно много чисел. Бесконечно много, например.:)

Ещё хотел бы отметить, что прогрессии бывают возрастающими и убывающими. Возрастающие мы уже видели — тот же набор {1; 2; 3; 4; ...}. А вот примеры убывающих прогрессий:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt{5};\ \sqrt{5}-1;\ \sqrt{5}-2;\ \sqrt{5}-3;...$

Ладно, ладно: последний пример может показаться чересчур сложным. Но остальные, думаю, вам понятны. Поэтому введём новые определения:

Определение. Арифметическая прогрессия называется:

  1. возрастающей, если каждый следующий элемент больше предыдущего;
  2. убывающей, если, напротив, каждый последующий элемент меньше предыдущего.

Кроме того, существуют так называемые «стационарные» последовательности — они состоят из одного и того же повторяющегося числа. Например, {3; 3; 3; ...}.

Остаётся лишь один вопрос: как отличить возрастающую прогрессию от убывающей? К счастью, тут всё зависит лишь от того, каков знак числа $d$, т.е. разности прогрессии:

  1. Если $d \gt 0$, то прогрессия возрастает;
  2. Если $d \lt 0$, то прогрессия, очевидно, убывает;
  3. Наконец, есть случай $d=0$ — в этом случае вся прогрессия сводится к стационарной последовательности одинаковых чисел: {1; 1; 1; 1; ...} и т.д.

Попробуем рассчитать разность $d$ для трёх убывающих прогрессий, приведённых выше. Для этого достаточно взять любые два соседних элемента (например, первый и второй) и вычесть из числа, стоящего справа, число, стоящее слева. Выглядеть это будет вот так:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt{5}-1-\sqrt{5}=-1$.

Как видим, во всех трёх случаях разность действительно получилась отрицательной. И теперь, когда мы более-менее разобрались с определениями, пора разобраться с тем, как описываются прогрессии и какие у них свойства.

Члены прогрессии и рекуррентная формула

Поскольку элементы наших последовательностей нельзя менять местами, их можно пронумеровать:

\[\left({{a}_{n}} \right)=\left\{ {{a}_{1}},\ {{a}_{2}},{{a}_{3}},... \right\}\]

Отдельные элементы этого набора называются членами прогрессии. На них так и указывают с помощью номера: первый член, второй член и т.д.

Кроме того, как мы уже знаем, соседние члены прогрессии связаны формулой:

\[{{a}_{n}}-{{a}_{n-1}}=d\Rightarrow {{a}_{n}}={{a}_{n-1}}+d\]

Короче говоря, чтобы найти $n$-й член прогрессии, нужно знать $n-1$-й член и разность $d$. Такая формула называется рекуррентной, поскольку с её помощью можно найти любое число, лишь зная предыдущее (а по факту — все предыдущие). Это очень неудобно, поэтому существует более хитрая формула, которая сводит любые вычисления к первому члену и разности:

\[{{a}_{n}}={{a}_{1}}+\left(n-1 \right)d\]

Наверняка вы уже встречались с этой формулой. Её любят давать во всяких справочниках и решебниках. Да и в любом толковом учебнике по математике она идёт одной из первых.

Тем не менее предлагаю немного потренироваться.

Задача №1. Выпишите первые три члена арифметической прогрессии $\left({{a}_{n}} \right)$, если ${{a}_{1}}=8,d=-5$.

Решение. Итак, нам известен первый член ${{a}_{1}}=8$ и разность прогрессии $d=-5$. Воспользуемся только что приведённой формулой и подставим $n=1$, $n=2$ и $n=3$:

\[\begin{align} & {{a}_{n}}={{a}_{1}}+\left(n-1 \right)d; \\ & {{a}_{1}}={{a}_{1}}+\left(1-1 \right)d={{a}_{1}}=8; \\ & {{a}_{2}}={{a}_{1}}+\left(2-1 \right)d={{a}_{1}}+d=8-5=3; \\ & {{a}_{3}}={{a}_{1}}+\left(3-1 \right)d={{a}_{1}}+2d=8-10=-2. \\ \end{align}\]

Ответ: {8; 3; −2}

Вот и всё! Обратите внимание: наша прогрессия — убывающая.

Конечно, $n=1$ можно было и не подставлять — первый член нам и так известен. Впрочем, подставив единицу, мы убедились, что даже для первого члена наша формула работает. В остальных случаях всё свелось к банальной арифметике.

Задача №2. Выпишите первые три члена арифметической прогрессии, если её седьмой член равен −40, а семнадцатый член равен −50.

Решение. Запишем условие задачи в привычных терминах:

\[{{a}_{7}}=-40;\quad {{a}_{17}}=-50.\]

\[\left\{ \begin{align} & {{a}_{7}}={{a}_{1}}+6d \\ & {{a}_{17}}={{a}_{1}}+16d \\ \end{align} \right.\]

\[\left\{ \begin{align} & {{a}_{1}}+6d=-40 \\ & {{a}_{1}}+16d=-50 \\ \end{align} \right.\]

Знак системы я поставил потому, что эти требования должны выполняться одновременно. А теперь заметим, если вычесть из второго уравнения первое (мы имеем право это сделать, т.к. у нас система), то получим вот что:

\[\begin{align} & {{a}_{1}}+16d-\left({{a}_{1}}+6d \right)=-50-\left(-40 \right); \\ & {{a}_{1}}+16d-{{a}_{1}}-6d=-50+40; \\ & 10d=-10; \\ & d=-1. \\ \end{align}\]

Вот так просто мы нашли разность прогрессии! Осталось подставить найденное число в любое из уравнений системы. Например, в первое:

\[\begin{matrix} {{a}_{1}}+6d=-40;\quad d=-1 \\ \Downarrow \\ {{a}_{1}}-6=-40; \\ {{a}_{1}}=-40+6=-34. \\ \end{matrix}\]

Теперь, зная первый член и разность, осталось найти второй и третий член:

\[\begin{align} & {{a}_{2}}={{a}_{1}}+d=-34-1=-35; \\ & {{a}_{3}}={{a}_{1}}+2d=-34-2=-36. \\ \end{align}\]

Готово! Задача решена.

Ответ: {−34; −35; −36}

Обратите внимание на любопытное свойство прогрессии, которое мы обнаружили: если взять $n$-й и $m$-й члены и вычесть их друг из друга, то мы получим разность прогрессии, умноженную на число $n-m$:

\[{{a}_{n}}-{{a}_{m}}=d\cdot \left(n-m \right)\]

Простое, но очень полезное свойство, которое обязательно надо знать — с его помощью можно значительно ускорить решение многих задач по прогрессиям. Вот яркий тому пример:

Задача №3. Пятый член арифметической прогрессии равен 8,4, а её десятый член равен 14,4. Найдите пятнадцатый член этой прогрессии.

Решение. Поскольку ${{a}_{5}}=8,4$, ${{a}_{10}}=14,4$, а нужно найти ${{a}_{15}}$, то заметим следующее:

\[\begin{align} & {{a}_{15}}-{{a}_{10}}=5d; \\ & {{a}_{10}}-{{a}_{5}}=5d. \\ \end{align}\]

Но по условию ${{a}_{10}}-{{a}_{5}}=14,4-8,4=6$, поэтому $5d=6$, откуда имеем:

\[\begin{align} & {{a}_{15}}-14,4=6; \\ & {{a}_{15}}=6+14,4=20,4. \\ \end{align}\]

Ответ: 20,4

Вот и всё! Нам не потребовалось составлять какие-то системы уравнений и считать первый член и разность — всё решилось буквально в пару строчек.

Теперь рассмотрим другой вид задач — на поиск отрицательных и положительных членов прогрессии. Не секрет, что если прогрессия возрастает, при этом первый член у неё отрицательный, то рано или поздно в ней появятся положительные члены. И напротив: члены убывающей прогрессии рано или поздно станут отрицательными.

При этом далеко не всегда можно нащупать этот момент «в лоб», последовательно перебирая элементы. Зачастую задачи составлены так, что без знания формул вычисления заняли бы несколько листов — мы просто уснули бы, пока нашли ответ. Поэтому попробуем решить эти задачи более быстрым способом.

Задача №4. Сколько отрицательных членов в арифметической прогрессии −38,5; −35,8; …?

Решение. Итак, ${{a}_{1}}=-38,5$, ${{a}_{2}}=-35,8$, откуда сразу находим разность:

Заметим, что разность положительна, поэтому прогрессия возрастает. Первый член отрицателен, поэтому действительно в какой-то момент мы наткнёмся на положительные числа. Вопрос лишь в том, когда это произойдёт.

Попробуем выяснить: до каких пор (т.е. до какого натурального числа $n$) сохраняется отрицательность членов:

\[\begin{align} & {{a}_{n}} \lt 0\Rightarrow {{a}_{1}}+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \right. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac{7}{27}\Rightarrow {{n}_{\max }}=15. \\ \end{align}\]

Последняя строчка требует пояснения. Итак, нам известно, что $n \lt 15\frac{7}{27}$. С другой стороны, нас устроят лишь целые значения номера (более того: $n\in \mathbb{N}$), поэтому наибольший допустимый номер — это именно $n=15$, а ни в коем случае не 16.

Задача №5. В арифметической прогрессии ${{}_{5}}=-150,{{}_{6}}=-147$. Найдите номер первого положительного члена этой прогрессии.

Это была бы точь-в-точь такая же задача, как и предыдущая, однако нам неизвестно ${{a}_{1}}$. Зато известны соседние члены: ${{a}_{5}}$ и ${{a}_{6}}$, поэтому мы легко найдём разность прогрессии:

Кроме того, попробуем выразить пятый член через первый и разность по стандартной формуле:

\[\begin{align} & {{a}_{n}}={{a}_{1}}+\left(n-1 \right)\cdot d; \\ & {{a}_{5}}={{a}_{1}}+4d; \\ & -150={{a}_{1}}+4\cdot 3; \\ & {{a}_{1}}=-150-12=-162. \\ \end{align}\]

Теперь поступаем по аналогии с предыдущей задачей. Выясняем, в какой момент в нашей последовательности возникнут положительные числа:

\[\begin{align} & {{a}_{n}}=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow {{n}_{\min }}=56. \\ \end{align}\]

Минимальное целочисленное решение данного неравенства — число 56.

Обратите внимание: в последнем задании всё свелось к строгому неравенству, поэтому вариант $n=55$ нас не устроит.

Теперь, когда мы научились решать простые задачи, перейдём к более сложным. Но для начала давайте изучим ещё одно очень полезное свойство арифметических прогрессий, которое в будущем сэкономит нам кучу времени и неравных клеток.:)

Среднее арифметическое и равные отступы

Рассмотрим несколько последовательных членов возрастающей арифметической прогрессии $\left({{a}_{n}} \right)$. Попробуем отметить их на числовой прямой:

Члены арифметической прогрессии на числовой прямой

Я специально отметил произвольные члены ${{a}_{n-3}},...,{{a}_{n+3}}$, а не какие-нибудь ${{a}_{1}},\ {{a}_{2}},\ {{a}_{3}}$ и т.д. Потому что правило, о котором я сейчас расскажу, одинаково работает для любых «отрезков».

А правило очень простое. Давайте вспомним рекуррентную формулу и запишем её для всех отмеченных членов:

\[\begin{align} & {{a}_{n-2}}={{a}_{n-3}}+d; \\ & {{a}_{n-1}}={{a}_{n-2}}+d; \\ & {{a}_{n}}={{a}_{n-1}}+d; \\ & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n+1}}+d; \\ \end{align}\]

Однако эти равенства можно переписать иначе:

\[\begin{align} & {{a}_{n-1}}={{a}_{n}}-d; \\ & {{a}_{n-2}}={{a}_{n}}-2d; \\ & {{a}_{n-3}}={{a}_{n}}-3d; \\ & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n}}+2d; \\ & {{a}_{n+3}}={{a}_{n}}+3d; \\ \end{align}\]

Ну и что с того? А то, что члены ${{a}_{n-1}}$ и ${{a}_{n+1}}$ лежат на одном и том же расстоянии от ${{a}_{n}}$. И это расстояние равно $d$. То же самое можно сказать про члены ${{a}_{n-2}}$ и ${{a}_{n+2}}$ — они тоже удалены от ${{a}_{n}}$ на одинаковое расстояние, равное $2d$. Продолжать можно до бесконечности, но смысл хорошо иллюстрирует картинка


Члены прогрессии лежат на одинаковом расстоянии от центра

Что это значит для нас? Это значит, что можно найти ${{a}_{n}}$, если известны числа-соседи:

\[{{a}_{n}}=\frac{{{a}_{n-1}}+{{a}_{n+1}}}{2}\]

Мы вывели великолепное утверждение: всякий член арифметической прогрессии равен среднему арифметическому соседних членов! Более того: мы можем отступить от нашего ${{a}_{n}}$ влево и вправо не на один шаг, а на $k$ шагов — и всё равно формула будет верна:

\[{{a}_{n}}=\frac{{{a}_{n-k}}+{{a}_{n+k}}}{2}\]

Т.е. мы спокойно можем найти какое-нибудь ${{a}_{150}}$, если знаем ${{a}_{100}}$ и ${{a}_{200}}$, потому что ${{a}_{150}}=\frac{{{a}_{100}}+{{a}_{200}}}{2}$. На первый взгляд может показаться, что данный факт не даёт нам ничего полезного. Однако на практике многие задачи специально «заточены» под использование среднего арифметического. Взгляните:

Задача №6. Найдите все значения $x$, при которых числа $-6{{x}^{2}}$, $x+1$ и $14+4{{x}^{2}}$ являются последовательными членами арифметической прогрессии (в указанном порядке).

Решение. Поскольку указанные числа являются членами прогрессии, для них выполняется условие среднего арифметического: центральный элемент $x+1$ можно выразить через соседние элементы:

\[\begin{align} & x+1=\frac{-6{{x}^{2}}+14+4{{x}^{2}}}{2}; \\ & x+1=\frac{14-2{{x}^{2}}}{2}; \\ & x+1=7-{{x}^{2}}; \\ & {{x}^{2}}+x-6=0. \\ \end{align}\]

Получилось классическое квадратное уравнение. Его корни: $x=2$ и $x=-3$ — это и есть ответы.

Ответ: −3; 2.

Задача №7. Найдите значения $$, при которых числа $-1;4-3;{{}^{2}}+1$ составляют арифметическую прогрессию (в указанном порядке).

Решение. Опять выразим средний член через среднее арифметическое соседних членов:

\[\begin{align} & 4x-3=\frac{x-1+{{x}^{2}}+1}{2}; \\ & 4x-3=\frac{{{x}^{2}}+x}{2};\quad \left| \cdot 2 \right.; \\ & 8x-6={{x}^{2}}+x; \\ & {{x}^{2}}-7x+6=0. \\ \end{align}\]

Снова квадратное уравнение. И снова два корня: $x=6$ и$x=1$.

Ответ: 1; 6.

Если в процессе решения задачи у вас вылезают какие-то зверские числа, либо вы не до конца уверены в правильности найденных ответов, то есть замечательный приём, позволяющий проверить: правильно ли мы решили задачу?

Допустим, в задаче №6 мы получили ответы −3 и 2. Как проверить, что эти ответы верны? Давайте просто подставим их в исходное условие и посмотрим, что получится. Напомню, что у нас есть три числа ($-6{{}^{2}}$, $+1$ и $14+4{{}^{2}}$), которые должны составлять арифметическую прогрессию. Подставим $x=-3$:

\[\begin{align} & x=-3\Rightarrow \\ & -6{{x}^{2}}=-54; \\ & x+1=-2; \\ & 14+4{{x}^{2}}=50. \end{align}\]

Получили числа −54; −2; 50, которые отличаются на 52 — несомненно, это арифметическая прогрессия. То же самое происходит и при $x=2$:

\[\begin{align} & x=2\Rightarrow \\ & -6{{x}^{2}}=-24; \\ & x+1=3; \\ & 14+4{{x}^{2}}=30. \end{align}\]

Опять прогрессия, но с разностью 27. Таким образом, задача решена верно. Желающие могут проверить вторую задачу самостоятельно, но сразу скажу: там тоже всё верно.

В целом, решая последние задачи, мы наткнулись на ещё один интересный факт, который тоже необходимо запомнить:

Если три числа таковы, что второе является средним арифметическим первого и последнего, то эти числа образуют арифметическую прогрессию.

В будущем понимание этого утверждения позволит нам буквально «конструировать» нужные прогрессии, опираясь на условие задачи. Но прежде чем мы займёмся подобным «конструированием», следует обратить внимание на ещё один факт, который прямо следует из уже рассмотренного.

Группировка и сумма элементов

Давайте ещё раз вернёмся к числовой оси. Отметим там несколько членов прогрессии, между которыми, возможно. стоит очень много других членов:

На числовой прямой отмечены 6 элементов

Попробуем выразить «левый хвост» через ${{a}_{n}}$ и $d$, а «правый хвост» через ${{a}_{k}}$ и $d$. Это очень просто:

\[\begin{align} & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n}}+2d; \\ & {{a}_{k-1}}={{a}_{k}}-d; \\ & {{a}_{k-2}}={{a}_{k}}-2d. \\ \end{align}\]

А теперь заметим, что равны следующие суммы:

\[\begin{align} & {{a}_{n}}+{{a}_{k}}=S; \\ & {{a}_{n+1}}+{{a}_{k-1}}={{a}_{n}}+d+{{a}_{k}}-d=S; \\ & {{a}_{n+2}}+{{a}_{k-2}}={{a}_{n}}+2d+{{a}_{k}}-2d=S. \end{align}\]

Проще говоря, если мы рассмотрим в качестве старта два элемента прогрессии, которые в сумме равны какому-нибудь числу $S$, а затем начнём шагать от этих элементов в противоположные стороны (навстречу друг другу или наоборот на удаление), то суммы элементов, на которые мы будем натыкаться, тоже будут равны $S$. Наиболее наглядно это можно представить графически:


Одинаковые отступы дают равные суммы

Понимание данного факта позволит нам решать задачи принципиально более высокого уровня сложности, нежели те, что мы рассматривали выше. Например, такие:

Задача №8. Определите разность арифметической прогрессии, в которой первый член равен 66, а произведение второго и двенадцатого членов является наименьшим из возможных.

Решение. Запишем всё, что нам известно:

\[\begin{align} & {{a}_{1}}=66; \\ & d=? \\ & {{a}_{2}}\cdot {{a}_{12}}=\min . \end{align}\]

Итак, нам неизвестна разность прогрессии $d$. Собственно, вокруг разности и будет строиться всё решение, поскольку произведение ${{a}_{2}}\cdot {{a}_{12}}$ можно переписать следующим образом:

\[\begin{align} & {{a}_{2}}={{a}_{1}}+d=66+d; \\ & {{a}_{12}}={{a}_{1}}+11d=66+11d; \\ & {{a}_{2}}\cdot {{a}_{12}}=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11\cdot \left(d+66 \right)\cdot \left(d+6 \right). \end{align}\]

Для тех, кто в танке: я вынес общий множитель 11 из второй скобки. Таким образом, искомое произведение представляет собой квадратичную функцию относительно переменной $d$. Поэтому рассмотрим функцию $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ — её графиком будет парабола ветвями вверх, т.к. если раскрыть скобки, то мы получим:

\[\begin{align} & f\left(d \right)=11\left({{d}^{2}}+66d+6d+66\cdot 6 \right)= \\ & =11{{d}^{2}}+11\cdot 72d+11\cdot 66\cdot 6 \end{align}\]

Как видим, коэффициент при старшем слагаемом равен 11 — это положительное число, поэтому действительно имеем дело с параболой ветвями вверх:


график квадратичной функции — парабола

Обратите внимание: минимальное значение эта парабола принимает в своей вершине с абсциссой ${{d}_{0}}$. Конечно, мы можем посчитать эту абсциссу по стандартной схеме (есть же формула ${{d}_{0}}={-b}/{2a}\;$), но куда разумнее будет заметить, что искомая вершина лежит на оси симметрии параболы, поэтому точка ${{d}_{0}}$ равноудалена от корней уравнения $f\left(d \right)=0$:

\[\begin{align} & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & {{d}_{1}}=-66;\quad {{d}_{2}}=-6. \\ \end{align}\]

Именно поэтому я не особо спешил раскрывать скобки: в исходном виде корни было найти очень и очень просто. Следовательно, абсцисса равна среднему арифметическому чисел −66 и −6:

\[{{d}_{0}}=\frac{-66-6}{2}=-36\]

Что даёт нам обнаруженное число? При нём требуемое произведение принимает наименьшее значение (мы, кстати, так и не посчитали ${{y}_{\min }}$ — от нас это не требуется). Одновременно это число является разностью исходной прогрессии, т.е. мы нашли ответ.:)

Ответ: −36

Задача №9. Между числами $-\frac{1}{2}$ и $-\frac{1}{6}$ вставьте три числа так, чтобы они вместе с данными числами составили арифметическую прогрессию.

Решение. По сути, нам нужно составить последовательность из пяти чисел, причём первое и последнее число уже известно. Обозначим недостающие числа переменными $x$, $y$ и $z$:

\[\left({{a}_{n}} \right)=\left\{ -\frac{1}{2};x;y;z;-\frac{1}{6} \right\}\]

Отметим, что число $y$ является «серединой» нашей последовательности — оно равноудалено и от чисел $x$ и $z$, и от чисел $-\frac{1}{2}$ и $-\frac{1}{6}$. И если из чисел $x$ и $z$ мы в данный момент не можем получить $y$, то вот с концами прогрессии дело обстоит иначе. Вспоминаем про среднее арифметическое:

Теперь, зная $y$, мы найдём оставшиеся числа. Заметим, что $x$ лежит между числами $-\frac{1}{2}$ и только что найденным $y=-\frac{1}{3}$. Поэтому

Аналогично рассуждая, находим оставшееся число:

Готово! Мы нашли все три числа. Запишем их в ответе в том порядке, в котором они должны быть вставлены между исходными числами.

Ответ: $-\frac{5}{12};\ -\frac{1}{3};\ -\frac{1}{4}$

Задача №10. Между числами 2 и 42 вставьте несколько чисел, которые вместе с данными числами образуют арифметическую прогрессию, если известно, что сумма первого, второго и последнего из вставленных чисел равна 56.

Решение. Ещё более сложная задача, которая, однако, решается по той же схеме, что и предыдущие — через среднее арифметическое. Проблема в том, что нам неизвестно, сколько конкретно чисел надо вставить. Поэтому положим для опредлённости, что после вставки всего будет ровно $n$ чисел, причём первое из них — это 2, а последнее — 42. В этом случае искомая арифметическая прогрессия представима в виде:

\[\left({{a}_{n}} \right)=\left\{ 2;{{a}_{2}};{{a}_{3}};...;{{a}_{n-1}};42 \right\}\]

\[{{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56\]

Заметим, однако, что числа ${{a}_{2}}$ и ${{a}_{n-1}}$ получаются из стоящих по краям чисел 2 и 42 путём одного шага навстречу друг другу, т.е. к центру последовательности. А это значит, что

\[{{a}_{2}}+{{a}_{n-1}}=2+42=44\]

Но тогда записанное выше выражение можно переписать так:

\[\begin{align} & {{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56; \\ & \left({{a}_{2}}+{{a}_{n-1}} \right)+{{a}_{3}}=56; \\ & 44+{{a}_{3}}=56; \\ & {{a}_{3}}=56-44=12. \\ \end{align}\]

Зная ${{a}_{3}}$ и ${{a}_{1}}$, мы легко найдём разность прогрессии:

\[\begin{align} & {{a}_{3}}-{{a}_{1}}=12-2=10; \\ & {{a}_{3}}-{{a}_{1}}=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end{align}\]

Осталось лишь найти остальные члены:

\[\begin{align} & {{a}_{1}}=2; \\ & {{a}_{2}}=2+5=7; \\ & {{a}_{3}}=12; \\ & {{a}_{4}}=2+3\cdot 5=17; \\ & {{a}_{5}}=2+4\cdot 5=22; \\ & {{a}_{6}}=2+5\cdot 5=27; \\ & {{a}_{7}}=2+6\cdot 5=32; \\ & {{a}_{8}}=2+7\cdot 5=37; \\ & {{a}_{9}}=2+8\cdot 5=42; \\ \end{align}\]

Таким образом, уже на 9-м шаге мы придём в левый конец последовательности — число 42. Итого нужно было вставить лишь 7 чисел: 7; 12; 17; 22; 27; 32; 37.

Ответ: 7; 12; 17; 22; 27; 32; 37

Текстовые задачи с прогрессиями

В заключение хотелось бы рассмотреть парочку относительно простых задач. Ну, как простых: для большинства учеников, которые изучают математику в школе и не читали того, что написано выше, эти задачи могут показаться жестью. Тем не менее именно такие задачи попадаются в ОГЭ и ЕГЭ по математике, поэтому рекомендую ознакомиться с ними.

Задача №11. Бригада изготовила в январе 62 детали, а в каждый следующий месяц изготовляла на 14 деталей больше, чем в предыдущий. Сколько деталей изготовила бригада в ноябре?

Решение. Очевидно, количество деталей, расписанное по месяцам, будет представлять собой возрастающую арифметическую прогрессию. Причём:

\[\begin{align} & {{a}_{1}}=62;\quad d=14; \\ & {{a}_{n}}=62+\left(n-1 \right)\cdot 14. \\ \end{align}\]

Ноябрь — это 11-й месяц в году, поэтому нам нужно найти ${{a}_{11}}$:

\[{{a}_{11}}=62+10\cdot 14=202\]

Следовательно, в ноябре будет изготовлено 202 детали.

Задача №12. Переплётная мастерская переплела в январе 216 книг, а в каждый следующий месяц она переплетала на 4 книги больше, чем в предыдущий. Сколько книг переплела мастерская в декабре?

Решение. Всё то же самое:

$\begin{align} & {{a}_{1}}=216;\quad d=4; \\ & {{a}_{n}}=216+\left(n-1 \right)\cdot 4. \\ \end{align}$

Декабрь — это последний, 12-й месяц в году, поэтому ищем ${{a}_{12}}$:

\[{{a}_{12}}=216+11\cdot 4=260\]

Это и есть ответ — 260 книг будет переплетено в декабре.

Что ж, если вы дочитали до сюда, спешу вас поздравить: «курс молодого бойца» по арифметическим прогрессиям вы успешно прошли. Можно смело переходить к следующему уроку, где мы изучим формулу суммы прогрессии, а также важные и очень полезные следствия из неё.

Кто-то к слову «прогрессия» относится настороженно, как к очень сложному термину из разделов высшей математики. А между тем самая простая арифметическая прогрессия - работа счётчика такси (где они ещё остались). И понять суть (а в математике нет ничего важнее, чем «понять суть») арифметической последовательности не так сложно, разобрав несколько элементарных понятий.

Математическая числовая последовательность

Числовой последовательностью принято именовать какой-либо ряд чисел, каждое из которых имеет свой номер.

а 1 - первый член последовательности;

а 2 - второй член последовательности;

а 7 - седьмой член последовательности;

а n - n-ный член последовательности;

Однако не любой произвольный набор цифр и чисел интересует нас. Наше внимание сосредоточим на числовой последовательности, у которой значение n-ного члена связано с его порядковым номером зависимостью, которую можно чётко сформулировать математически. Иными словами: численное значение n-ного номера является какой-либо функцией от n.

a - значение члена числовой последовательности;

n - его порядковый номер;

f(n) - функция, где порядковый номер в числовой последовательности n является аргументом.

Определение

Арифметической прогрессией принято именовать числовую последовательность, в которой каждый последующий член больше (меньше) предыдущего на одно и то же число. Формула n-ного члена арифметической последовательности выглядит следующим образом:

a n - значение текущего члена арифметической прогрессии;

a n+1 - формула следующего числа;

d - разность (определённое число).

Нетрудно определить, что если разность положительна (d>0), то каждый последующий член рассматриваемого ряда будет больше предыдущего и такая арифметическая прогрессия будет возрастающей.

На представленном ниже графике нетрудно проследить, почему числовая последовательность получила название «возрастающая».

В случаях, когда разность отрицательная (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Значение заданного члена

Иногда бывает необходимо определить значение какого-либо произвольного члена a n арифметической прогрессии. Можно сделать это путём расчёта последовательно значений всех членов арифметической прогрессии, начиная с первого до искомого. Однако такой путь не всегда приемлем, если, например, необходимо отыскать значение пятитысячного или восьмимиллионного члена. Традиционный расчёт сильно затянется по времени. Однако конкретная арифметическая прогрессия может быть исследована с помощью определённых формул. Существует и формула n-ного члена: значение любого члена арифметической прогрессии может быть определено как сумма первого члена прогрессии с разностью прогрессии, умноженной на номер искомого члена, уменьшенный на единицу.

Формула универсальна для возрастающей и убывающей прогрессии.

Пример расчёта значения заданного члена

Решим следующую задачу на нахождение значения n-ного члена арифметической прогрессии.

Условие: имеется арифметическая прогрессия с параметрами:

Первый член последовательности равен 3;

Разность числового ряда равняется 1,2.

Задание: необходимо отыскать значение 214 члена

Решение: для определения значения заданного члена воспользуемся формулой:

а(n) = а1 + d(n-1)

Подставив в выражение данные из условия задачи имеем:

а(214) = а1 + d(n-1)

а(214) = 3 + 1,2 (214-1) = 258,6

Ответ: 214-ый член последовательности раве 258,6.

Преимущества такого способа расчёта очевидны - всё решение занимает не более 2 строчек.

Сумма заданного числа членов

Очень часто в заданном арифметическом ряду требуется определить сумму значений некоторого его отрезка. Для этого также нет необходимости вычислять значения каждого члена и затем суммировать. Такой способ применим, если число членов, сумму которых необходимо найти, невелико. В остальных случаях удобнее воспользоваться следующей формулой.

Сумма членов арифметической прогрессии от 1 до n равна сумме первого и n-ного членов, помноженной на номер члена n и делённой надвое. Если в формуле значение n-ного члена заменить на выражение из предыдущего пункта статьи, получим:

Пример расчёта

Для примера решим задачу со следующими условиями:

Первый член последовательности равен нулю;

Разность равняется 0,5.

В задаче требуется определить сумму членов ряда с 56-го по 101.

Решение. Воспользуемся формулой определения суммы прогрессии:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Вначале определим сумму значений 101 члена прогрессии, подставив в формулу данные их условия нашей задачи:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2 525

Очевидно, для того, чтобы узнать сумму членов прогрессии с 56-го по 101-й, необходимо от S 101 отнять S 55 .

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Таким образом сумма арифметической прогрессии для данного примера:

s 101 - s 55 = 2 525 - 742,5 = 1 782,5

Пример практического применения арифметической прогрессии

В конце статьи вернёмся к примеру арифметической последовательности, приведённому в первом абзаце - таксометр (счётчик автомобиля такси). Рассмотрим такой пример.

Посадка в такси (в которую входит 3 км пробега) стоит 50 рублей. Каждый последующий километр оплачивается из расчёта 22 руб./км. Расстояние поездки 30 км. Рассчитать стоимость поездки.

1. Отбросим первые 3 км, цена которых включена в стоимость посадки.

30 - 3 = 27 км.

2. Дальнейший расчет - не что иное как разбор арифметического числового ряда.

Номер члена - число км пробега (минус первые три).

Значение члена - сумма.

Первый член в данной задаче будет равен a 1 = 50 р.

Разность прогрессии d = 22 р.

интересующее нас число - значение (27+1)-ого члена арифметической прогрессии - показания счётчика в конце 27-го километра - 27,999… = 28 км.

a 28 = 50 + 22 ∙ (28 - 1) = 644

На формулах, описывающих те или иные числовые последовательности, построены расчёты календарных данных на сколь угодно длительный период. В астрономии в геометрической зависимости от расстояния небесного тела до светила находится длина орбиты. Кроме того, различные числовые ряды с успехом применяются в статистике и других прикладных разделах математики.

Другой вид числовой последовательности - геометрическая

Геометрическая прогрессия характеризуется большими, по сравнению с арифметической, темпами изменения. Не случайно в политике, социологии, медицине зачастую, чтобы показать большую скорость распространения того или иного явления, например заболевания при эпидемии, говорят, что процесс развивается в геометрической прогрессии.

N-ный член геометрического числового ряда отличается от предыдущего тем, что он умножается на какое-либо постоянное число - знаменатель, например первый член равен 1, знаменатель соответственно равен 2, тогда:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - значение текущего члена геометрической прогрессии;

b n+1 - формула следующего члена геометрической прогрессии;

q - знаменатель геометрической прогрессии (постоянное число).

Если график арифметической прогрессии представляет собой прямую, то геометрическая рисует несколько иную картину:

Как и в случае с арифметической, геометрическая прогрессия имеет формулу значения произвольного члена. Какой-либо n-ный член геометрической прогрессии равен произведению первого члена на знаменатель прогрессии в степени n уменьшенного на единицу:

Пример. Имеем геометрическую прогрессию с первым членом равным 3 и знаменателем прогрессии, равным 1,5. Найдём 5-й член прогрессии

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Сумма заданного числа членов рассчитывается так же с помощью специальной формулы. Сумма n первых членов геометрической прогрессии равна разности произведения n- ного члена прогрессии на его знаменатель и первого члена прогрессии, делённой на уменьшенный на единицу знаменатель:

Если b n заменить пользуясь рассмотренной выше формулой, значение суммы n первых членов рассматриваемого числового ряда примет вид:

Пример. Геометрическая прогрессия начинается с первого члена, равного 1. Знаменатель задан равным 3. Найдём сумму первых восьми членов.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280