Методы и ход работы Менделя. Основные положения теории наследственности Менделя

Моногибридное скрещивание. Первый закон Менделя.

В опытах Менделя при скрещивании сортов гороха, которые имели желтые и зеленые семена, все потомство (т.е. гибриды первого поколения) оказалось с желтым семенами. При этом не имело значения, из какого именно семена (желтого или зеленого) выросли материнские (отцовские) растения. Итак, оба родителя в равной степени способны передавать свои признаки потомству.
Аналогичные результаты были обнаружены и в опытах, в которых во внимание брались другие признаки. Так, при скрещивании растений с гладкими и морщинистым семенами все потомство имело гладкие семена. При скрещивании растений с пурпурными и белыми цветками у всех гибридов оказались лишь пурпурные лепестки цветков и т. д.
Обнаруженная закономерность получила название первый закон Менделя, или закон единообразия гибридов первого поколения. Состояние (аллель) признака, проявляющегося в первом поколении, получило название доминантного, а состояние (аллель), которое в первом поколении гибридов не проявляется, называется рецессивным. «Задатки» признаков (по современной терминологии - гены) Г. Мендель предложил обозначать буквами латинского алфавита. Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель - большой, а рецессивный - маленькой.

Второй закон Менделя.

При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыления или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными состояниями признаков, т.е. возникает расщепление, которое происходит в определенных отношениях. Так, в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми. В опыте, в котором учитывался цвет семян, с 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых, а с 7324 семян, в отношении которых учитывалась форма семени, было получено 5474 гладких и 1850 морщинистых. Исходя из полученных результатов , Мендель пришел к выводу, что во втором поколении 75% особей имеют доминантное состояние признака, а 25% - рецессивное (расщепление 3:1). Эта закономерность получила название второго закона Менделя , или закона расщепления.
Согласно этому закону и используя современную терминологию, можно сделать следующие выводы:

а) аллели гена, находясь в гетерозиготном состоянии, не изменяют структуру друг друга;
б) при созревании гамет у гибридов образуется примерно одинаковое число гамет с доминантными и рецессивными аллелями;

в) при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются.
При скрещивании двух гетерозигот (Аа), в каждой из которых образуется два типа гамет (половина с доминантными аллелями - А, половина - с рецессивными - а), необходимо ожидать четыре возможных сочетания. Яйцеклетка с аллелью А может быть оплодотворена с одинаковой долей вероятности как сперматозоидом с аллелью А, так и сперматозоидом с аллелью а; и яйцеклетка с аллелью а - сперматозоидом или с аллелью А, или аллелью а. В резульатате получаются зиготы АА, Аа, Аа, аа или АА, 2Аа, аа.
По внешнему виду (фенотипу) особи АА и Аа не отличаются, поэтому расщепление выходит в соотношении 3:1. По генотипу особи распределяются в соотношении 1АА:2Аа:аа. Понятно, что если от каждой группы особей второго поколения получать потомство только самоопылением, то первая (АА) и последняя (аа) группы (они гомозиготные) будут давать только однообразное потомство (без расщепления), а гетерозиготные (Аа) формы будут давать расщепление в соотношении 3:1.
Таким образом, второй закон Менделя, или закон расщепления, формулируется так: при скрещивании двух гибридов первого поколения, которые анализируются по одной альтернативной паре состояний признака, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу в соотношении 1:2:1.

Третий закон Менделя, или закон независимого наследования признаков.

Изучая расщепления при дигибридном скрещивании, Мендель обратил внимание на следующее обстоятельство. При скрещивании растений с желтыми гладкими (ААВВ) и зелеными морщинистыми (аа bb ) семенами во втором поколении появлялись новые комбинации признаков: желтые морщинистое (Аа bb ) и зеленые гладкие (ааВ b ), которые не встречались в исходных формах . Из этого наблюдения Мендель сделал вывод, что расщепление по каждой признаку происходит независимо от второго признака. В этом примере форма семян наследовалась независимо от их окраски. Эта закономерность получила название третьего закона Менделя, или закона независимого распределения генов.
Третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по двум (или более) признаках, во втором поколении наблюдаются независимое наследование и комбинирование состояний признаков, если гены, которые их определяют, расположенные в разных парах хромосом. Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительский особей.
Для записи скрещиваний нередко используют специальные решетки, которые предложил английский генетик Пеннет (решетка Пеннета). Ими удобно пользоваться при анализе полигибридних скрещиваний. Принцип построения решетки состоит в том, что сверху по горизонтали записывают гаметы отцовской особи, слева по вертикали - гаметы материнской особи, в местах пересечения - вероятные генотипы потомства.

Законы Менделя и условия их проявления

Гибридизация - это скрещивание особей, отличающихся по генотипу. Скрещивание, при котором у родительских особей учитывается одна пара альтернативных признаков, называет­ся моногибридным, две пары признаков - дигибридным , более чем две пары - полигибридным .

Скрещивание животных и растений (гибридизация) про­водится человеком с незапамятных времен, однако устано­вить закономерности передачи наследственных признаков не удавалось. Гибридологический метод Г. Менделя, с помощью которого были выявлены эти закономерности, имеет следую­щие особенности:

▪ подбор пар для скрещивания ("чистые линии");

▪ анализ наследования отдельных альтернативных (взаи­моисключающих) признаков в ряду поколений;

▪ точный количественный учет потомков с различной ком­бинацией признаков (использование математических мето­дов).

Первый закон Менделя - закон единообразия гибридов перво­го поколения. Г. Мендель скрещивал чистые линии растений гороха с желтыми и зелеными семенами (альтернативные признаки). Чистые линии - это организмы, не дающие рас­щепления при скрещивании с такими же по генотипу, т. е, они являются гомозиготными по данному признаку:

При анализе результатов скрещивания оказалось, что все потомки (гибриды) в первом поколении одинаковы по фено­типу (все растения имели горошины желтого цвета) и по гено­типу (гетерозиготы). Первый закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, на­блюдается единообразие гибридов первого поколения как по фе­нотипу, так и по генотипу.

Второй закон Менделя - закон расщепления. При скрещива­нии гибридов первого поколения, т. е. гетерозиготных осо­бей, получается следующий результат:

Особи, содержащие доминантный ген А, имеют желтую окраску семян, а содержащие оба рецессивных гена - зеле­ную. Следовательно, соотношение особей по фенотипу (окрас­ке семян) - 3:1 (3 части с доминантным признаком и 1 часть - с рецессивным), по генотипу: 1 часть особей - желтые гомо­зиготы (АА), 2 части - желтые гетерозиготы (Аа) и 1 часть - зеленые гомозиготы (аа). Второй закон Менделя формулиру­ется следующим образом: при скрещивании гибридов первого поколения (гетерозиготных организмов), анализируемых по од­ной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

При экспериментальной и селекционной работе довольно часто возникает необходимость выяснить генотип особи с доми­нантным признаком. Для этого проводят анализирующее скрещи­вание : исследуемую особь скрещивают с рецессивной гомозиго­той. Если она была гомозиготной, то гибриды первого поколения будут единообразны - все потомки будут иметь доминантный

Закономерности наследования 79

признак. Если особь была гетерозиготна, то в результате скрещи­вания происходит расщепление признаков у потомков в соотно­шении 1:1:

Иногда (обычно при получении чистых линий) применя­ют возвратное скрещивание - скрещивание потомков с одним из родителей. В некоторых случаях (при изучении сцепления генов) проводят реципрокное скрещивание - скрещивание двух родительских особей (например, AaBb и aabb), при котором сначала гетерозиготной является материнская особь, а рецессивной - отцовская, а затем - наоборот (скрещивания Р: АаВb х aabb и Р: aabb х АаВb).

Изучив наследование одной пары аллелей, Мендель решил проследить наследование двух признаков одновременно. С этой целью он использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: се­мена желтые гладкие и зеленые морщинистые. В результате такого скрещивания в первом поколении он получил расте­ния с желтыми гладкими семенами. Этот результат показал, что закон единообразия гибридов первого поколения прояв­ляется не только при моногибридном, но и при полигибрид­ном скрещивании, если родительские формы гомозиготны:

Затем Мендель скрестил гибриды первого поколения меж­ду собой - P(F 1): AaBb x AaBb.

Для анализа результатов полигибридного скрещивания обычно используют решетку Пеннета , в которой по горизон­тали записывают женские гаметы, а по вертикали - мужские:

В результате свободного комбинирования гамет в зиготах получаются разные сочетания генов. Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 частей растений с горошинами желтыми гладкими (А-Б-), 3 части - с желтыми морщинистыми (A-bb), 3 части - с зелеными гладкими (aaB-) и 1 часть - с зелеными морщинистыми (aabb), т. е. происхо­дит расщепление в соотношении 9:3:3:1, или (3+1) 2 . Отсюда можно сделать вывод, что при скрещивании гетерозиготных особей, анализируемых по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фено­типу в соотношении (3+1) n , где n - число анализируемых признаков.

Результаты скрещивания удобно записывать с помощью фенотипического радикала - краткой записи генотипа, сде­ланной на основе фенотипа. Например, запись А-В- означает, что если в генотипе есть хотя бы один доминантный ген из па­ры аллельных, то независимо от второго гена в фенотипе про­явится доминантный признак.

Если проанализировать расщепление по каждой из пар признаков (желтый и зеленый цвет, гладкая и морщинистая поверхность), то получится 12 особей с желтыми (гладкими) и 4 особи с зелеными (морщинистыми) семенами. Их соотно­шение равно 12:4, или 3:1. Следовательно, при дигибридном скрещивании каждая пара признаков в потомстве дает рас­щепление независимо от другой пары. Это является результа­том случайного комбинирования генов (и соответствующих им признаков), что приводит к новым сочетаниям признаков, которых не было у родительских форм. В нашем примере, ис­ходные формы гороха имели желтые гладкие и зеленые морщинистые семена, а во втором поколении получены растения не только с сочетанием родительских признаков, но и с новы­ми сочетаниями - желтыми морщинистыми и зелеными глад­кими семенами. Отсюда следует

Третий закон Менделя - закон независимого комбинирования признаков . При скрещивании гомозиготных организмов, анали­зируемых по двум (или более) парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов разных аллельных пар и соответствующих им признаков.

Анализируя результаты расщепления признаков во втором поколении (появление рецессивных гомозигот), Мендель пришел к выводу, что в гетерозиготном состоянии наследст­венные факторы не смешиваются и не изменяют друг друга. В дальнейшем это представление получило цитологическое обоснование (расхождение гомологичных хромосом при мейозе) и было названо гипотезой "чистоты гамет" (У. Бэтсон, 1902). Ее можно свести к следующим двум основным положениям:

▪ у гибридного организма гены не гибридизируются (не смешиваются), а находятся в чистом аллельном состоянии;

▪ из аллельной пары в гамету попадает только один ген вследствие расхождения гомологичных хромосом и хроматид при мейозе.

Законы Менделя носят статистический характер (выполняются на большом количестве особей) и являются универсальными, т.е. они присущи всем живым орга­низмам. Для проявления законов Менделя необходимо со­блюдение следующих условий:

▪ гены разных аллельных пар должны находиться в разных парах гомологичных хромосом;

▪ между генами не должно быть сцепления и взаимодейст­вия, кроме полного доминирования;

▪ должна быть равная вероятность образования гамет и зи­гот разного типа, а также равная вероятность выживания ор­ганизмов с различными генотипами (не должно быть леталь­ных генов).

В основе независимого наследования генов разных аллель­ных пар лежит генный уровень организации наследственного материала, заключающийся в том, что гены относительно не­зависимы друг от друга.

Отклонения от ожидаемого расщепления по законам Мен­деля вызывают летальные гены. Например, при скре­щивании гетерозиготных каракульских овец расщепление в F) составляет 2:1 (вместо ожидаемого 3:1). Ягнята, гомозигот­ные по доминантной аллели серой окраски (W), нежизнеспособны и погибают из-за недоразвития рубца желудка:

Аналогичным образом у человека наследуются брахидактилия и серповидно-клеточная анемия . Ген брахидактилии (ко­роткие толстые пальцы) - доминантный. У гетерозигот на­блюдается брахидактилия, а гомозиготы по этому гену поги­бают на ранних стадиях эмбриогенеза. У человека имеется ген нормального гемоглобина (НbA) и ген серповидно-клеточной анемии (НbS). Гетерозиготы по этим генам жизнеспособны, а гомозиготы по HbS погибают в раннем детском возрасте (ге­моглобин S не способен связывать и переносить кислород).

Затруднения в интерпретации результатов скрещивания (отклонения от законов Менделя) может вызвать и явление плейотропии, когда один ген отвечает за проявление не­скольких признаков. Так, у гомозиготных серых каракульских овец ген W детерминирует не только серую окраску шерсти, но и недоразвитие пищеварительной системы. Примерами плейотропного действия гена у человека являются синдромы Марфана и "голубых склер". При синдроме Марфана один ген вызывает развитие "паучьих пальцев", подвывих хрусталика, деформацию грудной клетки, аневризму аорты, высокий свод стопы. При синдроме "голубых склер" у человека наблюдают­ся голубая окраска склер, ломкость костей и пороки развития сердца.

При плейотропии, вероятно, наблюдается недостаточ­ность ферментов, активных в нескольких типах тканей или в одной, но широко распространенной. В основе синдрома Марфана, по-видимому, лежит один и тот же дефект развития соединительной ткани.

Грегор Мендель в XIX веке, проводя исследования на горохе посевном, выявил три основные закономерности наследования признаков, которые носят название трех законов Менделя. Первые два закона касаются моногибридного скрещивания (когда берут родительские формы, отличающиеся только по одному признаку), третий закон был выявлен при дигибридном скрещивании (родительские формы исследуются по двум разным признакам).

Первый закон Менделя. Закон единообразия гибридов первого поколения

Мендель взял для скрещивания растения гороха, отличающиеся по одному признаку (например, по окраске семян). Одни имели желтые семена, другие - зеленые. После перекрестного опыления получаются гибриды первого поколения (F 1). Все они имели желтый цвет семян, т. е. были единообразны. Фенотипический признак, определяющий зеленый цвет семян, исчез.

Второй закон Менделя. Закон расщепления

Мендель посадил гибриды первого поколения гороха (которые все были желтыми) и позволил им самоопыляться. В итоге были получены семена, представляющие собой гибриды второго поколения (F 2). Среди них уже встречались не только желтые, но и зеленые семена, т. е. произошло расщепление. При этом отношение желтых к зеленым семенам было 3: 1.

Появление зеленых семян во втором поколении доказывало то, что этот признак не исчезал или растворялся у гибридов первого поколения, а существовал в дискретном состоянии, но просто был подавлен. В науку были введены понятия о доминантном и рецессивном аллеле гена (Мендель называл их по-другому). Доминантный аллель подавляет рецессивный.

У чистой линии желтого гороха два доминантных аллеля - AA. У чистой линии зеленого гороха два рецессивных аллеля - aa. При мейозе в каждую гамету попадает только один аллель. Таким образом, горох с желтыми семенами образует только гаметы, содержащие аллель A. Горох с зелеными семенами образует гаметы, содержащие аллель a. При скрещивании они дают гибриды Aa (первое поколение). Поскольку доминантный аллель в данном случае полностью подавляет рецессивный, то и наблюдался желтый цвет семян у всех гибридов первого поколения.

Гибриды первого поколения уже дают гаметы A и a. При самоопылении, случайно комбинируясь между собой, они образуют генотипы AA, Aa, aa. Причем гетерозиготный генотип Aa будет встречаться в два раза чаще (так как Aa и aA), чем каждый гомозиготный (AA и aa). Таким образом получаем 1AA: 2Aa: 1aa. Поскольку Aa дает желтый цвет семян как и AA, то выходит, что на 3 желтых приходится 1 зеленый.

Третий закон Менделя. Закон независимого наследования разных признаков

Мендель провел дигибридное скрещивание, т. е. взял для скрещивания растения гороха, отличающиеся по двум признакам (например, по цвету и морщинистости семян). Одна чистая линия гороха имела желтые и гладкие семена, а вторая - зеленые и морщинистые. Все их гибриды первого поколения имели желтые и гладкие семена.

Во втором поколении ожидаемо произошло расщепление (у части семян проявился зеленый цвет и морщинистость). Однако при этом наблюдались растения не только с желтыми гладкими и зелеными морщинистыми семенами, но и с желтыми морщинистыми, а также зелеными гладкими. Другими словами, произошла перекомбинация признаков, говорящая о том, что наследование цвета и формы семян происходит независимо друг от друга.

Действительно, если гены цвета семян находится в одной паре гомологичных хромосом, а гены, определяющие форму, - в другой, то при мейозе они могут независимо друг от друга комбинироваться. В результате гаметы могут содержать как аллели желтого цвета и гладкой формы (AB), так и желтого цвета и морщинистой формы (Ab), а также зеленой гладкой (aB) и зеленой морщинистой (ab). При комбинации гамет между собой с разной вероятностью образуется девять типов гибридов второго поколения: AABB, AABb, AaBB, AaBb, AAbb, Aabb, aaBB, aaBb, aabb. При этом по фенотипу будет наблюдаться расщепление на четыре типа в отношении 9 (желтых гладких) : 3 (желтых морщинистых) : 3 (зеленых гладких) : 1 (зеленых морщинистых). Для наглядности и подробного анализа строят решетку Пеннета.

Законы Менделя - принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя . Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет» .

Энциклопедичный YouTube

    1 / 5

    ✪ Первый и второй законы Менделя. Естествознание 3.2

    ✪ Третий закон Менделя. Естествознание 3.3

    ✪ Первый и второй законы Менделя супердоходчиво

    ✪ Урок биологии №20. Грегор Мендель и его Первый закон.

    ✪ 1 закон Менделя. Закон доминирования.Подготовка к ЕГЭ и ОГЭ по биологии

    Субтитры

Предшественники Менделя

В начале XIX века Дж. Госс (John Goss ), экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении .

Таким образом, к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении (все гибриды первого поколения похожи друг на друга), расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников, указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя .

Методы и ход работы Менделя

  • Мендель изучал, как наследуются отдельные признаки.
  • Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования .
  • Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме - самоопылитель , но на нём легко проводить искусственную гибридизацию.
  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей .

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Понятие гомозиготности было введено позднее У. Бэтсоном в 1902 году .

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования . Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот .

Скрещиванием организмов двух чистых линий , различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание .

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет - в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Закон независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) - при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом (нуклеопротеидных структур в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи) гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иогансеном).
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой - от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.
  5. Родительские организмы принадлежат к чистым линиям, то есть действительно гомозиготны по изучаемому гену (АА и аа).
  6. Признак действительно моногенный

Условия выполнения закона независимого наследования

  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).

Условия выполнения закона чистоты гамет

  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Законы Менделя - это принципы передачи наследственных признаков от родительских организмов к их потомкам

Первый закон Менделя

или

При скрещивании двух гомозиготных организмов, отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Давайте разберем суть этой формулировки. Итак, скрещиваются два организма. «Гомо» — одинаковый, значит, новый организм (зигота — оплодотворенная яйцеклетка) получил одинаковые признаки от отцовского и материнского организма. Это может быть как , так и , поэтому такой организма обозначают АА или аа .

Так вот, в первом законе Менделя сказано, что при скрещивании таких родителей все поколение будет одинаковым, единообразным.

Для наглядности будем использовать решетку Пеннета .

Решётка Пеннета , или решётка Паннета - таблица, предложенная английским генетиком Реджинальдом Паннетом (1875-1967) в качестве инструмента, представляющего собой графическую запись для определения сочетаемости из родительских генотипов, одной стороны квадрата расположены женские гаметы, вдоль другой - мужские. Это позволяет легче и нагляднее представить генотипы, получаемые при скрещивании родительских гамет.

Давайте рассмотри образование потомства у следующих пар:

  1. И отцовский и материнский организмы гомозиготны и несут доминантный признак: АА × АА
    Тогда каждый организм производит только один тип гамет: А
  2. И отцовский и материнский организмы гомозиготны и несут рецессивный признак: аа× аа
  3. Один гомозиготный организм несет доминантный признак, другой гомозиготный организма — рецессивный: АА ×аа

Записываем каждую гамету в ячейку. Один организм — сверху, другой — слева:

В 1 варианте все 4 одинаковы и по (АА) и по — проявляется доминантный признак;

Во 2 варианте все 4 гибрида одинаковы по генотипу (аа) и по фенотипу — проявляется рецессивный признак;

В 3 варианте все 4 гибрида одинаковы по генотипу (Аа) и по фенотипу — проявляется доминантный признак (они носители рецессивного признака).

Как видите, первый закон Менделя — действительно — если мы скрещиваем гомозиготных родителей, все поколение одинаковое, единообразное (нет расщепления).

А что будет если обе особи гетерозиготны, т.е. их генотип будет выглядеть так: Аа?

Аа×Аа

Давайте разберем получившееся потомство:

Расщепление по генотипу: 1АА: 2Аа: 1аа, т.е. 1:2:1
Расщепление по : доминантный признак будет проявляться в 3-х организмах: АА и 2Аа

аа — будет проявляться рецессивный признак

расщепление 3:1

Неполное доминирование

Бывают случаи, когда признак потомства является промежуточным между доминантным и рецессивным. Например, цветок львиный зев:

Белый цвет — рецессивный — соответсвует генотипу аа ;

Красный цвет — доминантный — соответствует генотипу АА ,

А розовый цвет — это эффект неполного доминирования — генотип Аа , т.е. в данном случае гетерозиготный организм имеет признак, промежуточный между доминантным и рецессивным.

Кодоминирование

Приставка ко- это то же самое, что со-. Со-продюсер, например, соратник. Т.е. они «вместе работают». Вот так и в кодоминировании.