Электромагнитное ультрафиолетовое видимое и инфракрасное излучения. Влияние на организм человека ультрафиолетового излучения

Обеззараживание с помощью УФ-ламп я помню с детства – в садике, санатории и даже в летнем лагере стояли несколько пугающие конструкции, которые светились красивым фиолетовым светом в темноте и от которых нас отгоняли воспитатели. Так что же такое на самом деле ультрафиолетовое излучение и зачем оно нужно человеку?

Пожалуй, первый вопрос, на который нужно ответить – что такое вообще ультрафиолетовые лучи и как они работают. Обычно так называют электромагнитное излучение, которое находится в диапазоне между видимым и рентгеновским излучением. Ультрафиолет характеризуется длиной волны от 10 до 400 нанометров.
Открыли его еще в 19 веке, и произошло это благодаря открытию инфракрасного излучения. Обнаружив ИК-спектр, в 1801 г. И.В. Риттер обратил внимание на противоположный конец светового диапазона в процессе опытов с хлоридом серебра. А затем сразу несколько ученых пришли к выводу о неоднородности ультрафиолета.

Сегодня его разделяют на три группы:

  • УФ-А излучение – ближний ультрафиолет;
  • УФ-Б – средний;
  • УФ-С – дальний.

Такое разделение во многом обусловлено именно воздействием лучей на человека. Естественным и основным источником ультрафиолета на Земле является Солнце. По сути, именно от этого излучения мы спасаемся солнцезащитными кремами. При этом дальний ультрафиолет полностью поглощается атмосферой Земли, а УФ-А как раз доходит до поверхности, вызывая приятный загар. А в среднем 10% УФ-Б провоцируют те самые солнечные ожоги, а также могут приводить к образованию мутаций и кожных заболеваний.

Искусственные источники ультрафиолета создаются и используются в медицине, сельском хозяйстве, косметологии и различных санитарных учреждениях. Генерирование ультрафиолетового излучения возможно несколькими способами: температурой (лампы накаливания), движением газов (газовые лампы) или металлических паров (ртутные лампы). При этом мощность таких источников варьируется от нескольких ватт, обычно это небольшие мобильные излучатели, до киловатта. Последние монтируются в объемные стационарные установки. Сферы применения УФ-лучей обусловлены их свойствами: способностью ускорять химические и биологические процессы, бактерицидным эффектом и люминесценцией некоторых веществ.

Ультрафиолет широко применяется для решения самых различных задач. В косметологии использование искусственного УФ-излучения используется прежде всего для загара. Солярии создают довольно мягкий ультрафиолет-А согласно введенным нормам, а доля УФ-В в лампах для загара составляет не более 5%. Современные психологи рекомендуют солярии для лечения «зимней депрессии», которая в основном вызвана дефицитом витамина D, так как он образуется под влиянием УФ-лучей. Также УФ-лампы используют в маникюре, так как именно в этом спектре высыхают особо стойкие гель-лаки, шеллак и подобные им.

Ультрафиолетовые лампы используют для создания фотоснимков в нестандартных ситуациях, например, для запечатления космических объектов, которые невидимы в обычный телескоп.

Широко применяется ультрафиолет в экспертной деятельности. С его помощью проверяют подлинность картин, так как более свежие краски и лаки в таких лучах выглядят темнее, а значит можно установить реальный возраст произведения. Криминалисты также используют УФ-лучи для обнаружения следов крови на предметах. Кроме того, ультрафиолет широко используется для проявления скрытых печатей, защитных элементов и нитей, подтверждающих подлинность документов, а также в световом оформлении шоу, вывесок заведений или декораций.

В медицинских учреждениях ультрафиолетовые лампы используются для стерилизации хирургических инструментов. Помимо этого, все еще широко распространено обеззараживание воздуха с помощью УФ-лучей. Существует несколько видов такого оборудования.

Так называют ртутные лампы высокого и низкого давления, а также ксеноновые импульсные лампы. Колба такой лампы изготавливается из кварцевого стекла. Основной плюс бактерицидных ламп – долгий срок службы и мгновенная способность к работе. Примерно 60% их лучей находятся в бактерицидном спектре. Ртутные лампы достаточно опасны в эксплуатации, при случайном повреждении корпуса необходима тщательная очистка и демеркуризация помещения. Ксеноновые лампы менее опасны при повреждении и отличаются более высокой бактерицидной активностью. Также бактерицидные лампы разделяют на озоновые и безозоновые. Первые характеризуются наличием в своем спектре волны длиной 185 нанометров, которая взаимодействует с находящимся в воздухе кислородом и превращает его в озон. Высокие концентрации озона опасны для человека, и использование таких ламп строго ограничено во времени и рекомендуется только в проветриваемом помещении. Все это привело к созданию безозоновых ламп, на колбу которых нанесено специальное покрытие, не пропускающее волну в 185 нм наружу.

Вне зависимости от вида бактерицидные лампы имеют общие недостатки: они работают в сложной и дорогостоящей аппаратуре, средний ресурс работы излучателя – 1,5 года, а сами лампы после перегорания должны храниться упакованными в отдельном помещении и утилизироваться специальным образом согласно действующим нормативам.

Состоят из лампы, отражателей и других вспомогательных элементов. Такие устройства бывают двух видов – открытые и закрытые, в зависимости от того, проходят УФ-лучи наружу или нет. Открытые выпускают ультрафиолет, усиленный отражателями, в пространство вокруг, захватывая сразу практически всю комнату, если установлены на потолке или стене. Проводить обработку помещения таким облучателем в присутствии людей строго запрещено.
Закрытые облучатели работают по принципу рециркулятора, внутри которого установлена лампа, а вентилятор втягивает в прибор воздух и выпускает уже облученный наружу. Их размещают на стенах на высоте не менее 2 м от пола. Их возможно использовать в присутствии людей, однако длительное воздействие не рекомендуется производителем, так как часть УФ-лучей может проходить наружу.
Из недостатков таких приборов можно отметить невосприимчивость к спорам плесени, а также все сложности утилизации ламп и строгий регламент использования в зависимости от типа излучателя.

Бактерицидные установки

Группа облучателей, объединенная в один прибор, использующийся в одном помещении, называется бактерицидной установкой. Обычно они достаточно крупногабаритные и отличаются высоким энергопотреблением. Обработка воздуха бактерицидными установками производится строго в отсутствие людей в комнате и отслеживается по Акту ввода в эксплуатацию и Журналу регистрации и контроля. Используется только в медицинских и гигиенических учреждениях для обеззараживания как воздуха, так и воды.

Недостатки ультрафиолетового обеззараживания воздуха

Помимо уже перечисленного, использование УФ-излучателей имеет и другие минусы. Прежде всего, сам ультрафиолет опасен для человеческого организма, он может не только вызывать ожоги кожи, но и сказываться на работе сердечно-сосудистой системы, опасен для сетчатки глаза. Кроме того, он может вызывать появление озона, а с ним и присущие этому газу неприятные симптомы: раздражение дыхательных путей, стимуляция атеросклероза, обострение аллергии.

Эффективность работы УФ-ламп достаточно спорная: инактивация болезнетворных микроорганизмов в воздухе разрешенными дозами ультрафиолета происходит только при статичности этих вредителей. Если микроорганизмы двигаются, взаимодействуют с пылью и воздухом, то необходимая доза облучения возрастает в 4 раза, чего не может создать обычная УФ-лампа. Поэтому эффективность работы облучателя рассчитывается отдельно с учетом всех параметров, и крайне сложно подобрать подходящие для воздействия на все типы микроорганизмов сразу.

Проникновение УФ-лучей относительно неглубокое, и если даже неподвижные вирусы находятся под слоем пыли, верхние слои защищают нижние, отражая от себя ультрафиолет. А значит, после уборки обеззараживание нужно проводить еще раз.
УФ-облучатели не могут фильтровать воздух, они борются только с микроорганизмами, сохраняя все механические загрязнители и аллергены в первозданном виде.

На организм.

Ультрафиолетовая радиация.

Ультрафиолетовое излучение представляет собой часть солнечной радиации с длиной волны от 10 до 400 нм.

Ультрафиолетовые лучи с длинной волны от 10 до 290 нм не дости­гают земной поверхности. Свойства ультрафиолетового излучения с раз­ной длинной волны неодинаковы. Наиболее короткие волны (от 10 до 200 нм) по своему действию приближаются к ионизирующему излучению. Эта область получила название озонирующей. Энергия ультрафиолетового излучения с длинной волны от 200 до 400 нм не достаточна для возбуж­дения атомов, здесь преобладают фотохимические реакции.

Для нас наибольшее значение имеет часть спектра от 200 до 400 нм. Эту зону делят на

область С - от 200 до 280 нм

область В - от 280 до 320 нм

область А - от 320 до 400 нм

Область С называют бактерицидной. Преимущественным действием ультрафиолетового излучения в этой области является бактерицидное действие, что широко используется для обеззараживания воды, воздуха и тд. Бактерицидным действием обладают также области В и А, но в зна­чительно меньшей степени.

Область В называется эритемной, т.к. под влиянием ультрафиоле­тового излучения этой области возникает эритема. В области В также очень выражено витаминообразующее действие. Наиболее мощным ви-таминообразующим эффектом обладает область с длинной волны от 265 до 315 нм.

Область А получила название загарной. Под воздействием ультра­фиолетового излучения этой области возникает загар - образование мела­нина, что представляет собой защитную реакцию организма.

Роль УФИ очень велика. Оно повышает тонус организма, умствен­ную и физическую работоспособность, сопротивляемость к инфекциям, стимулирует деятельность желез внутренней секреции, кроветворение.

Под действием ультрафиолетового излучения образуются витамин D, гистамин, тканевые гормоны, пигменты.

Недостаток ультрафиолетового излучения отрицательно сказывается на организме и может приводить к:

1. Рахиту у детей

2. Снижению общей иммунологической реактивности

3. Снижению умственной и физической работоспособности

4. Повышению заболеваемости

5. Нарушению обмена кальция (из-за нехватки витамина D) - остеопо-роз, остеомаляция, кариес

Не следует, однако, забывать и об отрицательном действии ультра­фиолетового излучения, которому в последнее время уделяется присталь­ное внимание.

Отрицательное действие переоблучения:

1. Обострение ряда хронических заболеваний. Поэтому загорание не может быть рекомендовано при таких заболеваниях как туберкулез, ревматизм, язва желудка и двенадцатиперстной кишки, сердечно­сосудистые заболевания, все виды опухолевых процессов

2. Доказано роль ультрафиолетового излучения в развитии рака кожи, в частности меланомы

3. Возможно возникновение дефицита некоторых ароматических амино­кислот - тирозина, фенилаланина, а также витамина С и витамина РР, которые участвуют в синтезе меланина

4. Повышается количество перекисных соединений, что ведет к избыточ­ному расходу белка и железа и образованию радиомиметиков - соеди­нений, обладающих мутагенным действием.

5. Возможно возникновение фотохимического ожога в случае, когда не успевает образоваться защитный пигмент. Фотохимический ожог ха­рактеризуется повышением температуры, головной болью, недомога­нием.

6. При избыточном действии ультрафиолетового излучения может возни­кать фотоофтальмия - конъюнктивит, сопровождающийся покрасне­нием, ощущением песка в глазах, жжением, слезотечением, светобояз­нью, иногда временной потерей зрения. Фотоофтальмия возможна не только при действии прямого, но также отраженного и рассеянного света и может наблюдаться у альпинистов, горнолыжников, электро­сварщиков, в фотариях, операционных. В производственных условиях (например, у сварщиках) при повреждении роговицы интенсивным ультрафиолетовым излучением возможно развитие катаракты.

7. Фотосенсибилизация - повышенная чувствительность к действию ультрафиолетового излучения, которая проявляется в фотоаллергиче­ских реакциях типа крапивницы, дерматитов, экземы. Для возникно­вения фотосенсибилизации, как правило, необходимо наличие как эк­зогенных, так и эндогенных факторов. К эндогенным факторам отно­сятся заболевание щитовидной, поджелудочной железы, печени, энзи-мопатии, ведущие к накоплению порфиринов, жирных кислот, били­рубина. Экзогенные факторы - различные химические агенты - гудрон, асфальт, креозотовое масло, горюче-смазочные материалы, красители (акридин, креозот).

Инфракрасное излучение.

Инфракрасное излучение представляет собой часть солнечной радиа­ции в диапозоне длин волн от 670 до 3400 нм.

Инфракрасное изучение оказывает прежде всего тепловое действие. Кроме того, в настоящее время установлен целый ряд биологических эффектов.

Тепловой эффект определяется прежде всего длинной волны. Длин­новолновая часть инфракрасного излучения (более 1400 нм) задержива­ется поверхностными слоями кожи, благодаря чему происходит их разо­грев, появляется чувство жжения. Вследствие такого эффекта длинновол­новая часть излучения называется «палящими лучами». При достаточной интенсивности излучения возможна эритема и ожог.

Коротковолновая часть излучения проникает в ткани на глубину около 3 см, в результате чего может вызывать разогрев тканей, в том числе мозговых оболочек. Именно воздействием коротковолнового ин­фракрасного излучения обусловлено такое явление как солнечный удар. Кроме того, оно вызывает перегрев и помутнение хрусталика, что ведет к развитию катаракты.

Общие реакции в ответ на действие инфракрасного излучения харак­теризуются гиперемией, повышением газообмена, усилением выделитель­ной функции почек, изменением функционального состояния нервной системы.

Теоретически вопрос «Чем инфракрасные лучи отличаются от ультрафиолетовых? » мог бы заинтересовать любого человека. Ведь и те, и другие лучи входят в состав солнечного спектра – а воздействию Солнца мы подвергаемся ежедневно. На практике же его чаще всего задают себе те, кто собирается приобрести устройства, известные как инфракрасные обогреватели, и хотел бы убедиться в том, что подобные приборы абсолютно безопасны для здоровья человека.

Чем инфракрасные лучи отличаются от ультрафиолетовых с точки зрения физики

Как известно, кроме семи видимых цветов спектра за его пределами имеются и невидимые глазу излучения. Помимо инфракрасных и ультрафиолетовых, к ним относятся рентгеновские лучи, гамма-лучи и микроволны.

Инфракрасные и УФ-лучи сходны в одном: и те, и другие относятся к той части спектра, который не видим невооруженному глазу человека. Но этим и ограничивается их сходство.

Инфракрасное излучение

Инфракрасные лучи были обнаружены за пределами красной границы, между длинноволновым и коротковолновым участками этой части спектра. Стоит отметить, что почти половина солнечной радиации – это именно инфракрасное излучение. Основная характеристика этих не видимых глазу лучей – сильная тепловая энергия: ее непрерывно излучают все нагретые тела.
Излучение этого вида подразделяется на три области по такому параметру, как длина волны:

  • от 0,75 до 1,5 мкм – ближняя область;
  • от 1,5 до 5,6 мкм – средняя;
  • от 5,6 до 100 мкм – дальняя.

Нужно понимать, что инфракрасное излучение является не продуктом всевозможных современных технических устройств, к примеру, ИК-обогревателей. Это фактор природной окружающей среды, который постоянно действует на человека. Наше тело непрерывно поглощает и отдает инфракрасные лучи.

Ультрафиолетовое излучение


Существование лучей за фиолетовой границей спектра было доказано в 1801 году. Диапазон ультрафиолетовых лучей, испускаемых Солнцем, составляет от 400 до 20 нм, однако до земной поверхности доходят только незначительная часть коротковолнового спектра – до 290 нм.
Ученые считают, что ультрафиолету принадлежит значительная роль в образовании первых на Земле органических соединений. Однако воздействие этого излучения носит и отрицательный характер, приводя к распаду органических веществ.
При ответе на вопрос, чем инфракрасное излучение отличается от ультрафиолетового , необходимо обязательно рассмотреть воздействие на организм человека. И здесь основное отличие заключается в том, что эффект инфракрасных лучей ограничивается преимущественно тепловым действием, в то время как ультрафиолетовые лучи способны оказывать еще и фотохимическое воздействие.
УФ-излучение активно поглощается нуклеиновыми кислотами, следствием чего являются изменения важнейших показателей жизнедеятельности клеток – способности к росту и делению. Именно повреждение ДНК является главным компонентом механизма воздействия на организмы ультрафиолетовых лучей.
Основной орган нашего тела, на который действует ультрафиолетовое излучение – это кожа. Известно, что благодаря УФ-лучам запускается процесс образования витамина Д, который необходим для нормального усвоения кальция, а также синтезируются серотонин и мелатонин – важные гормоны, оказывающие влияние на суточные ритмы и настроение человека.

Воздействие ИК и УФ-излучения на кожу

Когда человек подвергается воздействию солнечных лучей, на поверхность его тела оказывают влияние и инфракрасные, ультрафиолетовые лучи. Но результат этого воздействия будет различным:

  • ИК-лучи вызывают прилив крови к поверхностным слоям кожи, повышение ее температуры и покраснение (калорическая эритема). Этот эффект исчезает сразу же, как только действие облучения прекращается.
  • Воздействие УФ-излучения имеет скрытый период и может проявляться через несколько часов после облучения. Длительность ультрафиолетовой эритемы составляет от 10 часов до 3-4 дней. Кожа краснеет, может шелушиться, затем окраска ее становится более темной (загар).


Доказано, что избыточное воздействие ультрафиолета может привести к возникновению злокачественных заболеваний кожи. В то же время в определенных дозах УФ-излучение полезно для организма, что позволяет применять его для профилактики и лечения, а также для уничтожения бактерий в воздухе помещений.

Безопасно ли инфракрасное излучение?

Опасения людей по отношению к такому виду устройств, как инфракрасные обогреватели, вполне понятно. В современном обществе уже сформировалась устойчивая тенденция с изрядной долей опасения относиться ко многим видам излучения: радиация, рентгеновские лучи и др.
Рядовым потребителям, которые собираются приобрести устройства, основанные на использовании инфракрасного излучения, важнее всего знать следующее: инфракрасные лучи совершенно безопасны для здоровья человека. Именно это стоит подчеркнуть, рассматривая вопрос, чем инфракрасные лучи отличаются от ультрафиолетовых .
Исследованиями доказано: длинноволновое ИК-излучение не только полезно для нашего тела – оно ему совершенно необходимо. При недостатке ИК-лучей страдает иммунитет организма, а также проявляется эффект его ускоренного старения.


Положительное воздействие инфракрасного излучения уже не вызывает сомнений и проявляется в различных аспектах.

Значительную часть неионизирующих электромагнитных излучений составляют радиоволны и колебания оптического диапазона (инфракрасное, видимое, ультрафиолетовое излучение). В зависимости от места и условий воздействия электромагнитных излучений радиочастот различают четыре вида облучения: профессиональное, непрофессиональное, бытовое и в лечебных целях, а по характеру облучения – общее и местное.

Инфракрасное излучение – часть электромагнитного с длиной волны от 780 до 1000 мкм, энергия которого при поглощении веществом вызывает тепловой эффект. Наиболее активно коротковолновое излучение, так как оно обладает наибольшей энергией фотонов, способно глубоко проникать в ткани организма и интенсивно поглощаться водой, содержащейся в тканях. У человека наиболее поражаемые инфракрасным излучением органы – кожный покров и органы зрения.

Видимое излучение при высоких уровнях энергии также может представлять опасность для кожи и глаз.

Ультрафиолетовое излучение, как и инфракрасное, является частью электромагнитного с длиной волны от 200 до 400 нм. Естественные солнечные ультрафиолетовые излучения являются жизненно необходимыми, оказывают благотворное стимулирующее действие на организм.

Излучение искусственных источников может стать причиной острых и хронических профессиональных поражений. Наиболее уязвимым органом являются глаза. Острые поражения глаз называются электроофтальмией. Попадая на кожу, ультрафиолетовые излучения могут вызывать острые воспаления, отек кожи. Может подняться температура, появиться озноб, головная боль.

Лазерное излучение представляет собой особый вид электромагнитных излучений, генерируемых в диапазоне волн 0,1-1000 мкм. Отличается от других видов излучений монохроматичностью (строго одной длины волны), когерентностью (все источники излучения испускают электромагнитные волны в одной фазе) и острой направленностью луча. Действует на различные органы избирательно. Локальное повреждение связано с облучением глаз, повреждением кожи. Общее воздействие может приводить к различным функциональным нарушениям организма человека (нервной и сердечно-сосудистой систем, артериального давления и др.)

2.Коллективные средства защиты (виды, способы применения)

Защита населения и производительных сил страны от оружия массового поражения, а также при стихийных бедствиях, производственных авариях – важнейшая задача Управления по делам гражданской обороны и чрезвычайным ситуациям.

Средства коллективной защиты - средства защиты, конструктивно и функционально связанные с производственным процессом, производственным оборудованием, помещением, зданием, сооружением, производственной площадкой.

Коллективные средства защиты делятся на: оградительные, предохранительные, тормозные устройства, устройства автоматического контроля и сигнализации, дистанционного управления, знаки безопасности.

Оградительные устройства предназначены для предотвращения случайного попадания человека в опасную зону. Эти устройства применяются для изоляции движущихся частей машин, зон обработки станков, прессов, ударных элементов машин от рабочей зоны. Устройства подразделяются на стационарные, подвижные и переносные. Они могут быть выполнены в виде защитных кожухов, козырьков, барьеров, экранов; как сплошными, так и сетчатыми. Изготавливают их из металла, пластмасс, дерева.

Стационарные ограждения должны быть достаточно прочными и выдерживать любые нагрузки, возникающие от разрушающих действий предметов и срыва обрабатываемых деталей и т.д. Переносные ограждения в большинстве случаев используют как временные.

Предохранительные устройства используют для автоматического отключения машин и оборудования при отклонении от нормального режима работы или при попадании человека в опасную зону. Эти устройства могут быть блокирующими и ограничительными. Блокирующие устройства по принципу действия бывают: электромеханические, фотоэлектрические, электромагнитные, радиационные, механические. Ограничительные устройства являются составными частями машин и механизмов, которые разрушаются или выходят из строя при перегрузках.

Широко используются тормозные устройства, которые можно подразделить на колодочные, дисковые, конические и клиновые. В большинстве видов производственного оборудования используют колодочные и дисковые тормоза. Тормозные системы могут быть ручные, ножные, полуавтоматические и автоматические.

Для обеспечения безопасной и надежной работы оборудования информационные, предупреждающие, аварийные устройства автоматического контроля и сигнализации очень важны. Устройства контроля – это приборы для измерения давлений, температуры, статических и динамических нагрузок, характеризующих работу машин и оборудования. При объединении устройств контроля с системами сигнализации значительно повышается их эффективность. Системы сигнализации бывают: звуковыми, световыми, цветовыми, знаковыми, комбинированными.

Для защиты от поражения электрическим током применяются различные технические меры. Это – малые напряжения; электрическое разделение сети; контроль и профилактика повреждения изоляции; защита от случайного прикосновения к токоведущим частям; защитное заземление; защитное отключение; индивидуальные средства защиты.

Ультрафиолетовое излучение относится к невидимому оптическому спектру. Естественным источником ультрафиолетового излучения является солнце, на которое приходится приблизительно 5% плотности потока солнечного излучения, - это жизненно необ­ходимый фактор, оказывающий благотворное стимулирующее дей­ствие на живой организм.

Искусственные источники ультрафиолетового излучения (элек­трическая дуга при электросварке, электроплавке, плазмотроны и др.) могут стать причиной поражений кожи и зрения. Острые поражения глаз (электроофтальмия) представ­ляют собой острый конъюнктивит. За­болевание проявляется ощущением постороннего тела или песка в глазах, светобоязнью, слезотечением. К хроническим заболевани­ям относят хронический конъюнктивит, катаракту. Кожные поражения протекают в форме острых дерматитов, иногда с образованием отеков и пузырей. Могут возник­нуть общетоксические явления с повышением температуры, ознобом, головными болями. На коже после интенсивного облучения развиваются гиперпигментация и шелушение. Длительное воздействие ультрафиолетового излучения приводит к «старению» кожи, вероятности развития злокачественных новообразований.

Гигиеническое нормированиеультрафиолетового излучения осуществляется по СН 4557-88, которые устанавливают допустимые плотности потока излучения в зависимости от длины волн при условии защиты органов зрения и кожи.



Допустимая интенсивность облучения работающих при
незащищенных участках поверхности кожи не более 0,2 м 2 (лицо,
шея, кисти рук) общей продолжительностью воздействия излучения 50% рабочей смены и длительности однократного облучения
свыше 5 мин не должно превышать 10 Вт/м 2 для области 400-280 нм и
0,01 Вт/м 2 - для области 315-280 нм.

При использовании специальной одежды и средств защиты лица
и рук, не пропускающих излучение, допустимая интенсивность
облучения не должна превышать 1 Вт/м 2 .

К основным методам защитыот ультрафиолетового излучения относят экраны, средства индивидуальной защиты (одежда, очки), защитные кремы.

Инфракрасное излучение представляет собой невидимую часть оптического электромагнитного спектра, энергия которого при поглощении в биологической ткани вызывает тепловой эффект. Источникими инфракрасного излучения могут быть плавильные печи, расплавленный металл, нагретые детали и заготовки, различные виды сварки и др.

Наиболее поражаемые органы: кожный покров и органы зре­ния. При остром облучении кожи возможны ожоги, резкое расши­рение капилляров, усиление пигментации кожи; при хронических облучениях изменение пигментации может быть стойким, напри­мер эритемоподобный (красный) цвет лица у рабочих-стеклоду­вов, сталеваров.

При воздействии на зрение могут отмечаться помутнение и ожог роговицы, инфракрасная катаракта.

Инфракрасное излучение воздействует также на обменные процессы в миокарде, водно-электролитный баланс, на состояние верхних дыхательных путей (развитие хронического ларингита, ринита, синуситов), может быть причиной теплового удара.

Нормирование инфракрасного излученияосуществляется по интенсивности допустимых интегральных потоков излучения с учетом спектраль­ного состава, размера облучаемой площади, защитных свойств спецодежды для продолжительности действия в соответствии с ГОСТ 12.1.005-88 и Санитарными правилами и нормами СН 2.2.4.548-96 «Гигиенические требования к микро­климату Производственных помещений».

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м 2 при облучении 50% поверхности тела и более, 70 Вт/м 2 - при величине облучаемой поверхности от 25 до 50% и 100 Вт/м 2 - при облучении не более 25% поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, “открытое” пламя и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Допустимая интенсивность облучения на постоянных и непостоянных местах дана в табл. 4.20.

Таблица 4.20.

Допустимая интенсивность облучения

Основные мероприятия по снижению опасности воздействия инфракрасного излучения на человека включают в себя: снижение интенсивности излучения источника; технические защитные средства; защита временем, использование средств индивидуальной защиты, лечебно-профилактические мероприятия.

Технические защитные средства подразделяются на ограждающие, теплоотражающие, теплоотводящие и теплоизолирующие экраны; герметизацию оборудования; средства вентиляции; средства автоматического дистанционного управления и контроля; сигнализацию.

При защите временем во избежание чрезмерного общего перегревания и локального повреждения (ожог) регламентируется продолжительность периодов непрерывного инфракрасного облучения человека и пауз между ними (табл. 4.21. по Р 2.2.755-99).

Таблица 4.21.

Зависимость непрерывного облучения от его интенсивности.

Вопросы к 4.4.3.

  1. Охарактеризуйте природные источники электромагнитного поля.
  2. Дайте классификацию антропогенных электромагнитных полей.

3. Расскажите о действие электромагнитного поля на человека.

4. Что такое нормирование электромагнитных полей.

5. Какие установлены допустимые уровни воздействия электромагнитных полей на рабочих местах.

6. Перечислите основные мероприятия по защите работающих от неблагоприятного влияния электромагнитных полей.

7. Какие экраны применяются для защиты от электромагнитных полей.

8. Какие применяются индивидуальные средства защиты и как определяется их эффективность.

9. Охарактеризуйте виды ионизирующего излучения.

10. Какие дозы характеризуют воздействие ионизирующего излучения.

11. Каково действие ионизирующего излучения на человека.

12. Что такое нормирование ионизирующего излучения.

13. Расскажите порядок обеспечениябезопасности при работе с ионизирующими излучениями.

14. Дайте понятие лазерного излучения.

15. Охарактеризуйте его воздействие на человека и методы защиты.

16. Дайте понятие ультрафиолетового излучения, его действия на человека и методов защиты.

17. Дайте понятие инфракрасного излучения, его действия на человека и методов защиты.