Рассчитать массу 1 моль вещества. Алгоритм задач на химическое уравнение

Цель:
Познакомить учащихся с понятиями «количество вещества», «молярная масса» дать представление о постоянной Авогадро. Показать взаимосвязь количества вещества, числа частиц и постоянной Авогадро, а также взаимосвязь молярной массы, массы и количества вещества. Научить производить расчёты.

1)Что такое количество вещества?
2) Что такое моль?
3)Сколько структурных единиц содержится в 1 моле?
4) Через какие величины можно определить количество вещества?
5) Что такое молярная масса, с чем численно совпадает?
6)Что такое молярный объем?

Количество вещества - физическая величина, которая означает определенное число структурных элементов (молекул, атомов, ионов) Обозначается n (эн) измеряется в международной системе единиц (Си) моль
Число Авогадро - показывает число частиц в 1 моль вещества Обозначается NA измеряется в моль-1 имеет числовое значение 6,02*10^23
Молярная масса вещества численно равна его относительной молекулярной массе. Молярная масса - физическая величина, которая показывает массу в 1 моля вещества Обозначается М измеряется в г/моль М = m/n
Молярный объем - физическая величина, которая показывает объем, который занимает любой газ количеством вещества 1 моль Обозначается Vm измеряется в л/моль Vm = V/n При н.у. Vm=22,4л/моль
МОЛЬ - это КОЛИЧЕСТВО ВЕЩЕСТВА, равное 6,02 . 10 23 структурных единиц данного вещества – молекул (если вещество состоит из молекул), атомов (если это атомарное вещество), ионов (если вещество является ионным соединением).
1 моль (1 М) воды = 6 . 10 23 молекул Н 2 О,

1 моль (1 М) железа = 6 . 10 23 атомов Fe,

1 моль (1 М) хлора = 6 . 10 23 молекул Cl 2 ,

1 моль (1 М) ионов хлора Cl - = 6 . 10 23 ионов Cl - .

1 моль (1 М) электронов е - = 6 . 10 23 электронов е - .

Задачи:
1)Сколько молей кислорода содержится в 128 г кислорода?

2) При грозовых разрядах в атмосфере происходит следующая реакция: N 2 + O 2 ® NO 2 . Уравняйте реакцию. Сколько молей кислорода потребуется для полного превращения 1 моля азота в NO 2 ? Сколько это будет граммов кислорода? Сколько граммов NO 2 образуется?

3) В стакан налили 180 г воды. Сколько молекул воды в стакане? Сколько это молей H 2 O?

4)Смешали 4 г водорода и 64 г кислорода. Смесь взорвали. Сколько граммов воды получилось? Сколько граммов кислорода осталось не израсходованным?

Домашнее задание: параграф 15, упр. 1-3,5

Молярный объем газообразных веществ.
Цель:
образовательная – систематизировать знания учащихся о понятиях количество вещества, число Авогадро, молярная масса, на их основе сформировать представление о молярном объеме газообразных веществ; раскрыть сущность закона Авогадро и его практического применения;


развивающая – формировать способность к адекватному самоконтролю и самооценке; развивать умение логически мыслить, выдвигать гипотезы, делать аргументированные выводы.

Ход урока:
1.Организационный момент.
2.Объявление темы и целей урока.

3.Актуализация опорных знаний
4.Решение задач

Закон Авогадро – это один из самых важных законов химии (сформулирован Амадео Авогадро в 1811г), гласящий, что «в равных объемах разных газов, которые взяты при одинаковом давлении и температуре, содержится одинаковое число молекул».

Молярный объем газов – объем газа, содержащий 1 моль частиц этого газа.

Нормальные условия – температура 0 С (273 K) и давление 1 атм (760 мм ртутного столба или 101 325 Па).

Ответьте на вопросы:

1. Что называется атомом? (Атом – самая мелкая химически неделимая часть химического элемента, которая является носителем его свойств).

2. Что такое моль? (Моль - это количества вещества, которое равно 6,02.10^23 структурных единиц этого вещества – молекул, атомов, ионов. Это количество вещества, содержащее столько же частиц, сколько содержится атомов в 12 г углерода).

3. В чем измеряется количество вещества? (В моль).

4. В чем измеряется масса вещества? (Масса вещества измеряется в граммах).

5. Что такое молярная масса и в чем она измеряется? (Молярная масса – это масса 1 моль вещества. Она измеряется в г/моль).

Следствия закона Авогадро.

Из закона Авогадро вытекают 2 следствия:

1. Один моль любого газа занимает одинаковый объем при одинаковых условиях. В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона (Рисунок 3).

Молярный объем газа при нормальных условиях - фундаментальная физическая постоянная, широко используемая в химических расчетах. Она позволяет применять объем газа вместо его массы. Значение молярного объема газа при н.у. является коэффициентом пропорциональности между постоянными Авогадро и Лошмидта

2. Молярная масса первого газа равна произведению массы молярной второго газа на относительную плотность по второму первого газа. Это положение имело огромное значение для развития химии, т.к. оно дало возможность определять частичный вес тел, которые способны переходить в парообразное или газообразное состояние. Следовательно, отношение массы определенного объема одного газа к массе такого же объема другого газа, взятого при тех же условиях, называется плотностью первого газа по второму

1. Заполните пропуски:

Молярный объем - это физическая величина, которая показывает....................., обозначается...................., измеряется в...................... .

2. Запишите формулу по правилу.

Объем газообразного вещества (V) равен произведению молярного объема

(Vm) на количество вещества (n) ............................. .

3. Используя материал задания 3, выведите формулы для расчета:

а) объема газообразного вещества.

б) молярного объема.

Домашнее задание: параграф 16,упр. 1-5

Решение задач на вычисление количества вещества, массы и объема.

Обобщение и систематизация знаний по теме «Простые вещества»
Цель:
обобщить и систематизировать знания обучающихся об основных классах соединений
Ход работы:

1)Организационный момент

2) Обобщение изученного материала:

а)Устный опрос по теме урока

б) Выполнение задания 1 (нахождение оксидов, оснований, кислот, солей среди заданных веществ)

в) Выполнение задания 2 (составление формул оксидов, оснований, кислот, солей)

3. Закрепление (самостоятельная работа)

5. Домашнее задание

2)
а)
- На какие две группы можно разделить вещества?

Какие вещества называются простыми?

На какие две группы делятся простые вещества?

Какие вещества называются сложными?

Какие сложные вещества известны?

Какие вещества называются оксидами?

Какие вещества называются основаниями?

Какие вещества называются кислотами?

Какие вещества называются солями?

б)
Выписать отдельно оксиды, основания, кислоты, соли:

KOH, SO 2 , HCI, BaCI 2 , P 2 O 5 ,

NaOH, CaCO 3 , H 2 SO 4 , HNO 3 ,

MgO, Ca(OH) 2 , Li 3 PO 4

Назвать их.

в)
Составить формулы оксидов, соответствующих основаниям и кислотам:

Гидроксид калия-оксид калия

Гидроксид железа(III)-оксид железа(III)

Фосфорная кислота-оксид фосфора(V)

Серная кислота-оксид серы(VI)

Составить формулу соли нитрата бария; по зарядам ионов, степени окисления элементов записать

формулы соответствующих гидроксидов, оксидов, простых веществ.

1. Степень окисления серы равна +4 в соединении:

2. К оксидам относится вещество:

3. Формула сернистой кислоты:

4. Основанием является вещество:

5. Соль K 2 CO 3 называется:

1- силикат калия

2- карбонат калия

3- карбид калия

4- карбонат кальция

6. В растворе какого вещества лакмус изменит окраску на красную:

2- в щелочи

3- в кислоте

Домашнее задание: повторить параграфы 13-16

Контрольная работа №2
«Простые вещества»

Степень окисления: бинарные соединения

Цель: научить составлять молекулярные формулы веществ, состоящих из двух элементов по степени окисления. продолжить закрепление навыка определения степени окисления элемента по формуле.
1. Степень окисления (с. о.) - это условный заряд атомов химического элемента в сложном веществе, вычисленный на основе предположения, что оно состоит из простых ионов.

Следует знать!

1) В соединениях с. о. водорода = +1, кроме гидридов .
2) В соединениях с. о. кислорода = -2, кроме пероксидов и фторидов
3) Степень окисления металлов всегда положительна.

Для металлов главных подгрупп первых трёх групп с. о. постоянна:
металлы IA группы - с. о. = +1,
металлы IIA группы - с. о. = +2,
металлы IIIA группы - с. о. = +3.
4) У свободных атомов и простых веществ с. о. = 0.
5) Суммарная с. о. всех элементов в соединении = 0.

2. Способ образования названий двухэлементных (бинарных) соединений.

3.

Задания:
Составьте формулы веществ по названию.

Сколько молекул содержится в 48 г оксида серы (IV)?

Степень окисления марганца в соединении К2МnO4 равна:

Максимальную степень окисления хлор проявляет в соединении, формула которого:

Домашнее задание: параграф 17, упр. 2,5,6

Оксиды. Летучие водородные соединения.
Цель: формирование знаний у учащихся о важнейших классах бинарных соединений – оксидах и летучих водородных соединениях.

Вопросы:
– Какие вещества называются бинарными?
– Что называется степенью окисления?
– Какую степень окисления будут иметь элементы, если они отдают электроны?
– Какую степень окисления будут иметь элементы, если они принимают электроны?
– Как определить, сколько электронов будут отдавать, или принимать элементы?
– Какую степень окисления будут иметь одиночные атомы или молекулы?
– Как будут называться соединения, если в формуле на втором месте стоит сера?
– Как будут называться соединения, если в формуле на втором месте стоит хлор?
– Как будут называться соединения, если в формуле на втором месте стоит водород?
– Как будут называться соединения, если в формуле на втором месте стоит азот?
– Как будут называться соединения, если в формуле на втором месте стоит кислород?
Изучение новой темы:
– Что общего в этих формулах?
– Как будут называться такие вещества?

SiO 2 , H 2 O, CO 2 , AI 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , CO.
Оксиды – широко распространенный в природе класс веществ неорганических соединений. К оксидам относят такие хорошо известные соединения, как:

Песок (диоксид кремния SiO2 с небольшим количеством примесей);

Вода (оксид водорода H2O);

Углекислый газ (диоксид углерода CO2 IV);

Угарный газ (CO II оксид углерода);

Глина (оксид алюминия AI2O3 с небольшим количеством других соединений);

Большинство руд черных металлов содержат оксиды, например красный железняк - Fe2O3 и магнитный железняк - Fe3O4.

Летучие водородные соединения - наиболее практически важная группа соединений с водородом. К ним относятся такие часто встречающиеся в природе или используемые в промышленности вещества, как вода, метан и другие углеводороды, аммиак, сероводород, галогеноводороды. Многие из летучих водородных соединений находятся в виде растворов в почвенных водах, в составе живых организмов, а также в газах, образующихся при биохимических и геохимических процессах, поэтому весьма велика их биохимическая и геохимическая роль.
В зависимости от химических свойств различают:

Солеобразующие оксиды:

o основные оксиды (например, оксид натрия Na2O, оксид меди(II) CuO): оксиды металлов, степень окисления которых I-II;

o кислотные оксиды (например, оксид серы(VI) SO3, оксид азота(IV) NO2): оксиды металлов со степенью окисления V-VII и оксиды неметаллов;

o амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al2О3): оксиды металлов со степенью окисления III-IV и исключения (ZnO, BeO, SnO, PbO);

Несолеобразующие оксиды: оксид углерода(II) СО, оксид азота(I) N2O, оксид азота(II) NO, оксид кремния(II) SiO.

Домашнее задание: параграф 18, упр.1,4,5

Основания.
Цель:

познакомить учащихся с составом, классификацией и представителями класса оснований

продолжить формирование знаний об ионах на примере сложных гидроксид-ионов

продолжить формирование знаний о степени окисления элементов, химической связи в веществах;

дать понятие о качественных реакциях и индикаторах;

формировать навыки обращения с химической посудой и реактивами;

формировать бережное отношение к своему здоровью.

Кроме бинарных соединений, существуют сложные вещества, например основания, которые состоят из трех элементов: металла, кислорода п водорода.
Водород и кислород в них входит в виде гидроксогруппы ОН -. Следовательно, гидроксогруппа ОН- представляет собой ион, только не простой, как Na+ или Сl-, а сложный - ОН- - гидроксид-ион.

Основания - это сложные вещества, состоящие из ионов металлов и связанных с ними одного или нескольких гидроксид ионов.
Если заряд иона металла 1+, то, разумеется, с ионом металла связана одна гидроксогруппа ОН-, если 2+, то две и т. д. Следовательно, состав основании можно записать общей формулой: М(ОН)n, где М - металл, m - число групп ОН и в то же время заряд иона (степень окисления) металла.

Названия оснований состоят из слова гидроксид н наименования металла. Например, Na0Н - гидроксид натрия. Са(0Н)2 - гидроксид кальция.
Если же металл проявляет переменную степень окисления, то ее величину так же, как и для бинарных соединений, указывают римской цифрой в скобках и произносят в конце названия основания, например: СuОН - гидроксид меди (I), читается "гидроксид меди один"; Сг(ОН), - гидроксид меди (II), читается «гидроксид меди два».

По отношению к воде основания делятся на две группы: растворимые NaOH, Са(ОН)2, K0Н, Ва(ОН)? и нерастворимые Сг(ОН)7, Ке(ОН)2. Растворимые основания также называют щелочами. О том, растворимо основание или нерастворимо в воде, можно узнать с помощью таблицы "Растворимость оснований, кислот и солей в воде".

Гидроксид натрия NaОН - твердое белое вещество, гигроскопичное и поэтому расплывающееся на воздухе; хорошо растворяется в воде, при этом выделяется теплота. Раствор гидроксида натрия в воде мылкий на ощупь и очень едкий. Он разъедает кожу, ткани, бумагу и другие материалы. За это свойство гидроксид натрия получил название едкого натра. С гидроксидом натрия и его растворами надо обращаться осторожно, опасаясь, чтобы они не попали на одежду, обувь, а тем более на руки и лицо. На коже от этого вещества образуются долго не заживающие раны. NaОН применяют в мыловарении, кожевенной и фармацевтической промышленности.

Гидроксид калия КОН - тоже твердое белое вещество, хорошо растворимое в воде, с выделением большого количества теплоты. Раствор гидроксида калия, как и раствор едкого натра, мылок на ощупь и очень едок. Поэтому гидроксид калия иначе называют едкое кали. Применяют его в качестве добавки при производстве мыла, тугоплавкого стекла.

Гидроксид кальция Са(ОН)2 или гашеная известь, - рыхлый белый порошок, немного растворимый в воде (в таблице растворимости против формулы Са(ОН)а стоит буква М, что означает малорастворимое вещество). Получается при взаимодействии негашеной извести СаО с водой. Этот процесс называют гашением. Гидроксид кальция применяют в строительстве при кладке и штукатурке стен, для побелки деревьев, для получения хлорной извести, которая является дезинфицирующим средством.

Прозрачный раствор гидроксида кальция называется известковой водой. При пропускании через известковую воду СО2 она мутнеет. Такой опыт служит для распознавания углекислого газа.

Реакции, с помощью которых распознают определенные химические вещества, называют качественными реакциями.

Для щелочей тоже существуют качественные реакции, с помощью которых растворы щелочей можно распознать среди растворов других веществ. Это реакции щелочей с особыми веществами - индикаторами (лат. «указателями»). Если к раствору щелочи добавить несколько капель раствора индикатора, то он изменит свой цвет


Домашнее задание: параграф 19 , упр.2-6, таблица 4

С понятием "моль" сталкивается каждый школьник, который начинает изучать химию. С более сложными понятиями, такими как концентрация, молярность растворителя, тяжело разобраться, не зная, что такое моль. Можно сделать вывод, что моль - одно из важнейших понятий в химии. Многие задачи нельзя решить, не определив количество молей.

Определение

Так что такое моль в химии? Пояснение дать довольно просто: это единица, в которой выражается количество вещества, одна из единиц СИ. Определение того, что такое моль в химии, можно сформулировать и таким образом: 1 моль эквивалентен содержится структурных частиц в 12 г карбона-12.

Как было установлено, в 12 г этого изотопа содержится количество атомов, численно равное постоянной Авогадро.

Происхождение понятия

Немного разобравшись с тем, что такое моль в химии с помощью определений, обратимся к истории этого понятия. Как принято считать, термин "моль" ввел немецкий химик Вильгельм Освальд, получивший Нобелевскую премию в 1909 году. Слово "моль", очевидно, происходит от слова "молекула".

Интересный факт - гипотеза Авогадро о том, что при одинаковых условиях в одинаковых объемах разных газов содержится одно и то же количество вещества, было выдвинута задолго до Освальда, да и сама константа была подсчитана Авогадро еще в начале XIX века. То есть хоть понятия "моль" и не существовало, само представление о количестве вещества уже было.

Основные формулы

Количество вещества находится по-разному, в зависимости от данных задачи. Такой вид имеет самая распространенная формула, в которой эта величина выражается отношением массы к молярной массе:

Стоит сказать, что количество вещества - величина аддитивная. То есть, чтобы посчитать значение этой величины для смеси, нужно сначала определить количество вещества для каждого ее элемента и сложить их.

Другая формула применяется, если известно количество частиц:

Если в задаче указано, что процесс происходит при нормальных условиях, можно воспользоваться следующим правилом: при нормальных условиях любой газ занимает инвариантный объем - 22,4 л. Тогда можно воспользоваться следующим выражением:

Количество вещества выражается из уравнения Клапейрона:

Знание того, что такое моль в химии и основных формул для определения количества молей вещества, дает возможность значительно быстрее решать многие задачи. Если известно количество вещества, можно найти массу, объем, плотность и другие параметры.

В короткие сроки:

Ваше предположение верно. Если бы определение моля было основано на 24 граммах углерода-12, все молекулярные массы удвоились бы. Это не так, и я очень сомневаюсь, что это определение будет когда-либо изменяться.

В долгосрочной перспективе:

Этот вопрос очень определение конкретных. Не следует путать с несколькими типами определений. Все эти определения основаны на изотопе углерода-12. Следовательно, atomic mass (constant) имеет конкретное значение:

одной двенадцатой части массы атома углерода-12 в его ядерной и электронном состоянии, $m_u = 1.660 5402 10~\times~10^{−27}~\text{kg}$ . Он равен единому блоку атомной массы.

Таким образом, существует производный СИ единица:

Номера СИ единица массы (равной массы атома постоянной), определяется как один двенадцатую часть массы углеродсодержащих 12 в основном состоянии и используется для выражения масс атомных частиц, $u\approx 1.660 5402 10~\times~10^{−27}~\text{kg}$ .

фундаментальные физические константы (символы: $L$ , $N_A$), представляющий молярное количество лиц: $L = 6.022 141 79 30 \times 10^{23}~\text{mol}^{−1}$ .

Therfore можно вывести несколько других обычно используемых свойств, такие как молекулярная масса и молярная масса. В двухгодичной публикации «Atomic weights of the elements » публикуются ИЮПАК. В Pure Appl. Chem., 2013, Vol. 85, No. 5, pp. 1047-1078 (или ) он говорит:

атомная масса , $m_\text{a}$ , несвязанного нейтрального атома углерода-12, $m_\text{a}(\ce{{}^{12}C})$ , в его ядерном и электронном основных состояниях составляет $12~u$ точно, где $u$ - единая атомная масса единица. атомный вес (также называемый относительной атомной массой) изотоп $^i\text{E}$ элемента $text{E}$ , символ $A_\text{r}(^i\text{E})$ , в материальном $text{P}$ является

$A_\text{r}(^i\text{E}) > =\frac{m_\text{a}(^i\text{E})_\text{P}}{\frac{1}{12}m_\text{a}(\ce{{}^{12}C})}=\frac{m_\text{a}(^i\text{E})_\text{P}}{u}$

Таким образом, атомная масса $ce{{}^{12}C}$ равна $12~u$ , а атом вес $ce{{}^{12}C}$ равен $12~$ . Все остальные значения атомного веса являются отношениями к стандартным значениям $ce{{}^{12}C}$ и, следовательно, являются безразмерными числами.Атомный вес элемента $text{E}$ , $A_\text{r}(\text{E})$ , в материал $text{P}$ определяется из соотношения

$A_\text{r}(\text{E})_\text{P}=\sum\left$

где $x(^i\text{E})_\text{P}$ - мольная доля изотопа $^i\text{E}$ в материале $text{P}$ (также называемом изотопным количеством).

Поэтому стандартная атомная масса углерода (дается в интервале)

$m_{\text{a}}(\ce{C})=A_\text{r}(\text{C})_\text{graphite}\times u = u$ , с

$u=\frac{1}{12}m_\text{a}(\ce{{}^{12}C})$ .

Однако атомная масса одной молекулы всегда является целым числом, кратным $u$ .

Молярная масса углерода, то может быть определена как BEGIN {выровненные} M (се {C}) & = M _ { текст {A}} (се {C}) раз L = times10^{- 3} ~ text {kg/mol} \ & approx 12.01 ~ text {g/mol} ~ text {(4 sf)} end {aligned}

Все отношение становится немного яснее при взгляде на бром. Существуют два важных изотопа брома: $ce{^{79}Br}$ и $ce{^{81}Br}$ (ref). Таким образом, в элементарном броме ($ce{Br2}$) молекулы могут иметь три разные массы $m_{\text{a}}(\ce{^{79}Br2})=158u$ , $m_{\text{a}}(\ce{^{81}Br2})=162u$ и $m_{\text{a}}(\ce{^{79}Br^{81}Br})=160u$ .

Стандартная атомная масса брома составляет $m_{\text{a}}(\ce{Br})= u$ . Следовательно, $M(\ce{Br})=\times 10^{-3}~\text{kg/ mol}\approx 79.90~\text{g/ mol}~\text{(4 s.f.)}$ (на основе эталонного значения).

При расчете с молекулярными массами $M$ всегда должен иметь в виду, что используемые стандартные значения основаны на (глобальном) статистики.

Связанные определения:

amount of substance , $n$ , также содержит определение: число молей

базовой величиной в системе величин, на которой основана СИ. Это - это число элементарных сущностей, деленное на константу Авогадро. Поскольку он пропорционален количеству объектов, константа пропорциональности является обратной константой Авогадро и одинаковой для всех веществ, она должна обрабатываться почти тождественно с количеством сущностей. Таким образом, подсчитанные элементарные объекты должны быть указаны как. Слова «вещества» могут быть заменены спецификацией объекта, например: количество атомов хлора, $n_\ce{Cl}$ , количество молекул хлора, $n_{\ce{Cl2}}$ ,No Спецификация объекта может привести к двусмысленности [сумма сера может стоять за $n_\ce{S}$ , $n_{\ce{S8}}$ и т. Д.], Но во многих случаях подразумеваемый объект считается известным: для молекулярных соединений обычно молекула (например, количество бензола обычно означает $n_{\ce{C6H6}}$ ], для ионных соединений - самый простой набор формул [т.е. количество хлорида натрия обычно означает $n_{\ce{NaCl}}$ ] и для металлов атом (например, количество серебра обычно составляет $n_{\ce{Ag}}$ ]. В некоторых производных количествах слова «вещества» также опущены, например. количество концентрации, количество фракции. Таким образом, во многих случаях имя базового количества сокращается до суммы и избегает возможной путаницы с общим значением слова. Таким образом, химическое количество означает альтернативное название для количества вещества. В области клинической химии слова «вещества» не следует опускать и используются аббревиатуры, такие как концентрация вещества (для количества вещества) и доля вещества. Количество не имело названия до 1969 года и просто называлось числом родинок.

Одной из основных единиц в Международной системе единиц (СИ) является единица количества вещества – моль.

Моль это такое количество вещества, которое содержит столько структурных единиц данного вещества (молекул, атомов, ионов и др.), сколько атомов углерода содержится в 0,012 кг (12 г) изотопа углерода 12 С .

Учитывая, что значение абсолютной атомной массы для углерода равно m (C) = 1,99 · 10  26 кг, можно рассчитать число атомов углерода N А , содержащееся в 0,012 кг углерода.

Моль любого вещества содержит одно и то же число частиц этого вещества (структурных единиц). Число структурных единиц, содержащихся в веществе количеством один моль равно 6,02·10 23 и называется числом Авогадро (N А ).

Например, один моль меди содержит 6,02·10 23 атомов меди (Cu), а один моль водорода (H 2) – 6,02·10 23 молекул водорода.

Молярной массой (M) называется масса вещества, взятого в количестве 1 моль.

Молярная масса обозначается буквой М и имеет размерность [г/моль]. В физике пользуются размерностью [кг/кмоль].

В общем случае численное значение молярной массы вещества численно совпадает со значением его относительной молекулярной (относительной атомной) массы.

Например, относительная молекулярная масса воды равна:

Мr(Н 2 О) = 2Аr (Н) + Аr (O) = 2∙1 + 16 = 18 а.е.м.

Молярная масса воды имеет ту же величину, но выражена в г/моль:

М (Н 2 О) = 18 г/моль.

Таким образом, моль воды, содержащий 6,02·10 23 молекул воды (соответственно 2·6,02·10 23 атомов водорода и 6,02·10 23 атомов кислорода), имеет массу 18 граммов. В воде, количеством вещества 1 моль, содержится 2 моль атомов водорода и один моль атомов кислорода.

1.3.4. Связь между массой вещества и его количеством

Зная массу вещества и его химическую формулу, а значит и значение его молярной массы, можно определить количество вещества и, наоборот, зная количество вещества, можно определить его массу. Для подобных расчетов следует пользоваться формулами:

где ν – количество вещества, [моль]; m – масса вещества, [г] или [кг]; М – молярная масса вещества, [г/моль] или [кг/кмоль].

Например, для нахождения массы сульфата натрия (Na 2 SO 4) количеством 5 моль найдем:

1) значение относительной молекулярной массы Na 2 SO 4 , представляющую собой сумму округленных значений относительных атомных масс:

Мr(Na 2 SO 4) = 2Аr(Na) + Аr(S) + 4Аr(O) = 142,

2) численно равное ей значение молярной массы вещества:

М(Na 2 SO 4) = 142 г/моль,

3) и, наконец, массу 5 моль сульфата натрия:

m = ν · M = 5 моль · 142 г/моль = 710 г.

Ответ: 710.

1.3.5. Связь между объемом вещества и его количеством

При нормальных условиях (н.у.), т.е. при давлении р , равном 101325 Па (760 мм. рт. ст.), и температуре Т, равной 273,15 К (0 С), один моль различных газов и паров занимает один и тот же объем, равный 22,4 л.

Объем, занимаемый 1 моль газа или пара при н.у., называется молярным объемом газа и имеет размерность литр на моль.

V мол = 22,4 л/моль.

Зная количество газообразного вещества (ν) и значение молярного объема (V мол) можно рассчитать его объем (V) при нормальных условиях:

V = ν · V мол,

где ν – количество вещества [моль]; V – объем газообразного вещества [л]; V мол = 22,4 л/моль.

И, наоборот, зная объем (V ) газообразного вещества при нормальных условиях, можно рассчитать его количество (ν):

Урок 1.

Тема: Количество вещества. Моль

Химия – это наука о веществах. А как измерять вещества? В каких единицах? В молекулах, из которых состоят вещества, но сделать это очень сложно. В граммах, килограммах или миллиграммах, но так измеряют массу. А что если объединить массу, которую измеряют на весах и число молекул вещества, возможно ли это?

а) H-водород

А н = 1а.е.м.

1а.е.м = 1,66*10 -24 г

Возьмем 1г водорода и подсчитаем количество атомов водорода в этой массе (предложите это сделать ученикам с помощью калькулятора).

N н = 1г / (1,66*10 -24) г = 6,02*10 23

б) O-кислород

А о = 16а.е.м = 16*1.67* 10 -24 г

N o = 16г / (16 *1.66 * 10 -24) г =6,02 * 10 23

в) C-углерод

А с = 12а.е.м = 12*1.67*10 -24 г

N c = 12г / (12* 1.66*10 -24) г = 6,02*10 23

Сделаем вывод: если мы возьмем такую массу вещества, которая равна атомной массе по величине, но взята в граммах, то там будет всегда (для любого вещества) 6.02 *10 23 атомов этого вещества.

H 2 O - вода

18г / (18* 1.66*10 -24) г =6,02*10 23 молекул воды и т.д.

N а = 6,02*10 23 - число или постоянная Авогадро .

Моль - количество вещества, в котором содержится 6,02 *10 23 молекул, атомов или ионов, т.е. структурных единиц.

Бывает моль молекул, моль атомов, моль ионов.

n – число молей,(число молей часто обозначают- ню),
N - число атомов или молекул,
N а = постоянная Авогадро.

Кмоль = 10 3 моль, ммоль = 10 -3 моль.

Показать портрет Амедео Авогадро на мультимедийной установке и кратко рассказать о нем, или поручить ученику подготовить небольшой доклад о жизни учёного.

Урок 2.

Тема « Молярная масса вещества»

Чему же равна масса 1 моля вещества? (Вывод учащиеся часто могут сделать сами.)

Масса одного моля вещества равна его молекулярной массе, но выражена в граммах. Масса одного моля вещества называется молярной массой и обозначается – M.

Формулы:

М - молярная масса,
n - число молей,
m - масса вещества.

Масса моля измеряется в г/моль, масса кмоля измеряется в кг/кмоль, масса ммоля измеряется в мг/моль.

Заполнить таблицу (таблицы раздаются).

Вещество

Число молекул
N= N a n

Молярная масса
M=
(рассчитывается по ПСХЭ)

Число молей
n ()=

Масса вещества
m = M n

5моль

Н 2 SO 4

12 ,0 4*10 26

Урок 3.

Тема: Молярный объем газов

Решим задачу. Определите объем воды, масса которой при нормальных условиях 180 г.

Дано:

Т.е. объем жидких и твердых тел считаем через плотность.

Но, при расчёте объёма газов не обязательно знать плотность. Почему?

Итальянский ученый Авогадро определил, что в равных объемах различных газов при одинаковых условиях (давлении, температуре) содержится одинаковое число молекул - это утверждение называется законом Авогадро.

Т.е. если при равных условиях V(H 2) =V(O 2) , то n(H 2) =n(O 2), и наоборот если при равных условиях n(H 2) =n(O 2) то и объемы этих газов будут одинаковы. А моль вещества всегда содержит одно и тоже число молекул 6,02 *10 23 .

Делаем вывод – при одинаковых условиях моли газов должны занимать один и тот же объем.

При нормальных условиях (t=0, P=101,3 кПа. или 760 мм рт. ст.) моли любых газов занимают одинаковый объем. Этот объем называется молярным.

V m =22,4 л/моль

1кмоль занимает объём -22,4 м 3 /кмоль, 1ммоль занимает объем -22,4 мл/ммоль.

Пример 1. (Решается на доске):

Дано: Решение: