Большая энциклопедия нефти и газа. Что такое молекулярная химия

СУПРАМОЛЕКУЛЯРНАЯ ХИМИЯ

Супрамолекулярная химия(СХ) – относительно новый раздел химии, рассматривающий соединения, молекулярные ансамбли, ассоциаты стехиометрического и нестехиометрического составов, компоненты которых связанны между собой межмолекулярными (невалентными) взаимодействиями. Иными словами СХ – это химия невалентных взаимодействий. К настоящему моменту это наиболее распространенное, хотя и не всеми принятое определение предмета супрамолекулярной химии, что указывает на молодость рассматриваемой научной дисциплины и размытость границ ее действия, но об этом несколько ниже.

Термин «супрамолекулярная химия» был введен в 1973 году Лауреатом Нобелевской премии по химии за 1987 год Ж.-М. Леном. По Лену предмет супрамолекулярной химии можно разбить на две широкие, частично перекрывающиеся области, связанные с: а) - химией супрамолекул, возникающих в результате молекулярного распознавания и последующей межмолекулярной ассоциации двух или нескольких компонентов - рецептора и его субстрата, и которые строят молекулярный каркас из одного сорта молекул (хозяин), в полости которого внедряется другой сорт молекул (гость), и б) - химией молекулярных ансамблей, возникающих в результате спонтанной ассоциации неопределенного числа компонентов и имеющих более или менее четко обозначенную микроскопическую организацию (клатраты, везикулы, мицеллы, мембраны; например, одна из разновидностей рибосомы состоит из 55 белковых молекул и трех молекул рибонуклеиновой кислоты, образующих глобулу с размером порядка 200 Å). Сила взаимодействия в этих конструкциях может колебаться от слабых, наблюдаемых, например, в газовых гидратах и образованных за счет водородных связей, до сильных, образованных д.-а. связями, наблюдаемых, например, в краун-соединениях. При этом следует иметь ввиду, что образование подобных соединений зачастую приводит к стабилизации как хозяйских молекул, строящих каркас и находящихся, например, в энергетически менее выгодной конформации по сравнению с свободной молекулой, например, конформации типа «ванна», так и молекул гостей, иногда даже не существующих в индивидуальном состоянии (например, радикалы). Это явление получило свое особое название «контактная стабилизация молекул». Отсюда следует, что понятие супрамолекулярная химия объединяет самые различные классы веществ, начиная от веществ, рассматриваемых в курсе неорганической химии, и кончая веществами, являющихся предметом химии живого. Из вышесказанного также следует, что многие исследователи изучали вещества, связанные невалентными взаимодействиями, еще задолго до первой формулировки термина супрамолекулярная химия . Более того, большинство терминов, вошедших в это понятие, было предложено в конце XIX и начале XX веков.

Клатраты (термин в его современном понимании предложен в 1947 г Пауэллом) или соединения включения (термин преложен Шленком в 1949 г), видимо впервые были замечены Пьером, Бертло и Кронстедтом в 40-50 г.г. XVIII века, но детально описаны Пристли в 1778 г («аномальный» лед – гидрат сернистого газа). Пелетье и Карстен в 1785 г описали образование «окиси мурия», которая в действительности оказалась гидратом элементарного хлора, что доказал Дэви в 1811 г. При этом состав этой «окиси» (Cl 2 ×10H 2 O) был определен в 1823 г. Фарадеем, а структура только в 1952 г. Штакельбергом и Мюллером.

Сейчас под клатратами понимают надмолекулярные соединения включения , образованные только за счет вандерваальсовых взаимодействий молекул-гостей с молекулами другого сорта, называемых хозяйскими , из которых построен каркас с полостями для приема гостя. Термодинамическая устойчивость таких соединений обеспечивается подходящей геометрией расположения молекул гостей в полости хозяина (пространственное соответствие, комплементарность ), благодаря чему образование слабых, но многочисленных межмолекулярных связей приводит к некоторому выигрышу энергии по сравнению с энергией составляющих клатрат компонентов. При этом каких-либо макроизменений, обычно проявляющихся при образовании более прочных связей, в компонентах соединений включения не обнаруживается. Соотношение компонентов в клатрате, т.е. его стехиометрия, может быть переменным, как в соединениях гидрохинона с инертными газами, так и строго определенным, как в соединениях мочевины с парафинами, в большинстве газовых гидратов или того же гидрохинона, но образующего соединения с сероводородом или фуллеренами.

В значительной степени стехиометрия определяется устойчивостью каркаса хозяина. Если каркас в отсутствие гостя неустойчив или вообще не существует, то образуется клатратное соединение постоянного состава. Если каркас хозяина термодинамически устойчив и в отсутствие гостя, то в этом случае образуются твердые растворы на основе исходной a-модификации, т.е. взаимодействие не сопровождается образованием новой фазы, хотя некая стабилизация общей структуры и происходит. Иными словами, клатратный каркас в последнем случае метастабилен по отношению к исходной a-модификации, но при некоторой степени заполнения пустот молекулами или атомами гостя становится устойчивей ее и образует клатрат переменного состава.

Следует подчеркнуть, что в подавляющем большинстве случаев хозяин не существует в той форме, в которой он существует в виде клатрата. Нужная для образования клатрата модификация хозяина и конформация гостя достигаются при их прямом или каскадном взаимодействии. В последнем случае имеет место ряд последовательных стадий клатратообразования. Например, глобин (белковая молекула гема) включает сперва без валентного взаимодействия железопорфириновый комплекс, который при этом приобретает конформацию чаши и который затем включает в себя молекулу кислорода или окись углерода. Это положение расходится с более простым, но в силу ряда других причин более распространенным предположением Фишера о том, что высокая специфичность ферментативных реакций обусловлена комплементарностью (принцип ключ-замок) субстрата и фермента. Вообще роль белкового окружения фермента, содержащего металлический центр, как в глобине, или металлический кластер, как в нитрогеназе или ферродоксинах, отнюдь не вторична. Это система, в которой ни один компонент не работает без другого. Наиболее яркий пример этому - безуспешные попытки в 70-80 г.г. смоделировать работу нитрогеназы, используя только Fe-Mo-S кластер кофактора нитрогеназы.

По форме полости в клатрате соединения включения классифицируются на крипто-клатраты (клетки), тубулато-клатраты (трубки) и интеркалато-клатраты (слоистые соединения включения). По характеру взаимодействия «гость-хозяин» они подразделяются на простые клатраты , например канальные соединения мочевины с парафинами, образующиеся только за счет вандерваальсовых сил (межмолекулярных невалентных взаимодействий), координато-клатраты , например клеточный гидрат триметиламина, образованный за счет водородных связей (при специфических взаимодействиях) (цельное название – криптато-координато-клатрат), и клатрато-комплексы – более прочные образования с донорно-акцепторными связями.

Существует также классификация по характеру связей в хозяйском каркасе. Это решетчатые клатраты , в который хозяйский каркас построен из молекул, связанных относительно слабыми связями, например, водородными. Типичными представителями клатратов этого типа являются гидрохинон и фенолы, имеющие ОН-группы. Через эти группы строится каркас, состоящий из шести хозяйских молекул (рис. 16). Термическая стойкость такого клатрата может быть на несколько десятков градусов выше температуры плавления каждого из компонентов.

Рис. 16. Полость хозяина, составленная из шести молекул гидрохинона.

В макромолекулярных клатратах каркас построен из ковалентносвязанных фрагментов. В качестве примера можно привести интенсивно исследующиеся в последние годы каркасные координационные соединения или MOF-структуры (metal-organic framework’s) (рис. 17), которые мы рассмотрим ниже при обсуждении проблем аккумулирования газов (метана, водорода, ацетилена, двуокиси углерода) или клатросил с формульной единицей SiO 2 . В полостях последнего могут располагаться те же гости, что и

Рис. 17. MOF’s на основе карбоксилатов цинка с линкерами различной структуры. Желтый шар – объем полости в полимере

в гидратах, поскольку их размеры близки, но термическая устойчивость их существенно выше и для клатрата с триметиламином может достигать 3 часов экспозиции при 950 С о против 200 С о в гидрате.

В мономолекулярных клатратах хозяин состоит из крупных молекул, каждая из которых имеет одну или несколько полостей. Эти соединения могут существовать и в растворах. Примером подобных клатратов является окрашенное в синий цвет соединение иода с амилозой крахмала.

Наиболее типичными и интересными среди этих веществ являются клатратные гидраты, которые могут содержать как газовые компоненты, о них мы поговорим ниже, так и более сложные молекулы, в том числе и ионные комплексы, например соли тетраалкиламмонийных оснований. В последнем случае водный каркас строится вокруг аниона, а катион, внедряясь в большие полости каркаса, стабилизирует клатрат в целом. Аналогичный эффект наблюдается и в ряде клатратов на основе координационных соединений, в каркас которых внедряются молекулы растворителя и стабилизируют их (эффект контактной стабилизации). Так, пиридил-роданидные комплексы меди или цинка сами по себе неустойчивы, но их клатраты с бензолом вполне стабильны. Зачастую, однако, молекулы гостя не влияют на свойства хозяина и поэтому образующиеся с их участием соединения иногда называют «упаковочными комплексами». Этот очень распространенный тип соединений внедрения не только в координационной, но и металлорганической химии, видимо, впервые наблюдался Гоффманом в 1897 г на примере комплекса никеля состава Ni(CN) 2 NH 3 ×C 6 H 6 .

Весьма распространенными являются клатраты на основе мочевины (рис. 18). В клатратном каркасе ее b-модификации все Н-связи распрямлены и плотность резко снижена по сравнению с исходной a-модификацией. В силу этого она сама по себе не может существовать и стабилизируется, включая в свои трубчатые полости молекулы гостя -. в данном случае парафина.

Слоистые соединения, соединения внедрения, интеркалированные соединения – все это один класс клатратных соединений, в которых атомы или молекулы гостя располагаются в межслоевом пространстве или геометрических пустотах кристаллической решетки. Наиболее известные среди них - соединения внедрения в графит и фуллериды, классифицированные выше как ион-радикальные комплексы с переносом заряда или интеркалато-клатраты.

Замечательными по своему разнообразию являются клатраты гидрохинона (рис. 19), существующего в трех устойчивых модификациях и дополнительно дающего термодинамически нестабильный d-каркас, возникающий только в результате реакции клатратообразования с инертными газами, сернистым ангидридом, двуокисью углерода,

Рис. 18. Молекулы n-парафина в канальных полостях клатратного каркаса из молекул мочевины.

галоидными алкилами, метаном, и даже огромными по размеру молекулами фуллерена (рис. 20) и т. д.

Среди всех известных клатратов с практической точки зрения наибольший интерес представляют газовые, прежде всего метановые гидраты. Особый интерес к ним возник после открытия метановых гидратов в недрах Земли и океана, запасы топлива в которых превышают все другие запасы топлива вместе взятые. Предполагается, что многие глобальные катастрофы на Земле, в том числе в период триаса 230 млн. лет назад и в

Рис. 19. Полость в структуре β-гидрохинона с включенной молекулой ксенона

Рис. 20. Фрагмент δ-структуры соединения С 60 ∙3Q

эпоху палеоцена 55 млн. лет назад, вызвано катастрофическими выбросами в атмосферу миллиардов тонн метана, находившегося в «стационарных» условиях в глубинах океана в виде газовых гидратов под давлением и при низких температурах. Или катастрофа, произошедшая 8000 лет тому назад на берегах Норвегии, когда газ, выделившийся с шельфа площадью несколько тысяч кв.км., поднял цунами высотой несколько сотен метров. Уже в наше время (1986 г) спонтанное и неожиданное разложение газовых гидратов кратерного озера Ниос (Камерун), содержащих сероводород, сернистый газ, метан, двуокись углерода привело к гибели 1700 человек. Одна из гипотез, объясняющая тайны Бермудского треугольника, также основана на предположении выделения из глубин Океана огромных газовых пузырей метана. Еще более впечатляет гипотеза, объясняющая причины современного глобального потепления климата Земли. Она также связана с метаном: явное увеличение средних температур атмосферы и Океана привязывается к увеличению его количества в верхних слоях атмосферы, что приводит к увеличению поглощения теплового излучения. На него также пало частичное подозрение как на реагент, разрушающий озоновый слой. Однако все это относится к области научных предположений, хотя в настоящее время имеется достаточно много научно-обоснованных гипотез нестабильности газовых гидратов и причин их вызывающих (последнее – каналы внутри твердого слоя газового гидрата, начинающиеся от придонных трещин земной коры и обеспечивающие приток тепла в этот слой), а иногда и фантазий. Реальность же в том, что в одном кубометре «метанового льда», единичный фрагмент которого построен из 32 молекул воды и 8 молекул метана, содержится 164 кубометра природного газа, что всего лишь в 2-2.5 раза меньше, чем в жидком метане! И в таком виде его хранится 10000-15000 гигатонн! К сожалению, а может быть и к счастью, в настоящее время нет промышленных технологий использования этого богатства, но работы в этом направлении ведутся и, учитывая печальный «опыт» Норвегии и Камеруна, вряд ли однозначно положительно можно будет оценить успешное окончание этих работ.

Структура газовых гидратов определяется каркасом, построенным из молекул воды, связанных водородными связями. В настоящее время известно более 15 таких каркасов, имеющих большие (основные) и малые (дополнительные или стабилизирующие) полости. Полиэдры, описывающие полости, также самые различные. Из них наиболее типичны 12, 14, 15, 16 и 20- гранники, обычно обозначаемые, соответственно, первыми буквами греческого алфавита – D, T, P, H и Е (рис. 21) (существуют и несколько отличные от этого обозначения полостей газовых гидратов).

Их многообразие определяется тетраэдрической координацией молекул воды и заметной гибкостью Н-связи по длине и валентному углу, что дает возможность строить различные каркасы, мало отличающиеся по энергиям. Длины связей и валентные углы изменяются в пределах «основного» положения типичного для обычного льда –2.76 Å и

Рис. 21. Полости-многогранники в водных клатратных каркасах (в вершинах многогранников расположены атомы кислорода, ребро обозначает водородную связь)

109.5 о. Образующиеся при этом решетки и, соответственно, составы соединений газовых гидратов также достаточно разнообразны и помимо всего зависят от давления, при котором они находятся. Для газовых гидратов наиболее характерны кубические КС-I и КС-III решетки и гексагональная ГС-III (в англоязычной литературе – structure H) решетки с формулами элементарной ячейки 6Т·2D·46H 2 O, 8H 16D·136H 2 O и E·2D’·3D·34H 2 O, в которых помимо количества каркасообразующих молекул воды указывается количество молекул или атомов гостя и буквами тип пустот, которые они занимают. Известны также тетрагональные решетки, которые обычно образуются при высоких давлениях. В качестве каркасов рассматриваются и рыхлые формы льда лед Ih, лед Ic и лед II, существующие при высоких давлениях. На рис. 22 приведена структура одного из таких газовых (метановых) гидратов в общепринятом обозначении полостей.

Стабильность газовых гидратов зависит от структуры каркаса (степени и качества заполнения больших и малых полостей), температуры, давления и некоторых специально вводимых добавок. Так, решетка ГС-III, имеющая самую большую полость Е, не стабильна, если не будут заполнены малые полости D. В то же время минимальные Р,Т- условия, при которых становится устойчивым метановый гидрат, - 0 о С и давление 25-30 атм. С увеличением давления его устойчивость возрастает и при 2-2.5 Кбар он существует уже при 40-50 о С. Введение в систему третьего компонента – тетрагидрофурана или метилциклогексана в еще большей степени стабилизирует систему и снижает Р,Т параметры устойчивости метанового гидрата. При этом органические добавки также включаются в полости газового гидрата, образуя смешанные соединения (рис. 23).

Рис. 22. Структурный фрагмент КС-1 с молекулами метана в D и Т полостях

Рис. 23. Структура метановых гидратов с добавками тетрагидрофурана (а) и метилциклогексана (б)

При давлениях до 15 Кбар и обычных или пониженных температурах становятся устойчивыми клатратогидраты неона, аргона и даже водорода составов Н 2 /Н 2 О=1 и Н 2 /2Н 2 О=1. Последние построены на основе каркасов из льда II или льда Iс и содержат 11.2 и 5.3 масс. % Н 2 , соответственно. Цифры в других случаях труднодостижимые, например, в металлических гидридах или специально синтезированных сорбентах на основе углерода, цеолитов или низкоплотных комплексных соединений весовое количество водорода существенно ниже. Подобные вещества могут быть стабильны при низких температурах даже при обычном давлении, а при высоких давлениях (>300 атм) или в присутствии небольшого количества третьего компонента, например, тетрагидрофурана или алкиламмонийной соли (рис. 24) могут быть вполне устойчивыми и при комнатной температуре и сравнительно невысоком избыточном давлении (<100 атм).

Комбинация двух газообразных гостей - водорода и метана и одного жидкого - тетрагидрофурана на сегодняшний день является уникальной по содержанию горючего

Рис. 24. Структура клатрата, образующегося в системе Н 2 -Н 2 О-NR 4 Br, и зависимость его устойчивости от давления и температуры.

компонента – водорода. Рассчитанное количество водорода в соединении состава (Н 2) 4 ·СН 4 33.4 масс. % и существует оно при 2 Кбар и температуре 77 К, в то время как при 300 К требуется давление 50 Кбар. Но это пока неподтвержденные данные, которые могут быть далеки от реальности.

В последние годы заметно взросли исследования клатратов на основе циклодекстрина – циклического олигосахарида, построенного из 6, 7 или 8 d-гликопиранозных звеньев (рис. 25.

Геометрию молекулы циклодекстрина можно представить в виде корзины без дна, на верхней части которой располагаются 12-16 вторичных ОН-групп, а на нижней 6-8 первичных или их функциональные заместители («хвосты с кисточкой»). Эти вещества, которые могут, в зависимости от числа гликозидных звеньев, изменять диаметр верхней части «корзины без дна» от 5.7 до 9.5 Å (и, соответственно, нижней, но в меньших пределах), видимо, исключительно за счет вандерваальсовых взаимодействий включают в свою полость самые разнообразные субстраты. В ряде случаев это позволяет произвести не

Рис. 25. Строение молекулы циклодекстрина

только их селективный отбор, но и провести в полости циклодекстрина селективную каталитическую реакцию и обычные синтетические реакции (т.е. работать как «нанореактор»), но приводящие к необычным и труднодоступным продуктам, таким, например, как катенаны, ротоксаны, полиротоксаны и трубки, т.е. компонентам или заготовкам, используемым в качестве строительных блоков при получении наноразмерных структур или более сложных объектов супрамолекулярной химии.

Помимо решения чисто химических задач циклодекстрин начал успешно использоваться в биохимии, например для определения in vitro противовирусной или противогрибковой активности производных ферроцена. Модель структуры комплекса, использующегося для этой цели, показана на рис. 26.

Рис. 26. Модель структуры комплекса циклодекстрина с замещенным ферроценом.

Несмотря на очень широкое распространение в природе, большое внимание исследователей к клатратным соединениям и их длительную историю, все же началом формирования понятия супрамолекулярная химия и выделение ее в самостоятельную область знания следует считать открытие Педерсеном краун-эфиров (на рис. 27 приведены модели структур наиболее известных краун-эфиров) и обнаружение их уникальной способности к захвату в свою полость катионов щелочных (рис. 28-30) металлов. Прочность и геометрия образующихся комплексов или краун-соединений обусловлены многими причинами, но, прежде всего, геометрическим соответствием размера полости размеру гостя (принцип геометрического соответствия ): большая по размеру молекула или ион не образует внутриполостных соединений, хотя и могут координироваться снаружи лиганда, а меньшие по размеру дают менее прочные внутриполостные



Рис. 27. Графическое изображение некоторых краун-эфиров

соединения, поскольку требуют более глубокой перестройки структуры макроцикла. Однако в любом случае комплексообразование сопровождается перестройкой структуры краун-эфира иногда в симметричную коронообразную молекулу, венчающую, как голову монарха, ион металла. Последовавший за этим открытием синтез криптандов, аза- и сера-краун-эфиров и их гетероаналогов существенно расширил ассортимент и возможности полициклических молекул в плане их применения в аналитической химии, межфазном катализе, экстракции и т.д. Однако все эти соединения недостаточно хорошо организованы для приема гостя. Их выравнивание требует дополнительной энергии, что сказывается на общей устойчивости комплекса.

На следующем этапе развития химии макроциклических молекул были синтезированы сферанды, кавитанды, карцеранды, геми- и криптосферанды, каликсарены, катапинады и лариаты (рис. 31-36). Большая часть этих веществ имеет жесткую хорошо организованную структуру, которая идеально подходит для приема гостя. Например, в сферандах и кавитандах это чаша, в карцерандах это емкая полость (пещера).

Здесь возникает вопрос, а правомерно ли выделение соединений макроциклов с ионами металлов в самостоятельный от классических координационных соединений, например, сольватов, образованных n-донорами, или гидратов. Однозначного ответа у меня нет. По своей сути – это координационные соединения. Прежде всего, в большей части ионных краун-соединениях связь между компонентами обеспечивается за счет обычной д.-а. связи и в комплексах даже может иметь место валентный контакт между ионом и донорными атомами кислорода, азота или серы, причем образование этих веществ настолько термодинамически выгодно, что их можно получить прямым


Рис. 28. Модель структуры комплекса дибензо-18-краун-6 с ионом калия состава 1:1

Рис. 30. Модель структуры комплекса дибензо-18-краун-6 с ионами натрия состава 2:1

Рис. 29. Модель структуры комплекса 12-краун-4 с ионом калия состава 2:1


взаимодействием макроцикла с металлом в подходящем растворителе. При этом образуются такие удивительные ионные соединения, как алкалиды состава М + ×МЦ×М’ - (M=M’ – Li, Na, K, Rb, Cs; M’- Au), еще более необычные состава Na 2 2- ∙МЦ∙Са 2+ , Na - ∙МЦ - ∙Ва 2+ (рис.) или электриды М + ×МЦ×е _ (МЦ- макроциклический лиганд). Ионное строение

Рис. Структура азакриптанада Ba +2 (H 5 Aza 222) - Na - ∙2MeNH 2 . Черные шары - катионы бария, серые - анионы натрия

этих веществ является безусловным доказательством валентных взаимодействий в молекуле и по этому признаку алкалиды и электриды нельзя отнести к предмету СХ. Но в то же время их нельзя отнести и к веществам, рассматриваемым в рамках координационной химии, прежде всего по механизму образования, составу, строению и свойствам, которые ближе к растворам щелочных металлов в жидком аммиаке. Но и без этого, в целом, особенности свойств краун-соединений, их состав и строение резко отличаются от классического варианта д.-а. комплексов. В реакциях с КЭ «сольватации» подвергаются такие ионы, как аммоний и алкиламмониевые основания, ионы тяжелых щелочных и щелочно-земельных металлов, которые не сольватируются другими «классическими» лигандами, хотя могут образовывать достаточно прочные комплексы с хелатирующими лигандами, например диглимом, но их не относят к предмету СХ. При этом структура и прочность образующихся соединений, например комплексов 18-К-6 с ионами калия и аммония,


Рис. 31. Модель структуры одного из криптандов (аминоэфиров)

Рис. 32. Модель структуры криптанда с ионом металла в полости

Рис. 33. Модель структуры одного из простейших каликсаренов

Рис. 34. Модель структуры криптосферанда

Рис. 35. Молекула сферанда

Рис. 36. Модель структуры кавитанда


имеющих приблизительно одинаковый размер, также примерно одинакова, хотя энтальпии этих реакций почти всегда близки к нулю, а двигателем термодинамической

предпочтительности является изменение энтропийного фактора. Вследствие этого термин «сольватация» ограниченно применим к краун-соединениям, поскольку в химии д.-а. комплексов имеет несколько другой смысл.

Уже из факта существования алкалидов и электридов следует, что могут быть получены макроциклические соединения специфические только по отношению к анионам. Действительно, такие соединения на основе макроциклических перфторарилмеркуратов были получены и успешно применены как ловушки анионов.

Соединения нейтральных молекул с макроциклическими молекулами уже, безусловно, можно отнести к предмету СХ. Таких соединений в настоящее время известно тысячи. Как минимум, их образование сопровождается процессами распознавания (для простых структур, типа КЭ или криптандов, это в основном геометрическое или, как говорят, «сферическое» соответствие, для более сложных это уже может быть и «тетраэдрическое». «линейное» или даже электронное распознавание), самоорганизации (подстройки структуры хозяина под структуру гостя, спонтанное возникновение порядка в пространстве и /или во времени) или даже спонтанной самосборки – процесса более высокого порядка, который приводит к образованию сложных супраструктур, состоящих из нескольких компонентов. Как видно, все эти термины пришли в СХ из биохимии, в которой также рассматриваются вопросы самосборки (репликации) молекул нуклеиновых кислот в ходе матричного синтеза белков, образование металлоферментов и пр. В этом смысле все эти биохимические объекты также являются объектами супрамолекулярной химии.

Метод матричного синтеза с успехом применяет не только природа, но и химики в лабораториях, правда под другим названием – темплатный или темплейтный синтез. В частности его использование привело к разработке эффективного способа получения катенанов – органических молекул типа «кольцо в кольце» («классические» варианты темплатного синтеза фталоцианинов и порфириновых оснований с участием ионов переходных металлов мы рассмотрим в разделе координационная химия). Использование контейнерных соединений типа карцеранов как объемной матрицы, ограничивающий реакционный объем и защищающий создаваемые молекулы от внешнего воздействия, т.е. в качестве нанореактора, позволило не только осуществить в их полости синтез неуловимого циклобутадиена – важного для подтверждения теории химической связи (проблема ароматичности и антиароматичности) вещества, но и сохранить его при обычных условиях в течение нескольких десятков минут. В стандартном органическом синтезе это вещество не могли получить более ста лет, а в условиях криохимического способа синтеза оно хотя и было получено, но даже небольшой нагрев приводил к его гибели.

Разделение изотопов (хотя реализация этой технологии все еще остается под большим вопросом и с моей точки зрения вряд ли осуществима) и изомеров, в том числе и стерео-, фотодиагностика и фототерапия рака, селективный перенос ионов через клеточные мембраны, связывание и вывод вредных веществ из организма, мембраны для ионселективных электродов и оптодов, и, наконец, материаловедческий аспект, связанный с конструированием молекулярных устройств типа молекулярных переключателей, реагирующих, например, на изменение рН среды – вот далеко не полный перечень применения и возможного применения макроциклических соединений.

Более фантастические планы использования подобных соединений связаны с построением на их основе молекулярного компьютера. Для этого необходимо объединение нескольких типов молекул и созданием молекулярного ансамбля, каждый элемент которого выполняет функцию, присущую микропроцессору. Безусловно, это сложнейшая задача, которая требует не только изучения механизмов самосборки молекулярных агрегатов и определения условий их адаптации к информационным технологиям, но и, в принципе, фактически создания новой идеологии и новой технологии с приставкой нано . На пути решения этой сложнейшей задачи уже разработаны подходы к созданию молекулярных переключателей, например за счет фотохимически индуцированных реакций изомеризации молекул спиропиранов и спирооксазинов. Возможность варьирования структуры и состава этих соединений в очень широких пределах принципиально позволяет подогнать их свойства (квантовые выходы, времена жизни фотоизомеров, спектральные характеристики и т.д.) к требованиям того или иного молекулярного устройства. Помимо фотохромных систем рассматриваются и соединения с особыми магнитными свойствами, например, некоторые комплексы железа способные к переходу из низкоспинового в высокоспиновое состояние, происходящим с некоторым температурным гистерезисом.

В качестве возможного молекулярного носителя памяти рассматриваются трехмерные (3-D или многослойные устройства) системы, состоящие из слоев или элементов, построенных, например, из тех же молекулярных переключателей, одна из форм которых способна к флюоресценции, что и позволяет считывать информацию.

В качестве проводников между молекулярными переключателями и молекулярными элементами памяти на настоящий момент наиболее перспективными считаются электропроводящие полимеры, типа полиацетилена, полианилина, молекулярные комплексы карбина типа известного LL”Re(C) 20 ReLL’ или простых цепочек карбина типа обнаруженных недавно при изучении графеновых слоев (рис. 37). Единственный вопрос,

Рис. 37. Схема образования полииновой цепочки из атомов углерода (карбина), возникающей при разломе графенового листа, и расстояния между ними.

который возникает при обсуждении проблемы, каким образом собрать все эти элементы в одно устройство или супрамолекулярный комплекс: используя принцип комплементарности (молекулярного распознавания), который в супрамолекулярной химии, видимо, не имеет такого «мистического» значения как в химии живого, поскольку уже имеется достаточно много примеров, где он в явном виде никак не просматривается, например в т.н. mixed structure, хотя в этом случае комплементарность может действовать на атомном уровне или уровне групп, или какой-либо другой принцип, пока остается открытым. Однако интенсивные работы в этом направлении ведутся многими научными коллективами, поскольку цена вопроса очень велика. В этом отношении уже достигнуты очень серьезные успехи, особенно в сборке двумерных структур на основе мономолекулярных пленок Ленгмюра-Блоджет, наслаиваемых, например через 15-20 атомные металлокластеры, и создание с использованием этого сэндвича транизистора.

Размеры молекулярных структур допускают размещение на 1 см 2 поверхности примерно 10 13 логических элементов, что в сотни тысяч раз больше плотности сборки, достигаемой в современных микрочипах. Время отклик в таких устройствах можно довести до фемтосекунд, тогда как самые быстрые современные устройства оперируют в наносекундном диапазоне. В итоге можно ожидать 10 11 -разового увеличения эффективности молекулярного компьютера по сравнению с наиболее мощными современными средствами обработки информации.

В заключение следует все же отметить, что предмет супрамолекулярной химии находится в стадии становления, его границы размыты, мода приводит к тому, что под звучное название, как под знамя, втискиваются объекты, которым было бы уютнее находиться в рамках традиционных и устоявшихся дисциплин. Но существуют и обстоятельства, требующие более детального разбора причин и следствий. Такие случаи часты, например, в современных типах молекулярных устройств, позволяющих конструировать фотокаталитические системы для конверсии солнечной энергии в химическую так, как это показано на рис. 38. В этой «конструкции» порфириновый комплекс является донором электронов, которые через проводящий спейсер с системой сопряженных связей, например состоящей из одномерной углеродной цепочки (карбина), поступают в «депо электронов» - молекулу фуллерена способную акцептировать до 12 электронов.

Рис. 38. Схема молекулярного устройства для преобразования солнечной энергии.

На рис. 39 показана уже реально разрабатываемая фотоактивная система – донорно-акцепторный гибрид, в котором молекулой продуцирующей электроны является одностенная углеродная нанотрубка, связанная через фрагмент краун-эфира с молекулой фуллерена.

Несколько иная ситуация рассматривалась выше при описании попыток создания молекулярного компьютера, часть которого, как полагают, также будет функционировать с участием фотохимически индуцированных реакций. Но возникает общий вопрос, каким образом будут связаны все компоненты этого компьютера или преобразователя солнечной энергии в фототок валентными или невалентными взаимодействиями? Если невалентными, то патетика вопроса исчезает, если же валентными, тогда возникает другой вопрос, а собственно чем этот сложный молекулярный ансамбль, составленный, как минимум, из трех компонент, отличается от других сложных многоатомных органических или

Рис. 39. Фотоактивная супрамолекулярная система на основе двух различных по природе углеродных молекул.

металлорганических молекул? Только интересным функциональным свойством? Но и в последних оно может присутствовать. Именно поэтому относить к предмету супрамолекулярной химии сложные молекулы, в которых функций-определяющие компоненты ковалентно связаны друг с другом напрямую или через спейсеры и это объединение только усиливает это свойство, мне представляется нецелесообразным (например, моле

Химия, основные понятия которой мы рассмотрим, - это наука, которая изучает вещества и их превращения, происходящие с изменением строения и состава, а значит, и свойств. Прежде всего необходимо определить, что же означает такой термин, как "вещество". Если говорить о нем в широком смысле, оно представляет собой форму материи, которая имеет массу покоя. Веществом является любая элементарная частица, к примеру, нейтрон. В химии же это понятие используется в более узком значении.

Для начала кратко опишем основные термины и понятия химии, атомно-молекулярного учения. После этого мы поясним их, а также изложим некоторые важные законы данной науки.

Основные понятия химии (вещество, атом, молекула) знакомы каждому из нас еще со школы. Ниже дана краткая характеристика их, а также других, не столь очевидных терминов и явлений.

Атомы

Прежде всего все вещества, которые изучаются в химии, сложены из маленьких частиц, называемых атомами. Нейтроны же не являются объектом изучения этой науки. Также следует сказать, что атомы могут соединяться друг с другом, в результате чего формируются химические связи. Для того чтобы разорвать эту связь, необходима затрата энергии. Следовательно, атомы в обычных условиях по одиночке не существуют (за исключением "благородных газов"). Они соединяются друг с другом хотя бы попарно.

Непрерывное тепловое движение

Непрерывным тепловым движением характеризуются все частицы, которые изучает химия. Основные понятия этой науки нельзя изложить, не рассказав о нем. При непрерывном движении частиц пропорциональна температуре (однако следует заметить, что энергии у отдельных частиц разные). Екин = kT / 2, где k - постоянная Больцмана. Эта формула справедлива для любого вида движения. Так как Екин = mV 2 / 2, движение массивных частиц более медленное. К примеру, если температура одинакова, молекулы кислорода в среднем перемещаются в 4 раза медленнее, чем молекулы углерода. Это происходит потому, что их масса больше в 16 раз. Движение бывает колебательным, поступательным и вращательным. Колебательное наблюдается и в жидких, и в твердых, и в газообразных веществах. А вот поступательное и вращательное легче всего осуществляется в газах. В жидкостях оно труднее, а в твердых веществах - еще более трудно.

Молекулы

Продолжим описывать основные понятия и определения химии. Если атомы объединяются между собой, образуя небольшие группы (их называют молекулами), такие группы принимают участие в тепловом движении, выступая как единое целое. До 100 атомов присутствует в типичных молекулах, а их число у так называемых высокомолекулярных соединений может достигать 105.

Немолекулярные вещества

Однако атомы часто объединяются в огромные коллективы количеством от 107 до 1027. В этом виде они уже практически не принимают участие в тепловом движении. Данные объединения уже мало напоминают молекулы. Они больше похожи на куски твердого тела. Вещества эти принято называть немолекулярными. В этом случае тепловое движение осуществляется внутри куска, а сам он не летает, подобно молекуле. Есть и переходная область размеров, в которую включаются объединения, состоящие из атомов в количестве от 105 до 107. Данные частицы являются или очень большими молекулами, или же представляют собой маленькие крупицы порошка.

Ионы

Необходимо отметить, что атомы и их группы могут обладать электрическим зарядом. В этом случае они называются ионами в такой науке, как химия, основные понятия которой мы изучаем. Так как одноименные заряды всегда отталкиваются друг от друга, вещество, где присутствует значительный избыток тех или иных зарядов, не может быть устойчиво. Отрицательные и положительные заряды в пространстве всегда чередуются. А вещество в целом остается электронейтральным. Заметим, что заряды, считающиеся в электростатике большими, с точки зрения химии ничтожны (на 105-1015 атомов - 1е).

Объекты изучения в химии

Нужно уточнить, что объектами изучения в химии выступают те явления, в которых не возникают и не разрушаются атомы, а только лишь перегруппировываются, то есть по-новому соединяются. Одни связи разрываются, в результате чего формируются другие. Иными словами, новые вещества появляются из атомов, бывших в составе исходных веществ. Если же и атомы, и существующие между ними связи сохраняются (к примеру, при испарении молекулярных веществ), то эти процессы относятся к области изучения уже не химии, а молекулярной физики. В случае когда атомы образуются или разрушаются, речь идет о предметах изучения ядерной или атомной физики. Однако граница между химическими и физическими явлениями размыта. Ведь деление на отдельные науки условно, тогда как природа неделима. Поэтому химикам очень полезно знание физики.

Основные понятия химии кратко были нами изложены. Теперь предлагаем вам подробнее их рассмотреть.

Подробнее об атомах

Атомы и молекулы - это то, с чем у многих ассоциируется химия. Основные понятия эти необходимо четко определить. То, что атомы существуют, две тысячи лет назад было гениально угадано. Затем, уже в 19 веке, у ученых появились экспериментальные данные (пока еще косвенные). Речь идет о кратных отношениях Авогадро, законах постоянства состава (ниже мы рассмотрим эти основные понятия химии). Атом продолжили исследовать в 20 веке, когда возникло множество уже прямых экспериментальных подтверждений. Они были основаны на данных спектроскопии, на рассеянии рентгеновских лучей, альфа-частиц, нейтронов, электронов и др. Размер данных частиц составляет примерно 1 Е = 1о -10 м. Масса их - около 10 -27 - 10 -25 кг. В центре этих частиц находится положительно заряженное ядро, вокруг которого движутся электроны с отрицательным зарядом. Размер ядра составляет около 10 -15 м. Получается, что электронная оболочка определяет размеры атома, однако при этом его масса практически полностью сосредоточена в ядре. Еще одно определение следует ввести, рассматривая основные понятия химии. - это вид атомов, заряд ядра которых одинаков.

Часто встречается как мельчайшей частицы вещества, химически неделимой. Как мы уже отмечали, деление явлений на физические и химические условно. А вот существование атомов безусловно. Поэтому химию лучше определять через них, а не наоборот, атомы через химию.

Химическая связь

Это то, благодаря чему атомы удерживаются вместе. Она не позволяет им разлететься под влиянием теплового движения. Отметим основные характеристики связей - это межъядерное расстояние и энергия. Это также основные понятия химии. Длина связи определяется экспериментально с достаточно высокой точностью. Энергия - тоже, однако не всегда. К примеру, невозможно объективно определить, какова она по отношению к отдельной связи в сложной молекуле. Однако энергия атомизации вещества, необходимая для разрыва всех имеющихся связей, определяется всегда. Зная длину связи, можно определить, какие атомы являются связанными (у них короткое расстояние), а какие - нет (длинное расстояние).

Координационное число и координация

Основные понятия аналитической химии включают в себя два этих термина. Что же они обозначают? Давайте разберемся.

Координационное число представляет собой количество ближайших соседей данного конкретного атома. Другими словами, это число тех, с кем он связан химически. Координация представляет собой взаимное расположение, вид и число соседей. Другими словами, это понятие более содержательно. К примеру, координационное число азота, свойственное молекулам аммиака и азотной кислоты, одинаково - 3. Однако координация у них разная - неплоская и плоская. Она определяется независимо от представлений о природе связи, тогда как степень окисления и валентность - понятия условные, которые созданы для того, чтобы заранее предсказывать координацию и состав.

Определение молекулы

Мы уже касались этого понятия, рассматривая основные понятия и законы химии кратко. Теперь остановимся на нем более подробно. В учебниках часто встречается определение молекулы как наименьшей нейтральной частицы вещества, которая обладает его химическими свойствами, а также способна существовать самостоятельно. Необходимо отметить, что это определение в настоящий момент уже устарело. Во-первых, то, что все физики и химики именуют молекулой, свойств вещества не сохраняет. Вода диссоциирует, однако для этого необходимы минимум 2 молекулы. Степень диссоциации воды - это 10 -7 . Другими словами, этому процессу может подвергаться лишь одна молекула из 10 млн. Если у вас имеется одна молекула, или есть даже сто, вы не сможете получить представления о ее диссоциации. Дело в том, что тепловые эффекты реакций в химии обычно включают энергию взаимодействия между молекулами. Поэтому их нельзя найти по одной из них. И химические, и физические вещества можно определить лишь по большому коллективу молекул. Кроме того, существуют вещества, у которых способная существовать самостоятельно "наименьшая" частица неопределенно велика и очень отличается от привычных молекул. Молекула фактически представляет собой группу атомов, электрически не заряженную. В частном случае это может быть один атом, к примеру, Ne. Эта группа должна быть способна участвовать в диффузии, а также в других типах теплового движения, выступая как единое целое.

Как вы видите, не так просты основные понятия химии. Молекула - это то, что необходимо тщательно изучить. Она обладает своими собственными свойствами, а также молекулярной массой. О последней мы сейчас и поговорим.

Молекулярная масса

Как определить молекулярную массу на опыте? Один способ - основываясь на законе Авогадро, по относительной плотности пара. Самым точным методом является масс-спектрометрический. Электрон выбивают из молекулы. Полученный в результате этого ион сначала разгоняют в электрическом поле, затем отклоняют его магнитным путем. Отношение заряда к массе определяется именно величиной отклонения. Существуют также методы, основанные на свойствах, которыми обладают растворы. Однако молекулы во всех этих случаях непременно должны быть в движении - в растворе, в вакууме, в газе. Если они не движутся, невозможно объективно рассчитать их массу. Да и само их существование в этом случае трудно обнаружить.

Особенности немолекулярных веществ

Говоря о них, отмечают, что они состоят из атомов, а не из молекул. Однако это же справедливо и по отношению к благородным газам. Данные атомы движутся свободно, следовательно, лучше считать их одноатомными молекулами. Однако не это главное. Важнее, что в немолекулярных веществах имеется очень много атомов, которые связаны воедино. Нужно заметить, что деление всех веществ на немолекулярные и молекулярные является недостаточным. Деление по связности более содержательно. Рассмотрим, к примеру, различие в свойствах графита и алмаза. Оба они являются углеродом, однако первое - мягкое, а второе - твердое. Чем же они отличаются друг от друга? Разница заключается как раз в их связности. Если рассмотреть структуру графита, мы увидим, что прочные связи имеются лишь в двух измерениях. А вот в третьем очень значительны межатомные расстояния, следовательно, нет прочной связи. Графит легко скользит и раскалывается по этим слоям.

Связность структуры

Иначе ее называют пространственной размерностью. Она представляет собой количество измерений пространства, характеризующихся тем, что в них непрерывна (почти бесконечна) система остов (прочных связей). Значения, которые она может принимать, - 0, 1, 2 и 3. Следовательно, необходимо различать трехмерно-связные, слоистые, цепочечные и островные (молекулярные) структуры.

Закон постоянства состава

Мы уже изучили основные понятия химии. Вещество было вкратце рассмотрено нами. Теперь расскажем о законе, который относится к нему. Обычно его формулируют следующим образом: любое индивидуальное вещество (то есть чистое), независимо от того, каким способом оно было получено, имеет одинаковый количественный и качественный состав. Но что же значит понятие Давайте разберемся.

Две тысячи лет назад, когда строение веществ нельзя было еще изучить прямыми методами, когда еще даже не существовали основные химические понятия и законы химии, привычные нам, его определяли описательно. К примеру, вода - это жидкость, которая составляет основу морей и рек. У нее нет запаха, цвета, вкуса. Она имеет такие-то температуры замерзания и плавления, от нее синеет Соленой морская вода является потому, что она не чистая. Однако соли можно отделить с помощью перегонки. Примерно так, описательным методом, определялись основные химические понятия и законы химии.

Для ученых того времени было неочевидно, что жидкость, которая выделена разными способами (сжиганием водорода, обезвоживанием купороса, перегонкой морской воды), обладает одинаковым составом. Большим открытием в науке стало доказательство этого факта. Стало понятно, что соотношение кислорода и водорода не может плавно меняться. Это значит, что элементы состоят из атомов - неделимых порций. Так были получены формулы веществ, а также обосновано представление ученых о молекулах.

В наше время любое вещество явно или неявно определяют прежде всего формулой, а не температурой плавления, вкусом или цветом. Вода - Н 2 О. Если присутствуют другие молекулы, она уже не будет являться чистой. Следовательно, чистое молекулярное вещество представляет собой то, которое сложено из молекул только одного вида.

Однако как в этом случае быть с электролитами? Ведь в их составе присутствуют ионы, а не только молекулы. Необходимо более строгое определение. Чистое молекулярное вещество представляет собой то, которое сложено из молекул одного вида, а также, возможно, продуктов их обратимого быстрого превращения (изомеризации, ассоциации, диссоциации). Слово "быстрого" в этом контексте означает, что от этих продуктов мы не можем избавиться, они сразу же появляются вновь. Слово "обратимого" указывает на то, что превращение не доводится до конца. Если доводится, тогда лучше говорить, что оно неустойчиво. В этом случае оно не является чистым веществом.

Закон сохранения массы вещества

Этот закон еще с древнейших времен был известен в метафорической форме. Он гласил, что вещество несотворимо и неуничтожимо. Затем появилась его количественная формулировка. Согласно ей, вес (а с конца 17 столетия - масса) является мерой количества вещества.

Данный закон в привычном для нас виде был открыт в 1748 году Ломоносовым. В 1789 году его дополнил А. Лавуазье, французский ученый. Современная его формулировка звучит так: масса веществ, вступающих в химическую реакцию, равняется массе веществ, которые получаются в результате нее.

Закон Авогадро, закон объемных отношений газов

Последний из них был сформулирован в 1808 году Ж. Л. Гей-Люссаком, французским ученым. В настоящее время этот закон именуется законом Гей-Люссака. Согласно ему, объемы вступающих в реакцию газов относятся друг к другу, а также к объемам полученных газообразных продуктов как целые небольшие числа.

Закономерность, которую обнаружил Гей-Люссак, объясняет закон, который был открыт немного позже, в 1811 году, Амедео Авогадро, итальянским ученым. Он гласит, что при равных условиях (давления и температуры) в газах, имеющих одинаковые объемы, присутствует одинаковое количество молекул.

Два важных следствия вытекают из закона Авогадро. Первое заключается в том, что при одинаковых условиях один моль любого газа занимает равный объем. Объем любого из них при нормальных условиях (которыми являются температура 0 °С, а также давление 101,325 кПа) составляет 22,4 л. Второе следствие данного закона следующее: при равных условиях отношение масс газов, имеющих одинаковый объем, равняется отношению их молярных масс.

Существует и еще один закон, о котором непременно нужно упомянуть. Расскажем о нем вкратце.

Периодический закон и таблица

Д. И. Менделеев, основываясь на химических свойствах элементов и атомно-молекулярном учении, открыл этот закон. Это событие произошло 1 марта 1869 г. Периодический закон является одним из важнейших в природе. Его можно сформулировать следующим образом: свойства элементов и образуемых ими сложных и простых веществ имеют периодическую зависимость от зарядов ядер их атомов.

Периодическая таблица, которую создал Менделеев, состоит из семи периодов и восьми групп. Группами называются ее вертикальные столбцы. Элементы внутри каждой из них имеют схожие физические и химические свойства. Группа, в свою очередь, делится на подгруппы (главные и побочные).

Горизонтальные ряды этой таблицы именуют периодами. Элементы, которые находятся в них, отличаются между собой, однако у них есть и общее - то, что их последние электроны расположены на одном энергетическом уровне. В первом периоде находятся только два элемента. Это водород Н и гелий Не. Восемь элементов имеются во втором периоде. В четвертом их уже 18. Менделеев обозначил этот период как первый большой. В пятом также 18 элементов, его структура схожа с четвертым. В составе шестого - 32 элемента. Седьмой не закончен. Этот период начинается с франция (Fr). Мы можем предположить, что он будет содержать 32 элемента, как и шестой. Однако пока найдено лишь 24.

Правило откета

Согласно правилу откета, все элементы стремятся к тому, чтобы приобрести электрон или потерять его для того, чтобы иметь 8-электронную конфигурацию благородного газа, ближайшего к ним. Энергия ионизации - это то количество энергии, которое необходимо для отделения электрона от атома. Правило откета гласит, что при движении слева направо по периодической таблице необходимо больше энергии для отрыва электрона. Поэтому элементы, находящиеся с левой стороны, стремятся к тому, чтобы потерять электрон. Напротив, те, которые расположены с правой стороны, жаждут его приобрести.

Законы и основные понятия химии кратко мы изложили. Безусловно, это лишь общая информация. В рамках одной статьи невозможно подробно рассказать о столь серьезной науке. Основные понятия и законы химии, кратко изложенные в нашей статье, - это лишь отправная точка для дальнейшего изучения. Ведь в этой науке есть множество разделов. Существует, к примеру, органическая и неорганическая химия. Основные понятия каждого из разделов этой науки можно изучать очень долго. Но те, которые представлены выше, относятся к общим вопросам. Поэтому можно сказать, что это основные понятия органической химии, как и неорганической.

ХИМИЯ ОРГАНИЧЕСКАЯ. МОЛЕКУЛЯРНАЯ СТРУКТУРА
А. ХИМИЧЕСКИЕ СВЯЗИ УГЛЕРОДА
Химическая природа углерода, промежуточная между металлами и типичными неметаллами, позволяет ему образовывать ковалентные связи с большим числом элементов, чаще всего с водородом, кислородом, азотом, галогенами, серой и фосфором. Углерод образует связи с высокой степенью ионного характера с более электроположительными металлами, но такие вещества являются высокореакционноспособными и используются как промежуточные соединения в синтезе. Углерод-углеродные связи имеют ковалентный характер и бывают простые (одинарные), двойные, тройные и ароматические
(см. МОЛЕКУЛ СТРОЕНИЕ).
Ароматические системы. Бензол - родоначальник класса ароматических соединений - имеет уникальную стабильность и вступает в химические реакции, отличные от реакций неароматических систем. Есть и другие ароматические системы, наиболее обычные из которых имеют p-орбитали, доступные для образования p-связей, на каждом атоме кольца. Пятичленные кольцевые системы с двумя сопряженными (т.е. чередующимися с простыми) двойными связями и пятым атомом, несущим неподеленную пару электронов, являются также ароматическими по своим свойствам. Ниже представлены некоторые из таких систем:

Понятие ароматичности обобщил немецкий химик Э. Хюккель. Согласно правилу Хюккеля, плоские циклические сопряженные системы с числом p-электронов, равным 4n + 2, ароматичны и стабильны, а такие же системы с числом p-электронов 4n - антиароматичны и неустойчивы.
Стабильность циклических систем. Валентный угол (угол между связями) в ненапряженном фрагменте С-С-С составляет 109°, и кольца, в которых сохраняется это значение, более стабильны, чем те, где углы сильно отклоняются от этого значения. Напряжение, возникающее в циклических системах в результате искажения валентных углов, носит название байеровского - по имени немецкого химика А. Байера, впервые предложившего такое объяснение устойчивости насыщенных колец. Так, в трехчленных кольцах, где валентный угол составляет всего 60°, кольца сильно напряжены и легко разрываются; некоторые из их реакций напоминают реакции двойной связи С=С. Четырехчленные кольца также напряжены (валентный угол 90°), но не столь сильно. Пятичленные кольца почти плоски и их углы равны 108°; поэтому они ненапряжены и стабильны. В таких шестичленных кольцах, как циклогексан, атомы углерода не лежат в одной плоскости; такие циклы являются складчатыми, что уменьшает напряжение кольца. Пяти- и шестичленные кольца являются наиболее обычными. Большие кольца также способны снижать угловое напряжение путем образования складок, но в некоторых из них (от семи- до двенадцатичленных) атомы водорода на противоположных сторонах кольца сближаются настолько, что их отталкивание делает соединение менее стабильным (прелоговское напряжение, по имени швейцарского химика В.Прелога, открывшего этот эффект).
Таутомерия. Если молекулу или ион можно представить в виде нескольких структур, отличающихся друг от друга только распределением электронов, эти структуры называются резонансными, причем резонансные формы не находятся в равновесии одна с другой, просто действительная электронная структура молекулы является чем-то средним между этими крайностями. Однако есть ситуации, в которых атомы перемещаются в молекуле при обычных условиях так быстро, что между различными молекулярными формами самопроизвольно устанавливается равновесие. Такое явление называется таутомерией. Примером служит равновесие между кетоном и энолом (кето-энольная таутомерия):


Здесь два соединения различаются только расположением катиона водорода и пары электронов (в p-связи). Равновесие устанавливается быстро, но сильно сдвинуто в сторону кетоформы. Следовательно, спирты со структурой -C=C-OH обычно неустойчивы и быстро превращаются в кетоформу, если нет каких-то структурных особенностей, стабилизирующих энольную форму, например в фенолах, которые при переходе в кетоформу теряли бы свой ароматический характер:


Таутомерия обычна в молекулах, которые имеют структуру -CH=X или -C=XH, где X - это S, О или N. Так, молекула H2C=C(NH2)-CH3 быстро перегруппировывается в H3C-C(=NH)-CH3, а имиды R-C(OH)=NH перегруппировываются в амиды R-C(=O)NH2. Таутомерия обычна в таких биологически важных гетероциклических системах, как барбитуровая кислота и родственные ей соединения:


Такие вещества, находящиеся в таутомерном равновесии, часто вступают в реакции, характерные для обеих форм.
Другие быстрые равновесия. Известны и другие быстрые равновесия между молекулами с родственными структурами. Если при одном и том же углеродном атоме находятся любые две из групп OH, SH или NH2, соединение обычно неустойчиво по сравнению с двоесвязной формой:


Есть случаи, когда это равновесие сдвинуто в сторону дигидрокси-соединения. Газообразный формальдегид имеет структуру CH2=O, но в водном растворе он присоединяет молекулу воды, обретая HO-CH2-OH в качестве преобладающей формы. Хлоральгидрат Cl3CCH(OH)2 стабилен в дигидроксильной форме в результате электроноакцепторного влияния трех атомов хлора.
Б. ИЗОМЕРИЯ
Изомерия углеродной цепи. Молекулы, которые отличаются только разветвлением углеродной цепи, называют цепными изомерами. Пример уже был дан - это изомерная пара н-бутан и изобутан.
Изомерия функциональных групп. Молекулы с одинаковыми брутто-формулами, но различными функциональными группами являются функциональными изомерами, например этиловый спирт C2H5OH и диметиловый эфир CH3-O-CH3.
Изомерия положения. Позиционные изомеры имеют одинаковые брутто-формулы и функциональные группы, но положения функциональных групп в их молекулах различны. Так, 1-хлорпропан CH3CH2CH2Cl и 2-хлорпропан CH3CHClCH3 являются позиционными изомерами.
Геометрическая изомерия. Геометрические изомеры состоят из одинаковых атомов, соединенных в одной и той же последовательности, но отличаются пространственным расположением этих атомов относительно двойных связей или колец. Цис-транс-изомерия олефинов и син-анти-изомерия оксимов относятся к этому типу.


Оптическая изомерия. Молекулы называются оптическими изомерами, когда они состоят из одинаковых атомов, соединенных одним и тем же путем, но различаются пространственным расположением этих атомов так же, как правая рука отличается от левой. Такая изомерия возможна только тогда, когда молекула асимметрична, т.е. когда она не имеет плоскости симметрии. Простейший путь к такой ситуации - присоединение четырех разных групп к атому углерода. Тогда молекула становится асимметричной и существует в двух изомерных формах. Молекулы отличаются только порядком присоединения к центральному углеродному атому, который называется асимметрическим атомом углерода или хиральным центром, так как соединен с четырьмя разными группами. Отметим, что два оптических изомера являются зеркальным отражением друг друга; они называются "энантиомерами" или "оптическими антиподами" и имеют одинаковые физические и химические свойства, за исключением того, что вращают плоскость поляризованного света в противоположных направлениях и по-разному реагируют с соединениями, которые сами являются оптическими изомерами. Изомер, который вращает плоскость поляризованного света по часовой стрелке, называют d- (от "декстро" - правый) или (+)-изомером; изомер, который вращает свет против часовой стрелки, называют l- (от "лево" - левый) или (-)-изомером. Когда в молекуле присутствует более одного асимметрического центра, максимально возможное число оптических изомеров составляет 2n, где n - число асимметрических центров. Иногда некоторые из этих изомеров оказываются идентичными, и это сокращает число оптических изомеров. Так, мезо-изомеры - это оптические изомеры, которые оптически неактивны, поскольку имеют плоскость симметрии. Оптические изомеры, которые не являются зеркальными изображениями, называются "диастереомерами"; они отличаются по физическим и химическим свойствам так же, как отличаются по ним геометрические изомеры. Эти различия можно проиллюстрировать на примере шестиуглеродных сахаров с прямой цепью, имеющих следующую структуру: CH2OH-*CHOH-*CHOH-*CHOH-*CHOH-CHO. Здесь четыре асимметрических атома, отмеченных звездочкой, соединены каждый с четырьмя разными группами; таким образом, возможно 24, или 16, изомеров. Эти 16 изомеров составляют 8 пар энантиомеров; любая пара, не являющаяся энантиомерами, представляет собой диастереомеры. Шесть из этих 16 сахаров представлены ниже в виде т.н. проекций Фишера.


Обозначения D- и L- для энантиомеров относятся не к направлению вращения (обозначаемого d или l), а к положению OH при самом нижнем (в проекции Фишера) асимметрическом углероде: когда OH справа, изомер обозначается как D, когда слева - L. D- и L-формы глюкозы имеют одинаковые точки плавления, растворимость и т.д. С другой стороны, глюкоза и галактоза, будучи диастереомерами, имеют различные точки плавления, растворимости и т.д.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ХИМИЯ ОРГАНИЧЕСКАЯ. МОЛЕКУЛЯРНАЯ СТРУКТУРА" в других словарях:

    Энциклопедия Кольера

    Раздел химии, изучающий соединения углерода, к которым относятся, во первых, вещества, составляющие большую часть живой материи (белки, жиры, углеводы, нуклеиновые кислоты, витамины, терпены, алкалоиды и т.д.); во вторых, многие вещества,… … Энциклопедия Кольера

    У этого термина существуют и другие значения, см. Химия (значения). Химия (от араб. کيمياء‎‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца «черная… … Википедия

Молекулярная электроника

В 1965 году, на заре компьютерной эры, директор отдела исследовательской компании Fairchild Semiconductors Гордон Мур предсказал, что количество транзисторов на микросхеме будет ежегодно удваиваться. Прошло уже 35 лет, а "закон Мура" по-прежнему действует. Правда, со временем практика микроэлектронного производства внесла в него небольшую поправку: сегодня считается, что удвоение числа транзисторов происходит каждые 18 месяцев. Такое замедление роста вызвано усложнением архитектуры микросхем. И все же, для кремниевой технологии предсказание Мура не может выполняться вечно.

Но есть и другое, принципиальное ограничение на "закон Мура". Возрастание плотности размещения элементов на микросхеме достигается за счет уменьшения их размеров. Уже сегодня расстояние между элементами процессора может составлять 0,13х10-6 метра (так называемая 0,13-микронная технология). Когда размеры транзисторов и расстояния между ними достигнут нескольких десятков нанометров, вступят в силу так называемые размерные эффекты - физические явления, полностью нарушающие работу традиционных кремниевых устройств. Кроме того, с уменьшением толщины диэлектрика в полевых транзисторах растет вероятность прохождения электронов через него, что также препятствует нормальной работе приборов.

Еще один путь повышения производительности - применение вместо кремния других полупроводников, например арсенида галлия (GaAs). За счет более высокой подвижности электронов в этом материале можно увеличить быстродействие устройств еще на порядок. Однако технологии на основе арсенида галлия намного сложнее кремниевых. Поэтому, хотя за последние два десятка лет в исследование GaAs вложены немалые средства, интегральные схемы на его основе используются в основном в военной области. Здесь их дороговизна компенсируется низким энергопотреблением, высоким быстродействием и радиационной устойчивостью. Однако и при разработке устройств на GaAs остаются в силе ограничения, обусловленные как фундаментальными физическими принципами, так и технологией изготовления.

Вот почему сегодня специалисты в разных областях науки и техники ищут альтернативные пути дальнейшего развития микроэлектроники. Один из путей решения проблемы предлагает молекулярная электроника.

МОЛЕКУЛЯРНАЯ ЭЛЕКТРОНИКА -ТЕХНОЛОГИЯ БУДУЩЕГО.

Возможность использования молекулярных материалов и отдельных молекул как активных элементов электроники уже давно привлекает внимание исследователей различных областей науки. Однако только в последнее время, когда стали практически ощутимы границы потенциальных возможностей полупроводниковой технологии, интерес к молекулярной идеологии построения базовых элементов электроники перешел в русло активных и целенаправленных исследований, которые стали сегодня одним из важнейших и многообещающих научно-технических направлений электроники.

Дальнейшие перспективы развития электроники связываются с созданием устройств, использующих квантовые явления, в которых счет уже идет на единицы электронов. В последнее время широко ведутся теоретические и экспериментальные исследования искусственно создаваемых низкоразмерных структур; квантовых слоев, проволок и точек. Ожидается, что специфические квантовые явления, наблюдающиеся в этих системах, могут лечь в основу создания принципиально нового типа электронных приборов.

Переход на квантовый уровень, несомненно, является новым, важным этапом в развитии электроники, т.к. позволяет перейти на работу практически с единичными электронами и создать элементы памяти, в которых один электрон может соответствовать одному биту информации. Однако создание искусственных квантовых структур представляет сложнейшую технологическую задачу. В последнее время стало очевидным, что реализация таких структур сопряжена с большими технологическими сложностями даже при создании единичных элементов, и непреодолимые трудности возникают при создании чипов с многомиллионными элементами. Выходом из создавшегося положения, по мнению многих исследователей, является переход к новой технологии -молекулярной электронике.

Принципиальная возможность использования отдельных молекул как активных элементов микроэлектроники была высказана Фейнманом еще в 1957 году. Позднее он показал, что квантомеханические законы не являются препятствием в создании электронных устройств атомарного размера, пока плотность записи информации не превышает 1 бит/атом. Однако, только с появлением работ Картера и Авирама стали говорить о молекулярной электронике, как о новой междисциплинарной области, включающей физику, химию, микроэлектронику и компьютерную науку, и ставившую своей целью перевод микроэлектроники на новую элементную базу -молекулярные электронные устройства.

Здесь определенно напрашивается аналогия с историей развития устройств точного времени, которые прошли путь от механических хронометров, использующих различного типа маятники, через кварцевые часы, основанные на твердотельных резонансах, и, наконец, сегодня наиболее точные часы используют внутримолекулярные эффекты в молекулах аммиака и т.д. Подобным образом развивается и электроника, прошедшая путь от механических электромагнитных реле и электровакуумных ламп к твердотельным транзисторам и микросхемам, а сегодня она подошла к порогу, за которым лежит область молекулярной технологии.

Не случайно, что основное внимание было сосредоточено на молекулярных системах. Во-первых, молекула представляет собой идеальную квантовую структуру, состоящую из отдельных атомов, движение электронов по которой задается квантово-химическими законами и является естественным пределом миниатюризации. Другой, не менее важной особенностью молекулярной технологии, является то, что создание подобных квантовых структур в значительной мере облегчено тем, что в основе их создания лежит принцип самосборки. Способность атомов и молекул при определенных условиях самопроизвольно соединяться в наперед заданные молекулярные образования является средством организации микроскопических квантовых структур; оперирование с молекулами предопределяет и путь их создания. Именно синтез молекулярной системы является первым актом самосборки соответствующих устройств. Этим достигается идентичность собранных ансамблей и, соответственно, идентичность размеров элементов и, тем самым, надежность и эффективность протекания квантовых процессов, функционирования молекулярных устройств.

С самого начала развития молекулярного подхода в микроэлектронике открытым оставался вопрос о физических принципах функционирования молекулярных электронных устройств. Поэтому основные усилия были сосредоточены на их поиске, при этом основное внимание уделялось одиночным молекулам или молекулярным ансамблям. Несмотря на большое количество работ в этом направлении, практическая реализация молекулярных устройств далека до завершения. Одной из причин этого является то, что особенно в начальный период становления молекулярной электроники сильный акцент был сделан на работе отдельных молекул, поиске и создании бистабильных молекул, имитирующих триггерные свойства. Конечно, этот подход весьма притягателен с точки зрения миниатюризации, но он оставляет мало шансов на то, что молекулярные электронные устройства могут быть созданы в ближайшее время.

Развитие нового подхода в микроэлектронике требует решения ряда проблем в трех основных направлениях: разработка физических принципов функционирования электронных устройств; синтез новых молекул, способных хранить, передавать и преобразовывать информацию; разработка методов организации молекул в супрамолекулярный ансамбль или молекулярное электронное устройство.

В настоящее время ведется интенсивный поиск концепций развития молекулярной электроники и физических принципов функционирования, и разрабатываются основы построения базовых элементов. Молекулярная электроника становится новой междисциплинарной областью науки, объединяющей физику твердого тела, молекулярную физику, органическую и неорганическую химии и ставящей своей целью перевод электронных устройств на новую элементную базу. Для решения поставленных задач и концентрации усилий исследователей, работающих в различных областях знаний, во всех индустриально развитых странах создаются Центры молекулярной электроники, объединенные лаборатории, проводятся международные конференции и семинары.

Сейчас, да видимо, и в ближайшее время, трудно говорить о создании молекулярных электронных устройств, работающих на основе функционирования одиночных молекул, но можно реально говорить об использовании молекулярных систем, в которых внутримолекулярные эффекты имеют макроскопическое проявление. Такие материалы можно назвать "интеллигентными материалами". Этап создания "интеллигентных материалов", т.е. этап функциональной молекулярной электроники, естественный и необходимый период в развитии электроники, является определенной стадией в переходе от полупроводниковой технологии к молекулярной. Но возможно, что этот период будет более продолжительным, чем сейчас нам кажется. Представляется более реалистичным, особенно на первых этапах развития молекулярной электроники, использовать макроскопические свойства молекулярных систем, которые обуславливались бы структурными реорганизациями, происходящими на уровне отдельных молекулярных ансамблей. Физический принцип функционирования подобных электронных устройств должен снять размерностные ограничения, по крайней мере, до размеров больших молекулярных образований. С точки зрения электроники и потенциальной возможности стыковки молекулярных устройств с их полупроводниковыми собратьями, было бы предпочтительно иметь дело с молекулярными системами, изменяющими свою электронную проводимость при внешних воздействиях, в первую очередь под воздействием электрического поля.

Идеи молекулярной электроники не сводятся к простой замене полупроводникового транзистора на молекулярный, хотя будет решаться и эта частная задача. Главной целью все же является создание сложных молекулярных систем, реализующих одновременно несколько различных эффектов, выполняющих сложную задачу. К задачам этого типа естественно в первую очередь отнести задачу создания универсального элемента памяти, как наиболее важной части любого информационно-вычислительного устройства. Представляется весьма очевидным, что потенциальные возможности молекулярной электроники будут раскрыты в большей мере при создании нейронных сетей, состоящих из нейронов и связывающих их электроактивных синапсов. Создание средствами молекулярной электроники искусственных нейронов, различного типа сенсоров, включенных в единую сеть, откроет путь к реализации всех потенциальных возможностей, заложенных в нейрокомпьютерной идеологии, позволит создать принципиально новый тип информационно-вычислительных систем и подойти вплотную к решению проблемы создания искусственного интеллекта.

Бактериородопсин: структура и функции.

Молекулярная электроника определяется как кодирование (запись), обработка и распознавание (считывание) информации на молекулярном и макромолекулярном уровне. Основное преимущество молекулярного приближения заключается в возможности молекулярного дизайна и производства приборов "снизу вверх", т.е. атом за атомом или фрагмент за фрагментом, - параметры приборов определяются органическим синтезом и методами генной инженерии. Двумя общепризнанными достоинствами молекулярной электроники являются значительное уменьшение размеров устройств и времени срабатывания (gate propagation delays) логических элементов.

Биоэлектроника, являющая разделом молекулярной электроники, исследует возможность применения биополимеров в качестве управляемых светом или электрическими импульсами модулей компьютерных и оптических систем. Основное требование к вероятным кандидатам среди большого семейства биополимеров состоит в том, что они должны обратимо изменять свою структуру в ответ на некое физическое воздействие и генерировать, по крайней мере, два дискретных состояния, отличающихся легко измеряемыми физическими характеристиками (например, спектральными параметрами).

Значительный интерес в связи с этим представляют белки, основная функция которых связана с трансформацией энергии света в химическую в различных фотосинтетических системах. Наиболее вероятным кандидатом среди них является светозависимый протонный насос - бактериородопсин (БР) из галофильного микроорганизма Halobacterium salinarum (ранее Halobacterium halobium ), открытыйв 1971году.

Бактериородопсин - ретиналь-содержащий генератор протонного транспорта представляет собой трансмембранный белок в 248 аминокислот с молекулярным весом 26 кДа, пронизывающий мембрану в виде семи a -спиралей; N - и C-концы полипептидной цепи находятся по разные стороны цитоплазматической мембраны: N-конец обращен наружу, а C -конец - внутрь клетки (рис.1, 2).

Рис.1. Модель БР в элементах вторичной структуры. Выделены аминокислоты,
участвующие в протонном транспорте: кружками остатки аспарагиновой кислоты,
квадратом остаток аргинина. С Lys-216 (К-216) образуется основание Шиффа (SB).
Стрелкой показано направление протонного транспорта.

Хромофор БР - протонированный альдимин ретиналя с a -аминогруппой остатка Lys-216 размещен в гидрофобной части молекулы. После поглощения кванта света в ходе фотоцикла происходит изомеризация ретиналя из all -E в 13Z- форму. Белковое микроокружение хромофора может рассматриваться как рецептор с субстратной специфичностью для all -E /13Z -ретиналя, который катализирует эту изомеризацию при комнатной температуре. Кроме того, часть аминокислот ответственна за подавление изомеризаций, отличных от all -E /13Z , например от all -E- к 7Z-, 9Z-, 11Z -ретиналю. Остальная часть полипептидной цепи обеспечивает канал протонного транспорта или экранирует фотохромную внутреннюю группу от влияний внешней среды.

Взаимная топография образованных полипептидной цепью БР элементов вторичной структуры после поглощения молекулой хромофора кванта света изменяется, в результате чего формируется канал трансмембранного переноса протонов из цитоплазмы во внешнюю среду. Однако молекулярный механизм светозависимого транспорта до сих пор неизвестен.

Рис.2. Схематическая модель трехмерной (пространственной) структуры БР Семь a -спиралей формируют хромофорную полость и трансмембранный канал переноса протона.

БР содержится в клеточной мембране H. salinarum - галофильной архебактерии, которая живет и размножается в соленых болотах и озерах, где концентрация NaCl может превышать 4 М, что в 6 раз выше, чем в морской воде (~ 0,6 М). Этот уникальный белок во многом подобен зрительному белку родопсину, хотя их физиологические функции различны. В то время как зрительный родопсин действует как первичный фоторецептор, который обеспечивает темное зрение большинства позвоночных животных, физиологическая роль БР заключается в том, чтобы давать возможность галобактериям действовать как факультативным анаэробам в случае, когда парциальное давление кислорода в окружающей среде мало. Белок функционирует как светозависимый протонный насос, который обеспечивает образование электрохимического градиента протонов на поверхности мембраны клетки, который, в свою очередь, служит для аккумулирования энергии. Первичная работа, производимая градиентом, заключается в синтезе АТФ через анаэробное (фотосинтетическое) фосфорицирование и, в этом случае, представляет собой классический пример хемиосмотической гипотезы Митчелла об окислительном фосфорицировании. Когда освещение отсутствует, а парциальное давление кислорода высоко, бактерии возвращаются к аэробному окислительному фосфорицированию.
Клетки H. salinarum содержат также два так называемых сенсорных родопсина (СР I и СР II ), которые обеспечивают положительный и отрицательный фототаксис. Различные длины волн считываются СР I и СР II как детекторными молекулами, что вызывает каскад сигналов, управляющих жгутиковым двигателем бактерии. При помощи такого элементарного процесса светового восприятия микроорганизмы самостоятельно перемещаются в свет подходящего спектрального состава. Кроме того, в клетках имеется галородопсин (ГР), представляющий собой светозависимый насос ионов Cl –. Его основная функция - транспорт в клетку ионов хлора, которые постоянно теряются бактерией, перемещаясь в направлении изнутри наружу под действием электрического поля, создаваемого БР. Механизм действия ГР неясен. Предполагается, что Cl – связывается с положительно заряженным четвертичным азотом протонированного Шиффова основания, а изомеризация ретиналя из all - E в 13Z -форму вызывает перемещение этого азота с прикрепленным к нему ионом Cl – от входного к выходному Cl – – проводящему пути.

Рис.3. Участок пурпурной мембраны (вид сверху).

БР локализован в участках клеточных мембран H. salinarum в виде пурпурных мембран (ПМ), образующих двумерные кристаллы с гексагональной решеткой. Эти участки содержат сам белок, некоторые липиды, каротиноиды и воду (рис.3). Обычно они имеют овальную или круглую форму со средним диаметром около 0,5 мкм и содержат около 25 % липидов и 75 % белка. ПМ устойчивы к солнечному свету, воздействию кислорода, температуре более чем 80ºC (в воде) и до 140ºC (сухие), рН от 0 до 12 , высокой ионной силе (3 М NaCl ), действию большинства протеаз, чувствительны к смесям полярных органических растворителей с водой, но устойчивы к неполярным растворителям типа гексана. Большое практическое значение имеет существующая возможность встраивания ПМ в полимерные матрицы без потери фотохимических свойств.

Индуцированный светом протонный транспорт сопровождается рядом циклических спектральных изменений БР, совокупность которых называется фотоциклом (рис.4). Тридцать лет исследований привели к довольно детальному пониманию фотоцикла, однако подробности протонного транспорта все еще изучаются.

Фотохимический цикл БР состоит из отдельных интермедиатов, которые могут быть идентифицированы как максимумами поглощения, так и кинетикой образования и распада. На рис.4 показана упрощенная модель фотоцикла БР.

Рис.4. Фотоцикл БР.

Фотохимические и тепловые стадии показаны как толстые и тонкие стрелки соответственно. Вертикальные символы указывают на all -E-конформацию ретиналя (интермедиаты B и О ), наклонные символы - на 13Z-конформацию. В темноте БР превращается в 1:1 смесь D и B , эта смесь называется темноадаптированным БР. При освещении БР происходит световая адаптация, т.е. переход в основное состояние B . Оттуда начинается фотоцикл, который приводит к транспорту протона через мембрану. В течение перехода L к М , длящегося примерно 40 мксек, Шиффово основание депротонируется и Asp85 становится протонированным. Оттуда протон идет к внешней стороне внеклеточной части протонного канала. В течение перехода М к N альдимин репротонируется. В качестве донора протонов выступает остаток Asp96. Asp96 репротонируется через цитоплазматический протонный полуканал. В то время как все преобразования между интермедиатами обратимы, переход от MI к MII , как полагают, является основным необратимым шагом в фотоцикле. В течение этого перехода азот Шиффова основания становится недоступным для внеклеточной части протонного канала, а только для цитоплазматического полуканала, что связано с конформационными изменениями белковой молекулы.

Физико-химические свойства интермедиатов характеризуются длиной волны их максимумов поглощения и величиной специфического молярного коэффициента экстинкции. Протонирование SB и конфигурация ретинилиденового остатка воздействует на величины максимумов поглощения. В течение фотоцикла БР происходит несколько зависящих от температуры конформационных изменений в белке, таким образом, формирование большинства интермедиатов может быть подавлено охлаждением.

Кроме основного фотоцикла имеется два состояния, которые могут быть вызваны искусственно. В интермедиатах P и Q конформация ретиналя 9Z . Это достигается после фотохимического возбуждения all -E -ретиналя, когда в то же самое время Asp85 протонирован. Это может быть достигнуто в диком типе БР при низком значении pH или деионизацией (формирование так называемых голубых мембран), однако такие препараты нестабильны. Альтернативным подходом является замена Asp85 аминокислотой, имеющей другое значение pKa , которая остается незаряженной при интересующих значениях pH или полное удаление карбоксильной группы методами сайт-направленного мутагенеза. Стабильность таких мутантных голубых мембран выше.

Уникальные свойства бактериородопсина обеспечивают широкий диапазон технических приложений, в которых он может использоваться, однако коммерчески осуществимы на сегодняшний день только оптические, поскольку их интеграция в современные технические системы наиболее проста.

Оптические приложения основаны на применении пленок БР - полимерных матриц различного состава с включенными в них молекулами белка. Впервые в мире такие пленки на основе дикого типа БР были получены и исследованы в нашей стране в рамках проекта "Родопсин"; в 80-х годах была продемонстрирована эффективность и перспективность применения таких материалов, названных "Биохром", в качестве фотохромных материалов и среды для голографической записи.

Весьма интересной является возможность варьирования фотохимических свойств пленок БР:
а) заменой природного хромофора на модифицированный;
б) химическими (физико-химическими) воздействиями;
в) точечными заменами определенных аминокислотных остатков методами генетической инженерии.

Такие модифицированные материалы могут обладать ценными пецифическими свойствами, что предопределит их использование как элементной базы биокомпьютера.

Мыслящая молекула

В последние годы ученые многих стран вернулись к старой и простой идее "химического" компьютера, в котором вычисления производятся отдельными молекулами. За последний год исследователям сразу из нескольких лабораторий удалось получить в этой области блестящие результаты, обещающие радикально изменить ситуацию.

Большого успеха достигли учёные в работе с молекулами псевдоротоксана (они показаны на рис.1).


Им удалось насадить такую молекулу, имеющую форму кольца, на ось – линейную молекулу. Для того чтобы кольцо не соскакивало с оси, к ее концам присоединяются крупные молекулярные фрагменты, играющие роль "гаек" (в этом качестве использовались разнообразные донорные группы). При реакции с кислотой (Н+) или основанием (В) кольцо может скользить от одного конца оси к другому, "переключая" химическое состояние. Забавно, что в принципе на молекулярном уровне воссоздается механическое устройство, весьма похожее на соединение стержней и колесиков в первых, самых примитивных, вычислительных устройствах ХVII века (впрочем, при желании в этой молекулярной структуре можно углядеть и простейшие канцелярские счеты, с одной костяшкой на каждом прутике).

Эта изящная химическая молекула переключатель была изучена еще в начале 90-х годов, однако для практической реализации идеи требовалось еще придумать методы объединения и управления массивами этих минимикродиодиков. Создав моно слой одинаково ориентированных молекул такого типа на поверхности металла (эту очень сложную задачу удалось решить, используя новейшие нанотехнологические методы самосборки), ученые осадили на него тончайший слой золота и уже создали на этой основе примитивные прототипы логических вентилей.

Через несколько месяцев после этого объединенная группа Марка Рида и Джеймса Тура (из универси тетов Йеля и Райса) продемонстрировала общественности еще один класс молекул-переключателей. Результаты были настолько впечатляющими, что журнал "Scientific American" (июнь, 2000) даже вынес на обложку анонс "Рождение молекулярной электроники"(хочется добавить – наконец-то!). Как написал со сдержанной гордостью один из авторов: "Мы создали молекулу с переменной электропроводностью, которая может накапливать электроны по нашей команде, то есть работать как запоминающее устройство".

Прежде всего, Джеймс Тур по специальной методике синтезировал молекулярную цепочку из звеньев бензол-1,4-дитиолата длиной 14 нанометров. В нее были введены группы, которые захватывают электроны, если молекула находится "под напряжением". Сложнейшая проблема, с которой также удалось справиться, заключалась в том, что переключение должно быть обратимым химическим процессом. Для работы молекулы в качестве запоминающего элемента ее необходимо научить не просто захватывать электроны, а удерживать их только в течение заданного времени. Собственно говоря, именно в этом и состоит главное достижение Рида и Тура с коллегами.
Электрохимический (в самом строгом и буквальном смысле этого термина!) переключатель показан на рис. 2 (левая часть). Он представляет собой цепочку из трех бензольных колец, к центральному из которых с противоположных сторон присоединены группы NО2 , и NН2 , (на рисунке выделены цветом). Такая асимметричная молекулярная конфигурация создает электронное облако сложной формы, в результате чего возникает удивительно красивый и принципиально важный для решения поставленной задачи физический эффект – при наложении поля молекула закручивается, ее сопротивление меняется, и она начинает пропускать ток (правая часть рисунка). При снятии поля молекула раскручивается в обратную сторону и возвращается в исходное состояние. Переключатель, созданный по этому принципу, представляет собой линейную цепочку из примерно 1000 молекул нитроаминобензолтиола, расположенную между двумя металлическими контактами. Более того, замеры с использованием туннельного микроскопирования (фрагмент молекулярной цепочки был впаян между сверхтонкими иглообразными золотыми электродами; геометрия эксперимента показана на рис. 3) позволили получить рабочие параметры переключателя, которые с полным правом можно назвать молекулярной вольт-амперной характеристикой и молекулярной проводимостью (рис.4). Кривая проводимости (которая, кстати, оказалась весьма близка к расчетной) имеет четко выраженный "провал". Это позволяет переводить участки молекулы из проводящего состояния в непроводящее, и наоборот, простым изменением приложенного напряжения. Формально и фактически получен (химик, конечно, предпочтет термин "синтезирован") молекулярный триод. Действительно, это можно считать первым этапом создания молекулярной электроники.


Рис.4 Молекулярная вольт-амперная характеристика

Заключение

Хотя теоретические основы молетроники уже достаточно хорошо разработаны и созданы прототипы практически всех элементов логических схем, однако на пути реального построения молекулярного компьютера встают значительные сложности. Внешне очевидная возможность использования отдельных молекул в качестве логических элементов электронных устройств оказывается весьма проблематичной из-за специфических свойств молекулярных систем и требований, предъявляемых к логическим элементам.

В первую очередь логический элемент должен обладать высокой надежностью срабатывания при подаче управляющего воздействия. Если рассматривать оптическую связь между элементами, то в системе одна молекула - один фотон надежность переключения будет невелика из-за относительно малой вероятности перехода молекулы в возбужденное состояние. Можно пытаться преодолеть эту трудность, используя одновременно большое число квантов. Но это противоречит другому важному требованию: КПД преобразования сигнала отдельным элементом должен быть близок к единице, то есть средняя мощность реакции должна быть соизмерима со средней мощностью воздействия. В противном случае при объединении элементов в цепь вероятность их срабатывания будет уменьшаться по мере удаления от начала цепи. Кроме того, элемент должен однозначно переключаться в требуемое состояние и находиться в нем достаточно долго - до следующего воздействия. Для сравнительно простых молекул это требование, как правило, не выполняется: если переходом в возбужденное состояние можно управлять, то обратный переход может происходить спонтанно.

Однако не все так плохо. Использование больших органических молекул или их комплексов позволяет, в принципе, обойти перечисленные трудности. Например, в некоторых белках КПД электронно-оптического преобразования близок к единице. К тому же, для больших биоорганических молекул время жизни возбужденного состояния достигает десятков секунд.

Но даже в том случае, если отдельный молекулярный вычислительный элемент и не будет обладать надежностью своих кремниевых предшественников, эффективной работы будущего компьютера можно достичь, комбинируя принципы молетроники и параллельных вычислений, применяемых в суперкомпьютерах. Для этого надо заставить несколько одинаковых молекулярных логических элементов работать параллельно. Тогда неправильное срабатывание одного из них не приведет к заметному сбою в вычислениях. Современный суперкомпьютер, работающий по принципу массивного параллелелизма и имеющий многие сотни процессоров, может сохранять высокую производительность даже в том случае, если 75% из них выйдет из строя. Практически все живые системы используют принцип параллелизма. Поэтому несовершенство организмов на уровне отдельных клеток или генов не мешает им эффективно функционировать.

Сегодня в мире существует уже более десятка научно-технологических центров, занимающихся разработкой устройств молекулярной электроники. Ежегодные конференции собирают сотни специалистов в этой области.

Большой интерес к молетронике вызван не только перспективами построения компьютера, но и широкими возможностями развития новых технологий. Благодаря высокой чувствительности молекулярных электронных устройств к свету их можно использовать для создания эффективных преобразователей солнечной энергии, моделирования процесса фотосинтеза, разработки нового класса приемников изображения, принцип действия которых будет напоминать работу человеческого глаза. Молекулярные устройства можно использовать также в качестве селективных сенсоров, реагирующих только на определенный тип молекул. Такие сенсоры необходимы в экологии, промышленности, медицине. Сенсор из органических молекул значительно легче вживлять в организм человека с целью контроля за его состоянием.

Для решения стоящих перед молекулярной электроникой проблем нужны усилия широкого круга ученых, работающих в области академических знаний от коллоидной химии и биологии до теоретической физики, а также в области высоких технологий. Кроме того, требуются значительные финансовые вложения.

Необходима также подготовка новых высококвалифицированных кадров для работы в этой сложной области, лежащей на стыке наук. Но, судя по всему, лет через 10-15 она будет играть заметную роль в науке и технике.