Два вида зарядов существуют потому что. Тема урока: Электризация тел

8.1. Два вида электрических зарядов

Если некоторые частицы (или тела) обладают способностью принимать участие в электрических взаимодействиях, то имеет смысл приписать им некоторую характеристику, которая и будет указывать на это их свойство. Такая характеристика получила название электрический заряд . Тела, принимающие участие в электрических взаимодействиях называются заряженными. Таким образом, термин «электрически заряженный» является синонимом выражения «участвует в электрических взаимодействиях». Почему некоторые элементарные частицы обладают электрическим зарядом, а другие нет – никому не известно!

Дальнейшие рассуждения, основанные на экспериментальных данных, призваны конкретизировать эту характеристику, по возможности, сделать ее количественной.

История изучения электрических явлений длительна и полна драматизма, …

Далее мы опишем ряд простых опытов, которые можно провести дома «на кухне», или в школьной лаборатории. При их объяснении мы будем пользоваться теми знаниями, которые получены в течение многими учеными нескольких сотен лет, в результате многочисленных и разнообразных экспериментов.

Сейчас, мы воспроизведем в очень упрощенной форме некоторые этапы экспериментальных исследований, выводы из которых послужили основой современной теории электрических взаимодействий.

Для проведения экспериментов, прежде всего, следует научиться получать заряженные тела. Простейший метод достижения этой цели – электризация трением . Например, хорошо электризуется, (то есть приобретает электрический заряд) стекло, если его потереть шелком. Появление электрического заряда проявляется в том, что такая палочка начинает притягивать кусочки бумаги, волоски, пылинки и т.д.

Также можно установить, что многие другие вещества также электризуются посредством трения. Зная результат заранее, в качестве второго «источника» электричества выберем эбонитовую палочку, потертую шерстью. Назовем электрический заряд, который появляется на стекле – «стеклянным», а заряд на эбоните «смоляным ».

Далее нам необходим «прибор», который мог бы реагировать на присутствие электрического заряда. Для этого подвесим на нити легкий стаканчик, скрученный из кусочка фольги. Легко проверить, что этот стаканчик не заряжен - чтобы мы не подносили к нему, карандаш, руку, учебник физики и т.д., никакого действия на стаканчик не проявляется.

Поднесем к незаряженному стаканчику заряженную стеклянную электрическую палочку (рис. 141). Стаканчик притягивается к ней, как и другие мелкие тела. По углу отклонения нити (при известной массе стаканчика и длине нити) можно даже рассчитать силу притяжения. Если стаканчик не соприкоснулся с заряженной палочкой он остается незаряженным, что легко можно проверить экспериментально. Если же стаканчик прикоснется к заряженной палочке, то он резко оттолкнется от нее. Если теперь убрать палочку, стаканчик окажется заряженным, что можно проверить, если поднести к нему другое незаряженное тело. Например, он будет притягиваться к поднесенной руке.

Аналогичные результаты получаются, если заменить стеклянную палочку, потертую о шелк, эбонитовой палочкой, потертой о шерсть.

Таким образом, в этих экспериментах различие между «стеклянным» и «смоляным» электричеством не проявляется.

Не будем пока, обсуждать, почему незаряженный стаканчик притягивается к заряженной палочке, а заряженный стаканчик притягивается к незаряженной руке. Единственный вывод, который мы сделаем из проведенного эксперимента – в результате контакта стаканчик приобрел электрический заряд. Следовательно, электрический заряд может передаваться от одного тела к другому.

Возьмем два одинаковых стаканчика из фольги, подвесим рядом их на нитях одинаковой длины. Если стаканчики зарядить одинаково (либо с помощью стеклянной, либо с помощью эбонитовой палочки), то стаканчики отталкиваются (рис, 142). Если же стаканчики заряжены различными зарядами, то они притягиваются.

Таким образом, мы доказываем, что существует, по меньшей мере, два вида электрических зарядов .

Для дальнейших экспериментов заменим «измерительные стаканчики» более совершенным прибором, который называется электрометр (рис. 143). Прибор состоит из металлического стержня и легкой металлической стрелки, которая может вращаться вокруг горизонтальной оси. Это устройство помещено в металлический корпус, закрытый стеклянными крышками. Угол отклонения стрелки можно измерять с помощью шкалы. Стержень со стрелкой закреплен в корпусе с помощью плексигласовой втулки. Стержень со стрелкой играют ту же роль, что и стаканчики из фольги в предыдущих опытах – при прикосновении заряженного тела к стержню, заряд будет перетекать на стержень и на стрелку, что приведет к ее отклонению. Причем, направление отклонения стрелки не зависит от вида сообщенного заряда.

Для дальнейших экспериментов будем использовать два одинаковых электроскопа. Зарядим один из них с помощью, например, стеклянной палочки. Далее начнем соединять стержни электрометров с помощью различных материалов. При соединении стержней с помощью деревянной, незаряженных стеклянной, эбонитовой, пластмассовых палочек; текстильных нитей, никаких изменений не происходит – один электрометр остается заряженным, второй незаряженным. Если же соединить стержни с помощью металлической проволоки , то оказываются заряженными оба электрометра. Причем, отклонение стрелки первоначально заряженного электрометра уменьшится (рис. 144).

Из результатов этого опыта можно сделать два важных вывода: во-первых, некоторые материалы (металлы) могут передавать электрический заряд, другие (стекло, пластмасса, дерево) нет; во-вторых, заряд может изменяться, быть больше или меньше. Эти же эксперименты можно повторить с использованием и второго вида («смоляного») электричества. Результаты окажутся такими же – материалы, которые проводят «стеклянное» электричество, проводят и «смоляное». Если «стеклянный» заряд перераспределяется между электрометрами, то также себя ведет и «смоляной» заряд.

Итак, мы можем разделить материалы на две группы – те, которые передают электрический заряд (эти материалы назвали проводники ), и те, которые не передают электрический заряд (их назвали изоляторы ). Кстати, стержень электрометра отделен от корпуса с помощью втулки из изолятора, чтобы электрический заряд не «растекался» по корпусу, а оставался на стержне и стрелке.

Различные отклонения стрелки электрометра однозначно свидетельствуют о том, что сила взаимодействия между заряженными телами может быть различной, поэтому и величины зарядов могут быть различными. Следовательно, заряд можно характеризовать некоторой численной величиной (а не так, как мы говорили ранее – «есть, или нет»).

Еще один интересный результат – если к стержню заряженного электрометра прикоснуться рукой, то электрометр разряжается – заряд исчезает. Даже на основании этих качественных наблюдений можно объяснить, куда исчезает заряд, при прикосновении руки. Человеческое тело является проводником, поэтому заряд может перетечь в тело человека.

Для подтверждения этой идеи о количественном характере заряда можно провести следующий опыт. Зарядим один электрометр – заметим угол отклонения стрелки. Соединим его со вторым электрометром – угол отклонения стрелки заметно уменьшится. Уберем контакт между приборами и рукой разрядим второй электрометр, после чего опять соединим электрометры – отклонение стрелки опять уменьшится. Таким образом, электрический заряд можно делить на части. Можно провести и обратный эксперимент – постепенно добавляя заряд электрометру.

«Смешаем» сейчас, два имеющихся вида электричества. Для этого зарядим один электрометр «стеклянным» электричеством, а второй – «смоляным», стараясь, чтобы начальные отклонения стрелок обоих электрометров были примерно одинаковыми. После этого соединим стержни электрометров металлической проволокой (на изолирующей ручке, чтобы заряды не убежали»). Результат этого опыта может вызвать удивление – оба электроскопа разрядились, или «стеклянное» и «смоляное» электричество нейтрализовали, скомпенсировали друг друга (рис. 145). Следовательно, оказывается возможным приписать различным видам заряда различные алгебраические знаки – один заряд назвать положительным, второй отрицательным. Разумно предположить, что сила взаимодействия зависит от суммарного заряда. Если первоначально электрометры были заряжены разными видами электричества, но в разной степени (отклонения стрелок – различны), а потом их соединить, то произойдет лишь частичная компенсация зарядов – стрелки будут отклонены, но в гораздо меньшей степени.

Исторически сложилось, что положительным назвали «стеклянный» заряд, а «смоляной» заряд стал отрицательным .

Описанный нами прибор, электрометр, позволяет лишь качественно судить о величине зарядов, проводить с ним количественные измерения невозможно. Попробуйте, например, поднести к заряженному электрометру руку (не прикасаясь к стержню) – отклонение стрелки увеличится! Поднесите к незаряженному стержню заряженную палочку, не прикасаясь к стержню – стрелка отклонится, хотя электрометр не заряжен. К объяснению этих фактов мы вернемся позднее.

Темы кодификатора ЕГЭ : электризация тел, взаимодействие зарядов, два вида заряда, закон сохранения электрического заряда.

Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий.

Столь же фундаментальным типом взаимодействия является тяготение - гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.

1. Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд ).

2. Гравитационное взаимодействие - это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.

3. Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в раз превышает силу их гравитационного притяжения друг к другу.

Каждое заряженное тело обладает некоторой величиной электрического заряда . Электрический заряд - это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы . Единицей измерения заряда является кулон (Кл).

Два вида заряда

Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия - притяжение и отталкивание - удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные .

Заряды разных знаков притягиваются друг к другу, а заряды разных знаков друг от друга отталкиваются. Это проиллюстрировано на рис. 1 ; подвешенным на нитях шарикам сообщены заряды того или иного знака.

Рис. 1. Взаимодействие двух видов зарядов

Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны.

Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации ) тело немедленно начинает действовать на окружающие заряженные частицы.

Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.

Заряд протона равен Кл. Заряд электрона противоположен ему по знаку и равен Кл. Величина

называется элементарным зарядом . Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.

Заряд любого тела всегда складывается из целого количества элементарных зарядов:

Если , то тело имеет избыточное количество электронов (по сравнению с количеством протонов). Если же , то наоборот, у тела электронов недостаёт: протонов на больше.

Электризация тел

Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация - это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.

Один из способов электризовать тело - сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.

Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк - отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть - положительно.

Данный способ электризации тел называется электризацией трением . С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову;-)

Другой тип электризации называется электростатической индукцией , или электризацией через влияние . В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других - отрицательные.

Рис. 2. Электростатическая индукция

Давайте посмотрим на рис. 2 . На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.

Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая - положительно.

Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3 (изображение с сайта en.wikipedia.org).

Рис. 3. Электроскоп

Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.

Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.

Рис. 4. Электризация земли грозовой тучей

Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней - положительный.

Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд - хорошо известная вам молния.

Закон сохранения заряда

Вернёмся к примеру электризации трением - натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.

Мы видим здесь закон сохранения заряда , который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами :

Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.

При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки - столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется!

Например, на рис. 5 показан процесс , при котором порция электромагнитного излучения (так называемый фотон ) превращается в две заряженные частицы - электрон и позитрон . Такой процесс оказывается возможным при некоторых условиях - например, в электрическом поле атомного ядра.

Рис. 5. Рождение пары электрон–позитрон

Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.

Закон сохранения заряда (наряду с существованием наименьшего элементарного заряда) является на сегодняшний день первичным научным фактом. Объяснить, почему природа ведёт себя именно так, а не иначе, физикам пока не удаётся. Мы можем лишь констатировать, что эти факты подтверждаются многочисленными физическими экспериментами.

В ходе данного урока мы продолжим знакомиться с «китами», на которых стоит электродинамика, - электрическими зарядами. Мы изучим процесс электризации, рассмотрим, на каком принципе основан этот процесс. Поговорим о двух типах зарядов и сформулируем закон сохранения этих зарядов.

На прошлом уроке мы уже упоминали о ранних экспериментах в электростатике. Все они были основаны на натирании одного вещества о другое и дальнейшем взаимодействии этих тел с малыми объектами (пылинками, клочками бумаги…). Все эти опыты основаны на процессе электризации.

Определение. Электризация – разделение электрических зарядов. Это значит, что электроны от одного тела переходят к другому (рис. 1).

Рис. 1. Разделение электрических зарядов

До момента открытия теории о двух принципиально разных зарядах и элементарного заряда электрона считалось, что заряд – некая невидимая сверхлегкая жидкость, и, если она есть на теле, значит, тело обладает зарядом и наоборот.

Первые серьезные опыты по электризации различных тел, как уже было сказано на предыдущем уроке, проводил английский ученый и врач Уильям Гильберт (1544-1603), однако ему не удавалось наэлектризовать металлические тела, и он посчитал, что электризация металлов невозможна. Однако это оказалось неправдой, что впоследствии доказал русский ученый Петров. Однако следующий более важный шаг в исследовании электродинамики (а именно открытие разнородных зарядов) сделал французский ученый Шарль Дюфе (1698-1739). В результате своих опытов он установил наличие, как он их назвал, стеклянных (трение стекла о шелк) и смоляных (янтаря о мех) зарядов.

Еще через некоторое время были сформулированы следующие законы (рис. 2):

1) одноименные заряды взаимно отталкиваются;

2) разноименные заряды взаимно притягиваются.

Рис. 2. Взаимодействие зарядов

Обозначения положительных (+) и отрицательных (–) зарядов было введено американским ученым Бенджамином Франклином (1706-1790).

По договоренности принято называть положительным заряд, который образуется на стеклянной палочке, если натирать ее бумагой или шелком (рис. 3), а отрицательный – на эбонитовой или янтарной палочке, если натирать ее мехом (рис. 4).

Рис. 3. Положительный заряд

Рис. 4. Отрицательный заряд

Открытие Томсоном электрона наконец дало ученым понять, что при электризации никакая электрическая жидкость не сообщается телу и никакой заряд не наносится извне. Происходит перераспределение электронов, как мельчайших носителей отрицательного заряда. В области, куда они приходят, их количество становится большим, чем количество положительных протонов. Таким образом, появляется нескомпенсированный отрицательный заряд. И наоборот, в области, откуда они уходят, появляется нехватка отрицательных зарядов, необходимых для компенсации положительных. Таким образом, область заряжается положительно.

Было установлено не только наличие двух разных видов зарядов, но и два различных принципа их взаимодействия: взаимное отталкивание двух тел, заряженных одноименными зарядами (одного знака) и соответственно притяжение разноименно заряженных тел.

Электризация может производиться несколькими способами:

  • трением;
  • прикосновением;
  • ударом;
  • наведением (через влияние);
  • облучением;
  • химическим взаимодействием.

Электризация трением и электризация соприкосновением

Когда стеклянную палочку натирают о бумагу, палочка получает положительный заряд. Соприкасаясь с металлической стойкой, палочка передает положительный заряд бумажному султану, и его лепестки отталкиваются друг от друга (рис. 5). Этот опыт говорит о том, что одноименные заряды отталкиваются друг от друга.

Рис. 5. Электризация прикосновением

В результате трения о мех эбонит приобретает отрицательный заряд. Поднося эту палочку к бумажному султану, видим, как лепестки притягиваются к ней (см. рис. 6).

Рис. 6. Притяжение разноименных зарядов

Электризация через влияние (наведение)

Поставим на подставку с султаном линейку. Наэлектризовав стеклянную палочку, приблизим ее к линейке. Трение между линейкой и подставкой будет небольшим, поэтому можно наблюдать взаимодействие заряженного тела (палочки) и тела, у которого заряда нет (линейка).

При проведении каждого эксперимента совершалось разделение зарядов, никаких новых зарядов не возникало (рис. 7).

Рис. 7. Перераспределение зарядов

Итак, если мы сообщили любым из вышеуказанных способов электрический заряд телу, нам, конечно же, необходимо каким-либо способом оценить величину этого заряда. Для этого используется прибор электрометр, который был придуман русским ученым М.В. Ломоносовым (рис. 8).

Рис. 8. М.В. Ломоносов (1711-1765)

Электрометр (рис. 9) состоит из круглой банки, металлического стержня и легкого стержня, который может вращаться вокруг горизонтально расположенной оси.

Рис. 9. Электрометр

Сообщая заряд электрометру, мы в любом случае (и для положительного, и для отрицательного заряда) заряжаем и стержень, и стрелку одноименными зарядами, в результате чего стрелка отклоняется. По углу отклонения и оценивается заряд (рис. 10).

Рис. 10. Электрометр. Угол отклонения

Если взять наэлектризованную стеклянную палочку, прикоснуться ею к электрометру, то стрелка отклонится. Это говорит о том, что электрометру был сообщен электрический заряд. В ходе этого же эксперимента с эбонитовой палочкой этот заряд компенсируется (рис. 11).

Рис. 11. Компенсация заряда электрометра

Так как уже было указано, что никакого создания заряда не происходит, а происходит лишь перераспределение, то имеет смысл сформулировать закон сохранения заряда:

В замкнутой системе алгебраическая сумма электрических зарядов остается постоянной (рис. 12). Замкнутой системой называется система тел, из которой заряды не уходят и в которую заряженные тела или заряженные частицы не поступают.

Рис. 13. Закон сохранения заряда

Данный закон напоминает о законе сохранения массы, так как заряды существуют только вместе с частицами. Очень часто заряды по аналогии называют количеством электричества .

До конца закон сохранения зарядов не объяснен, так как заряды появляются и исчезают только попарно. Другими словами, если заряды рождаются, то только сразу положительный и отрицательный, причем равные по модулю.

На следующем уроке мы подробнее остановимся на количественных оценках электродинамики.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Интернет-портал «youtube.com» ()
  2. Интернет-портал «abcport.ru» ()
  3. Интернет-портал «planeta.edu.tomsk.ru» ()

Домашнее задание

  1. Стр. 356: № 1-5. Касьянов В.А. Физика 10 класс. - М.: Дрофа. 2010.
  2. Почему отклоняется стрелка электроскопа, если к нему прикоснуться заряженным телом?
  3. Один шар заряжен положительно, второй - отрицательно. Как изменится масса шаров при их соприкосновении?
  4. *К шару заряженного электроскопа поднесите, не дотрагиваясь, заряженный металлический стержень. Как изменится отклонение стрелки?

Подвесив на двух нитях лёгкие шарики из фольги и коснувшись каждого из них стеклянной палочкой, потёртой о шёлк, можно увидеть, что шарики оттолкнутся дpуг от друга. Если потом коснуться одного шарика стеклянной палочкой, потёpтой о шёлк, а другого эбонитовой палочкой, потёpтoй о мех, то шарики притянутся дpуг к другу. Это означает, что стеклянная и эбонитовая палочки при трении приобретают заряды разных знаков , т.е. в природе существуют два рода электрических зарядов , имеющих противоположные знаки: положительный и отрицательный. Условились считать, что стеклянная палочка, потёртая о шёлк, приобретает положительный заряд , а эбонитовая палочка, потёртая о мех, приобретает отрицательный заряд .

Из описанного опыта также следует, что заряженные тела взаимодействуют друг с другом . Такое взаимодействие зарядов называют электрическим. При этом одноимённые заряды, т.е. заряды одного знака, отталкиваются друг от друга, а разноимённые заряды притягиваются друг к другу.

На явлении отталкивания одноимённо заряженных тел основано устройство электроскопа - прибора, позволяющего определить, заряжено ли данное тело, и электрометра , прибора, позволяющего оценить значение электрического заряда.

Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.

Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.

Заряд обозначают буквой q , за единицу заряда принят кулон : [q ] = 1 Кл .

Если коснуться заряженной палочкой одного электрометра, а затем этот электрометр соединить металлическим стержнем с другим электрометром, то заряд, находящийся на первом электрометре, поделится между двумя электрометрами. Можно затем соединить электрометр с ещё несколькими электрометрами, и заряд будет делиться между ними. Таким образом, электрический заряд обладает свойством делимости . Пределом делимости заряда, т.е. наименьшим зарядом, существующим в природе, является заряд электрона . Заряд электрона отрицателен и равен 1,6*10 -19 Кл . Любой другой заряд кратен заряду электрона.