В чем состоит функция коры больших полушарий. Функции коры больших полушарии

ФУНКЦИИ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

В функциональном отношении кора больших полушарий делиться на три области: сенсорную, двигательную (моторную) и ассоциативную кору. Сенсорная область включает те области коры больших полушарий, в которых проецируются сенсорные раздражители. Сенсорная кора располагается преимущественно в теменной, височной и затылочной долях большого мозга. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса. Зоны сенсорной коры включают первичные и вторичные области коры. В первичных областяхкорыформируются ощущения одного качества. Во вторичных областях коры формируются ощущения, возникающее в ответ на действие нескольких раздражителей.

Основные сенсорная области коры находиться в:

Постцентральной извилине: кожной чувствительности от тактильных, болевых температурных рецепторов; чувствительность опорно-двигательного аппарата – мышц, суставов, сухожилий; тактильная и вкусовая чувствительность языка.

- средняя височная извилина (и. Гешля), здесь формируются звуковые ощущения,–

Верхняя и средняя височная извилина, здесь локализуется центр вестибулярного анализатора, формируются ощущения «схемы тела»

- областьклиновидной извилины – первичная зрительная область, расположенная в затылочной коре.

Ассоциативная область коры включает участки, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко. В ассоциативной коре можно выделить зоны:

Таламолобная система;

Таламотеменная система;

Таламовисочная система.

Таламолобная система участвует в формировании доминирующей мотивации:эта функция обусловлена двусторонней связью между лобной корой и лимбической системой, обеспечивает вероятности прогнозирования и самоконтроля действий путем постоянного сравнения результат действия с исходными намерениями.

Таламотеменная система выполняет функции гнозиса, формирование «схемы тела» - стереогнизис, и праксиса. Гнозис – это функция различных видов узнавания: формы, величины, значения предметов, понимания речи, познание процессов и закономерностей. Стереогнизис функция обеспечивающая способность узнавания предметов на ощупь. В центре стереогнизиса формируются ощущения, отвечающие за создание трехмерной модели тела – «схема тела». Праксис – это функция, направленная на выполнение какой-либо деятельности, ее центр располагается в надкраевой извилине, обеспечивает хранение и реализацию программы двигательных актов (рукопожатие, причесывание и т.д.).

Таламовисочная системанаходится в верхней извилине височной коры, здесь расположен слуховой центр речи Вернике. Он обеспечивает речевой гнозис – распознавание и хранение устной речи. В средней части верхней височной извилины находится центр распознания музыкальных звуков. В границах височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Двигательная кора занимает области лобной доли коры больших полушарий. В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. Вторичная двигательная кора расположена на латеральной поверхности полушарий, впереди прецентарльной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Эта кора получает основную часть эфферентной импульсации от базальных ядер и мозжечка и участвует в перекодировке информации программ сложных движений. В премоторной коре расположены центры, связанные с социальными функциями человека:

В заднем отделе средней лобной извилины - центр письменной речи,

В заднем отделе нижней лобной извилины центр моторной речи Брока, обеспечивающие речевой праксис, а также музыкальный моторный центр, определяющий тональность речи.

Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основные эфферентные выходы двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки коры. Пирамидные нейроны двигательной коры возбуждают или тормозят мотонейроны стволовых и спинальных центров.

Одним из основных принципов функционирования коры больших полушарий головного мозга является принцип межполушарной асимметрии. Межполушарная асимметрия обусловлена асимметричной локализацией нервного аппарата второй сигнальной системы и доминированием правой руки, как средства адаптивного поведения. По данным современной нейрофизиологии (В.Л. Бианки), левое полушарие большого мозга у человека специализируется на выполнение вербальных символических функций, а правое полушарие на реализации пространственных образных функций. Результатом такого функционального разделения является асимметрия психической деятельности, которая проявляется различиями типах мыслительных операций. Доминирование левого полушария обусловливает мыслительный тип, а правого полушария художественный тип мышления.

ПРАКТИЧЕСКАЯ РАБОТА

Для определения коэффициента функциональной асимметрии используются бланки, представляющие собой листы бумаги (А4), на которых расположены 8 равных прямоугольников по 4 в ряд. Каждый прямоугольник заполняется последовательно слева направо с №1 по №4 и в обратном направлении с №5 по №8. Форма бланка представлена на рисунке 1.

Рисунок 1 – Бланк задания

Инструкция: «По моему сигналу вы должны начать проставлять точки в каждом прямоугольнике бланка. За отведенное для каждого прямоугольника время (5 с) вы должны поставить в нем как можно больше точек. Переходить из одного прямоугольника в другой нужно по команде, не прерывая работы. Все время работаете в максимальном для себя темпе. Теперь возьмите в правую (или левую руку) карандаш и поставьте его перед первым прямоугольником бланка».

По секундомеру экспериментатор подает сигнал: «Начали!», затем через каждые 5 секунд дает команду: «Следующий!». По истечении 5 секунды работы в прямоугольнике №8 экспериментатор подает команду: «Стоп». Подсчитайте количество точек в каждом квадрате и заполните таблицу 1 в рабочей тетради.

Таблица 1 – Протокол исследования



Используя результаты таблицы 1, составьте график зависимости между временем выполнения этапа задания (ось Х) и количеством точек для каждой руки (ось Y). Сделайте вывод, руководствуясь следующей закономерностью: у правшей – работоспособность правой руки выше работоспособности левшей, а у левшей – наоборот.

Рассчитайте коэффициент функциональной асимметрии по работоспособности левой и правой руки, получив суммарные значения работоспособности рук путем сложения всех данных по каждому из восьми прямоугольников. Для расчета используйте формулу для оценки коэффициента функциональной асимметрии (1):

KF A = [(SR - SL) / (SR + SL)] (1)

где KF A – коэффициент функциональной асимметрии, д.е.;

SR – общая сумма точек, поставленных правой рукой, шт;

SL – общая сумма точек, поставленных правой левой, шт.

Знак коэффициента функциональной асимметрии интерпретируется следующим образом: если величина коэффициент принимает положительное значение «+», это свидетельствует о смещении баланса в сторону активности левого полушария; если полученный коэффициент принимает отрицательное значение, знак «–», это указывает на активность правого полушария.

Проанализируйте получившийся результат и сделайте вывод.


Синонимы: проекционная кора или корковый отдел анализаторов

Третичная кора

На одном графике две кривые – для правой (синий) и левой руки (красный);

Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2-3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейрон ов и их связей различают 6 горизонтальных слоев. Благодаря многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м2. Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.
Корковые нейрон ы и их связи. Несмотря на огромное число нейрон ов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейрон ы.
...
В афферентной функции коры и в процессах переключения возбуждения на соседние нейрон ы основная роль принадлежит звездчатым нейрон ам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксон ы, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендрит ы. Звездчатые нейрон ы участвуют в процессах восприятия раздражении и объединении деятельности различных пирамидных нейрон ов.

Пирамидные нейрон ы осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейрон ами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки - гигантские пирамиды Беца - находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид - их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит , через который в клетку поступают различные афферентные влияния от других нейрон ов, а вертикально вниз отходит эфферентный отросток - аксон .

Многочисленность контактов (например, только на дендрит ах крупной пирамиды их насчитывают от 2 до 5 тыс.) обеспечивает возможность широкой регуляции деятельности пирамидных клеток со стороны множества других нейрон ов. Это позволяет координировать ответные реакции коры (в первую очередь ее моторную функцию) с разнообразными воздействиями из внешней среды и внутренней среды организма.

Для коры больших полушарий характерно обилие межнейрон ных связей. По мере развития мозга человека после его рождения увеличивается число межцентральных взаимосвязей, особенно интенсивно до 18 лет.

...
Первичные, вторичные и третичные поля коры . Особенности строения и функционального значения отдельных участков коры позволяют выделить отдельные корковые поля.

Различают три основные группы полей в коре: первичные, вторичные и третичные поля.

Первичные поля связаны с органами чувств и органами движения на периферии, они раньше других созревают в онтогенез е, имеют наиболее крупные клетки. Это так называемые ядерные зоны анализаторов, по И. П. Павлову (например, поле болевой, температурной, тактильной и мышечно-суставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слуховое поле в височной области и двигательное поле в передней центральной извилине коры) (рис. 54). Эти поля осуществляют анализ отдельных раздражений, поступающих в кору от соответствующих рецептор ов. При разрушении первичных полей возникают так называемая корковая слепота, корковая глухота и т. п. Рядом расположены вторичные поля, или периферические зоны анализаторов, которые связаны с отдельными органами только через первичные поля. Они служат для обобщения и дальнейшей обработки поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия. При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит их значения. Первичные и вторичные поля имеются и у человека, и у животных.

Наиболее далеки от непосредственных связей с периферией третичные поля, или зоны перекрытия анализаторов. Эти поля есть только у человека. Они занимают почти половину территории коры и имеют обширные связи с другими отделами коры и с неспецифическими системами мозга. В этих полях преобладают наиболее мелкие и разнообразные клетки. Основным клеточным элементом здесь являются звездчатые нейрон ы. Третичные поля находятся в задней половине коры - на границах теменных, височных и затылочных ее областей и в передней половине - в передних частях лобных областей. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей, они осуществляют наиболее сложные функции коры. Здесь происходят процессы высшего анализа и синтеза. В третичных полях на основе синтеза всех афферентных раздражении и с Учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышлени е (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.

При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысл енные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

Функции коры больших полушарии . Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психи ческих процессов восприятия, представления, мышлени я. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция - образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы-см. главу XV).

Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражении (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.
...
Экспериментально показано, что у высших представителей животного мира после полного оперативного удаления коры высшая нервная деятельность резко ухудшается. Они теряют способность тонко приспосабливаться к внешней среде и самостоятельно существовать в ней.

Кора больших полушарий головного мозга представляет собой наиболее молодое образование центральной нервной системы.Деятельность коры больших полушарий основана на принципе условного рефлекса, поэтому ее называют условно-рефлекторной. Она осуществляет быструю связь с внешней средой и приспособление организма к изменяющимся условиям внешней среды.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок . Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (архиокортекс ), старую (палеокортекс ) и новую (неокортекс). Древняя кора, наряду с другими функциями, имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры 3-4 мм. Общая площадь коры взрослого человека 1700-2000 см 2 , а число нейронов — 14 млрд (если их расположить в ряд, то образуется цепь протяженностью 1000 км) — постепенно истощается и к старости составляет 10 млрд (более 700 км). В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.

Звездчатые нейроны имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Строение коры больших полушарий

В коре содержится большое количество глиальных клеток, выполняющих опорную, обменную, секреторную, трофическую функции.

Наружная поверхность коры разделена на четыре доли: лобную, теменную, затылочную и височную. Каждая доля имеет свои проекционные и ассоциативные области.

Кора большого мозга имеет шестислойное строение (рис. 1-1):

  • молекулярный слой (1) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток;
  • наружный зернистый слой (2) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти;
  • слой пирамидных меток (3) формируется из пирамидных клеток малой величины и вместе со слоем 2 обеспечивает корко-корко- вые связи различных извилин мозга;
  • внутренний зернистый слой (4) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов-анализаторов.
  • внутренний пирамидный слой (5) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг;
  • слой полиморфных клеток (6) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортикоталамические пути.

I — афферентные пути из таламуса: СТА — специфические таламические афференты; НТА — неспецифические таламические афференты; ЭМВ — эфферентные моторные волокна. Цифрами обозначены слои коры; II — пирамидный нейрон и распределение окончаний на нем: А — неспецифические афферентные волокна из ретикулярной формации и ; Б — возвратные коллатерали от аксонов пирамидных нейронов; В — комиссуральные волокна из зеркальных клеток противоположного полушария; Г — специфические афферентные волокна из сенсорных ядер таламуса

Рис. 1-1. Связи коры больших полушарий.

Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение по слоям в разных областях коры различны. Это позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка - зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.

Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей.

  • проекционный — связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • комиссуральный - его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела;
  • ассоциативный - связывает участки коры одного и того же полушария.

Зоны коры больших полушарий

По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.

Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.

В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:

  • сенсорные зоны коры больших полушарий - участки коры, в которых располагаются центральные отделы анализаторов:
    зрительная зона — затылочная доля коры больших полушарий;
    слуховая зона — височная доля коры больших полушарий;
    зона вкусовых ощущений — теменная доля коры больших полушарий;
    зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.

Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;

  • моторные зоны коры больших полушарии - участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
  • ассоциативные зоны - отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.

Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.

Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.

Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.

В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Функции лобной доли:

Состав коры больших полушарий

Кора больших полушарий головного мозга является высшей структурой ЦНС и состоит из нервных клеток, их отростков и нейроглии. В составе коры имеются звездчатые, веретенообразные и пирамидные нейроны. Благодаря наличию складок кора имеет большую поверхность. Выделяют древнюю кору (архикортекс) и новую кору (неокортекс). Кора состоит из шести слоев (рис. 2).

Рис. 2. Кора больших полушарий головного мозга

Верхний молекулярный слой образован в основном дендритами пирамидных клеток нижележащих слоев и аксонами неспецифических ядер таламуса. На этих дендритах формируют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

Наружный гранулярный слой образован мелкими звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, формируя кортикокортикальные связи.

Слой пирамидных клеток малой величины.

Внутренний гранулярный слой, образованный звездчатыми клетками. В нем заканчиваются афферентные таламокортикальные волокна, начинающиеся от рецепторов анализаторов.

Внутренний пирамидный слой состоит из крупных пирамидных клеток, участвующих в регуляции сложных форм движения.

Мультиформный слой состоит из верстеновидных клеток, образующих кортикоталамические пути.

По функциональной значимости нейроны коры подразделяют на сенсорные , воспринимающие афферентные импульсы от ядер таламуса и рецепторов сенсорных систем; моторные , посылающие импульсы к подкорковым ядрам, промежуточному, среднему, продолговатому мозгу, мозжечку, ретикулярной формации и спинному мозгу; и промежуточные , осуществляющие связь между нейронами коры больших полушарий. Нейроны коры больших полушарий находятся в состоянии постоянного возбуждения, не исчезающего и во время сна.

В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.

В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.

Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.

У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.

Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.

Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.

Мозг - это основной орган человека, управляющий всеми его функциями жизнедеятельности, определяет его личность, поведение и сознание. Его структура крайне сложна и является комбинацией из миллиардов нейронов, сгруппированных в отделы, каждый из которых выполняет свою функцию. Многолетние исследования позволили узнать многое об этом органе.

Из каких частей состоит головной мозг?

Человеческий мозг состоит из нескольких отделов. Каждый из них выполняет свою функцию, обеспечивая жизнедеятельность организма.

По строению мозг разделяется на 5 основных отделов.

Среди них:

  • Продолговатый. Эта часть - продолжение спинного мозга. Она состоит из ядер серого вещества и путей из белого. Именно эта часть определяет связь между мозгом и телом.
  • Средний. Состоит из 4 бугорков, два из которых отвечают за зрение и два – за слух.
  • Задний. Задний мозг включает мост и мозжечок. Это небольшой отдел в затылочной части, который весит в пределах 140 грамм. Состоит из двух полушарий, скрепленных между собой.
  • Промежуточный. Состоит из таламуса, гипоталамуса.
  • Конечный. Этот отдел формирует оба полушария мозга, соединенные мозолистым телом. Поверхность полна извилин и борозд, покрытых корой мозга. Полушария разделены на доли: лобную, теменную, височную и затылочную.

Последний отдел занимает более 80% от общей массы органа. Также мозг можно разделить на 3 части: мозжечок, ствол и большие полушария.

При этом весь мозг имеет покрытие в виде оболочки, разделенной на три составляющие:

  • Паутинную (по ней циркулирует спинномозговая жидкость)
  • Мягкую (прилегает к мозгу и полна кровеносными сосудами)
  • Твердую (соприкасается с черепом и защищает мозг от повреждений)

Все компоненты мозга важны в регуляции жизнедеятельности и имеют определенную функцию. Но центры регуляции деятельности размещены в коре мозга.

Человеческий мозг состоит из множества отделов, каждый из которых имеет сложную структуру и выполняет определенную роль. Наибольший из них - конечный, который состоит из полушарий мозга. Все это покрыто тремя оболочками, обеспечивающими защитные и питающие функции.

О строении и функциях головного мозга узнайте из предложенного видео.

Какие функции выполняет?

Головным мозгом и его корой выполняется ряд важнейших функций.

Головной мозг

Затруднительно перечислить все функции мозга, ведь это крайне сложный орган. Сюда входят все аспекты жизнедеятельности человеческого организма. Однако можно выделить основные функции, выполняемые мозгом.

К функциям головного мозга относятся все чувства человека. Это зрение, слух, вкусовые ощущения, обоняние и осязание. Все они выполняются в коре мозга. Она также отвечает за многие другие аспекты жизнедеятельности, включая двигательную функцию.

Кроме того, заболевания могут возникнуть на фоне внешних инфекций. Тот же менингит, который возникает из-за инфекций пневмококка, менингококка и подобных им. Развитие заболевание характеризуется болью в голове, температурой, резью в глазах и многими другими симптомами вроде слабости, тошноты и сонливости.

Многие заболевания, развивающиеся в головном мозге и его коре, еще не изучены. Поэтому их лечение затруднено недостатком информации. Так что рекомендуется обращаться к врачу при первых нестандартных симптомах, что позволит предотвратить болезнь, диагностируя ее на ранней стадии.

Головной мозг

Рефлекторная функция спинного мозга

n Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица)

n Спинной мозг осуществляет элементарные двигательные рефлексы – сгибательные и разгибательные, ритмические (шагательные, чесательные) рефлексы, возникающие при раздражении кожи или проприорецепторов мышц и сухожилий, а также посылают постоянную импульсацию к мышцам, поддерживая тонус

n Специальные мотонейроны иннервируют дыхательную мускулатуру (межреберные мышцы и диафрагму) и обеспечивают дыхательные движения

n Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, потовые железы, железы внутренней секреции, пищеварительный тракт, мочеполовую систему).

Проводниковая функция спинного мозга связана с:

n Передачей в вышележащие отделы нервной системы получаемого с периферии потока информации;

n С проведением импульсов из головного мозга в спинной.

Головной мозг расположен в полости черепа. Он развивается из головного отдела нервной трубки и первоначально состоит из трех мозговых пузырей, которые называются передним , средним и задним .

Из переднего мозгового пузыря развиваются полушария большого мозга, базальные ядра, гипоталамус и таламус.

Из среднего мозга - средний мозг.

Из заднего мозгового пузыря - мост, продолговатый мозг и мозжечок.

Средний мозг, мост, продолговатый мозг входит в состав ствола мозга.

Большой мозг заполняет передневерхнюю часть полости черепа, а также переднюю и среднюю черепные ямки. Он представлен двумя полушариями , состоящими из нервных клеток (серое вещество) и волокон (белое вещество). Они разделены между собой глубокой продольной щелью. В глубине этой щели находится мозолистое тело - широкая дугообразно изогнутая пластинка белого вещества, соединяющая полушария между собой и состоящая из поперечно ориентированных нервных волокон (Рис. 11).

Области большого мозга . При помощи глубоких латеральной и центральной борозд каждое полушарие делится на: лобную, височную, теменную и затылочную доли (Рис. 12).

Тонкий слой серого вещества, покрывающий каждое полушарие, называется корой.

Кора представляет собой тонкий слой (1,3-4,5 мм) серого вещества на поверхности полушарий. Поверхность коры в процессе эволюции увеличивалась за счет появления борозд и извилин. Площадь коры у взрослого человека 2200-2600 см 2 . На нижней и внутренней поверхности коры находятся старая и древняя кора (архи – и палеокортекс). Они функционально связаны с гипоталамусом, миндалиной, некоторыми ядрами среднего мозга и все вместе образуют лимбическую систему, которая играет важнейшую роль в формировании эмоций и внимания, памяти и обучения Лимбическая система участвует в регуляции пищевого и питьевого поведения, цикла бодрствование-сон, агрессивно-оборонительных реакций и в ней находятся центры удовольствия и неудовольствия, беспирчинной радости, тоски, страха.


На наружной поверхности коры расположена новая кора – неокортекс. Вся кора имеет 6-7 слоев, различающихся формой, величиной и расположением нейронов (Рис. 13). Между нервными клетками всех слоев коры в процессе их деятельности возникают постоянные и временные связи.

Рис.11. Среднесагиттальный разрез головы человека


Рис. 12. Области большого мозга

Основные типы клеток коры – пирамидные и звездчатые нейроны.

Звездчатые – воспринимают раздражения и объединяют деятельность различных пирамидных нейронов.

Пирамидные осуществляют эфферентную функцию коры и взаимодействия между различными зонами коры.


Рис. 13. Перечень слоёв коры (начиная с поверхностного): молекулярный слой (I), наружный зернистый слой (II), пирамидный слой (III), или слой средних пирамид, внутренний зернистый слой (IV), ганглионарный слой (V), или слой крупных пирамид, слой полиморфных клеток (VI).

Под корой располагается белое вещество больших полушарий, которое состоит из ассоциативных, комиссуральных и проекционных волокон. Ассоциативные волокна связывают отдельные участки одного и того же полушария, а короткие ассоциативные волокна – отдельные извилины и близкие поля. Комиссуральные волокна – связывают симметричные части обоих полушарий, большая их часть проходит через мозолистое тело. Проекционные волокна выходят за пределы полушарий, входят в состав нисходящих и восходящих путей. По которым осуществляется двусторонняя связь коры с нижележащими отделами ЦНС.

Известны случаи рождения детей без коры больших полушарий головного мозга (анэнцефалы). Они живут несколько дней (максимум 3 -4 года). Один такой ребенок почти все время спал, у него были некоторые врожденные реакции (сосание, глотание). Поэтому сделали вывод, что в процессе филогенеза происходит кортиколизация функций (все, что приобретается организмом в течение индивидуальной жизни, связано с корой больших полушарий - вся высшая нервная деятельность).

В коре есть 3 типа областей – сенсорные, моторные и ассоциативные (Рис.14).

· Сенсорные ( расположены позади центральной борозды). Каждому рецепторному аппарату в коре соответствует определенная область, которую Павлов назвал корковым ядром анализатора. Именно к корковому ядру анализатора по афферентным волокнам приходят сигналы от рецепторов органов чувств. В сенсорных зонах выделяют первичные и вторичные проекционные поля. Нейроны проекционных первичных полей выделяют отдельные признаки сигнала (например, контур, цвет, контраст). Вторичные – формируют их в целостный образ. Сенсорные зоны локализованы в определенных частях коры: зрительная – в затылочной области, слуховая – в височной, вкусовая – в нижней части теменных областей, соматосенсорная зона (анализирующая импульсацию с рецепторов мышц, суставов, сухожилий и кожи) располагается в области задней центральной извилины.

· Моторные – зоны, раздражение которых вызывает двигательную реакцию, расположены впереди центральной борозды. В моторной коре тело человека спроецировано как бы вверх ногами, то есть ближе к латеральной борозде находятся области, обеспечивают функционирование мышц головы, а у противоположного конца предцентральной извилины - мышц нижней конечности (Рис.15).

· Ассоциативные – не имеют прямых афферентных и эфферентных связей с периферией. Они связаны с моторными и сенсорными зонами. Здесь расположены центры, связанные с речевой деятельностью. Функции ассоциативных зон –

А) обработка и хранение поступающей информации

Б) переход от наглядного восприятия к абстрактным символическим процессам.

В) Мышление (внутренняя речь) возможно только при совместной деятельности различных сенсорных систем, объединение информации от которых происходит в ассоциативных полях.

Г) Целенаправленное поведение человека, формирование намерений и планов, программ произвольных движений

Д) Отвечают за согласованную работу обеих полушарий мозга. Как правило, одно из полушарий является ведущим – доминантным. У большинства если ведущая рука – правая, доминантное полушарие – левое. Левое лучше снабжается кровью, в нем больше взаимосвязей нейронов, в нем находится моторный центр речи, отвечающий за произнесение слов и сенсорный центр речи, отвечающий за понимание слов. У человека есть три формы межполушарной функциональной асимметрии, т.е. неодинакового вклада полушарий: моторная, сенсорная и психическая. Моторная и сенсорная – это когда у человека с ведущей правой рукой, главным является левый глаз или левое ухо. Причем в каждом полушарии есть центры, которые контролируют оба уха, оба глаза и т.д. Это дает возможность совмещать функции двух полушарий в одном, при повреждении. Психическая асимметрия проявляется в виде специализации полушарий. Левое больше отвечает за аналитические процессы, абстрактное мышление, логическое мышление, предвосхищение событий. Правое обрабатывает информацию целиком, не расчленяя на детали, преобладает предметное мышление, художественное, а функции связаны с прошлым, т.е. обработка информации на основе прошлого опыта.

В коре полушарий большого мозга выделяют также высшие центры осознанного поведения, морали, воли и интеллекта.