Чему равно приближенное значение числа е. Обычная река cо всеми ее изломами и изгибами в π раз длиннее, чем путь напрямик от ее устья к истоку

ЧИСЛО e . Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e –kt , где k – число, характеризующее скорость распада данного вещества. Обратная величина 1/k называется средним временем жизни атома данного вещества, так как в среднем атом прежде, чем распасться, существует в течение времени 1/k . Величина 0,693/k называется периодом полураспада радиоактивного вещества, т.е. временем, за которое распадается половина исходного количества вещества; число 0,693 приближенно равно log e 2, т.е. логарифму числа 2 по основанию e . Аналогично, если бактерии в питательной среде размножаются со скоростью, пропорциональной их числу в настоящий момент, то по истечении времени t начальное количество бактерий N превращается в Ne kt . Затухание электрического тока I в простом контуре с последовательным соединением, сопротивлением R и индуктивностью L происходит по закону I = I 0 e –kt , где k = R/L , I 0 – сила тока в момент времени t = 0. Аналогичные формулы описывают релаксацию напряжений в вязкой жидкости и затухание магнитного поля. Число 1/k часто называют временем релаксации. В статистике величина e –kt встречается как вероятность того, что за время t не произошло событий, наступающих случайно со средней частотой k событий в единицу времени. Если S – сумма денег, вложенных под r процентов с непрерывным начислением вместо начисления через дискретные промежутки времени, то к моменту времени t первоначальная сумма возрастет до Se tr /100.

Причина «вездесущности» числа e заключается в том, что формулы математического анализа, содержащие экспоненциальные функции или логарифмы, записываются проще, если логарифмы брать по основанию e , а не 10 или какому-либо другому основанию. Например, производная от log 10 x равна (1/x )log 10 e , тогда как производная от log e x равна просто 1/x . Аналогично, производная от 2 x равна 2 x log e 2, тогда как производная от e х равна просто e x . Это означает, что число e можно определить как основание b , при котором график функции y = log b x имеет в точке x = 1 касательную с угловым коэффициентом, равным 1, или при котором кривая y = b x имеет в x = 0 касательную с угловым коэффициентом, равным 1. Логарифмы по основанию e называются «натуральными» и обозначаются ln x . Иногда их также называют «неперовыми», что неверно, так как в действительности Дж.Непер (1550–1617) изобрел логарифмы с другим основанием: неперов логарифм числа x равен 10 7 log 1/e (x /10 7) .

Различные комбинации степеней e встречаются в математике так часто, что имеют специальные названия. Таковы, например, гиперболические функции

График функции y = ch x называется цепной линией; такую форму имеет подвешенная за концы тяжелая нерастяжимая нить или цепь. Формулы Эйлера

где i 2 = –1, связывают число e с тригонометрией. Частный случай x = p приводит к знаменитому соотношению e ip + 1 = 0, связывающему 5 наиболее известных в математике чисел.

Число появилось сравнительно недавно. Его иногда называют "неперовым числом" в честь изобретателя логарифмов шотландского математика Джона Непера (1550-1617), однако необоснованно, так как нет твёрдых оснований для утверждения, что Непер имел о числе е чёткое представление" . Впервые обозначение "е " ввёл Леонард Эйлер (1707-1783). Он также вычислил точные 23 десятичные знака этого числа, использовав представление числа е в виде бесконечного числового ряда: полученное Даниилом Бернули (1700-1782). "В 1873 году Эрмит доказал трансцендентность числа е .Л. Эйлер получил замечательный результат, связывающий числа е , p, и: . Ему принадлежит и заслуга определения функции для комплексных значений z , что положило начало математическому анализу в комплексной области - теории функций комплексного переменного" . Эйлером были получены следующие формулы: Рассматривают логарифмы по основанию е , называемые натуральными и обозначаются Lnx .

Способы определения

Число e может быть определено несколькими способами.

Через предел:

(второй замечательный предел) .

Как сумма ряда:

Как единственное число a , для которого выполняется

Как единственное положительное число a , для которого верно

Свойства

Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравнения является функция, где c - произвольная константа.

Число e иррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 году Шарлем Эрмитом. Предполагается, что e - нормальное число, то есть вероятность появления разных цифр в его записи одинакова.

См. формула Эйлера, в частности

Ещё одна формула, связывающая числа е и р , т. н. "интеграл Пуассона" или "интеграл Гаусса"

Для любого комплексного числа z верны следующие равенства:

Число e разлагается в бесконечную цепную дробь следующим образом:


Представление Каталана:

История

Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы "Описание удивительной таблицы логарифмов" (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).

Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Лейбница Гюйгенсу, 1690-1691 годы.

Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа "Механика, или Наука о движении, изложенная аналитически" 1736 год. Соответственно, e обычно называют числом Эйлера . Хотя впоследствии некоторые учёные использовали букву c , буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential ("показательный", "экспоненциальный"). Другое предположение заключается в том, что буквы a , b , c и d уже довольно широко использовались в иных целях, и e была первой "свободной" буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler ) [источник не указан 334 дня ] .

e - математическая константа, основание натурального логарифма, иррациональное и трансцендентное число.e = 2,718281828459045… Иногда числоe называютчислом Эйлера илинеперовым числом . Играет важную роль в дифференциальном и интегральном исчислении.

Способы определения

Число e может быть определено несколькими способами.

Свойства

История

Данное число иногда называют неперовым в честь шотландского учёного Джона Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 г.). Однако это название не совсем корректно, т. к. у него логарифм числаx был равен.

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 г. Негласно, потому что там содержится только таблица натуральных логарифмов, сама же константа не определена. Предполагается, что автором таблицы был английский математик Вильям Отред. Саму же константу впервые вывел швейцарский математик Якоб Бернулли при попытке вычислить значение следующего предела:

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Готфрида Лейбница Кристиану Гюйгенсу, 1690 и 1691 гг. Буквуe начал использовать Леонард Эйлер в 1727 г., а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 г. Соответственно,e иногда называютчислом Эйлера . Хотя впоследствии некоторые учёные использовали буквуc , букваe применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается словоexponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквыa ,b ,c иd уже довольно широко использовались в иных целях, иe была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбралe как первую букву в своей фамилии (нем.Euler ), поскольку он был очень скромным человеком и всегда старался подчеркнуть значимость труда других людей.

Способы запоминания

Число e можно запомнить по следующему мнемоническому правилу: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45 ,90 и45 градусов).

В другом варианте правила e связывается с президентом США Эндрю Джексоном: 2 - столько раз избирался, 7 - он был седьмым президентом США, 1828 - год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем - опять-таки равнобедренный прямоугольный треугольник.

В ещё одном небезынтересном способе предлагается запомнить число e с точностью до трёх знаков после запятой через «число дьявола»: нужно разделить 666 на число, составленное из цифр 6 − 4, 6 − 2, 6 − 1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки):.

В четвёртом способе предлагается запомнить e как.

Грубое (с точностью до 0,001), но красивое приближение полагает e равным. Совсем грубое (с точностью 0,01) приближение даётся выражением.

«Правило Боинга»: даёт неплохую точность 0,0005.

«Стих»: Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли.

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 59563 07381 32328 62794 34907 63233 82988 07531 95251 01901 15738 34187 93070 21540 89149 93488 41675 09244 76146 06680 82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 55170 27618 38606 26133 13845 83000 75204 49338 26560 29760 67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 77078 54499 69967 94686 44549 05987 93163 68892 30098 79312 77361 78215 42499 92295 76351 48220 82698 95193 66803 31825 28869 39849 64651 05820 93923 98294 88793 32036 25094 43117 30123 81970 68416 14039 70198 37679 32068 32823 76464 80429 53118 02328 78250 98194 55815 30175 67173 61332 06981 12509 96181 88159 30416 90351 59888 85193 45807 27386 67385 89422 87922 84998 92086 80582 57492 79610 48419 84443 63463 24496 84875 60233 62482 70419 78623 20900 21609 90235 30436 99418 49146 31409 34317 38143 64054 62531 52096 18369 08887 07016 76839 64243 78140 59271 45635 49061 30310 72085 10383 75051 01157 47704 17189 86106 87396 96552 12671 54688 95703 50354 02123 40784 98193 34321 06817 01210 05627 88023 51920

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Число «е» – одна из важнейших математических констант, о которой каждый слышал на школьных уроках математики. Concepture публикует популярное изложение, написанное гуманитарием для гуманитариев, в котором доступным языком расскажет зачем и почему существует число Эйлера.

Что общего у наших денег и числа Эйлера?

В то время как у числа π (пи) есть вполне определенный геометрический смысл и его использовали еще древние математики, то число е (число Эйлера) заняло свое заслуженное место в науке сравнительно недавно и корни его уходят прямиком… к финансовым вопросам.

С момента изобретения денег прошло совсем немного времени, когда люди догадались, что валюту можно одалживать или ссужать под определенный процент. Естественно, «древние» бизнесмены не пользовались привычным нам понятием «процент», но увеличение суммы на какой-то определенный показатель за установленный период времени было им знакомо.

На фото: банкнота стоимостью 10 франков с изображением Леонарда Эйлера (1707-1783).

Мы не будем углубляться в пример с 20% годовых, так как от него добираться до числа Эйлера слишком долго. Воспользуемся самым распространенным и наглядным объяснением значения этой константы, а для этого нам придется немного пофантазировать и вообразить, что какой-то банк предлагает нам положить деньги на депозит под 100% годовых.

Мысленно-финансовый эксперимент

Для этого мысленного эксперимента можно взять любую сумму и результат всегда будет идентичным, но именно начиная с 1, мы сможем прийти непосредственно к первому приближенному значению числа е . Потому, допустим, что мы вкладываем в банк 1 доллар, при ставке 100% годовых в конце года у нас будет 2 доллара.

Но это только если проценты капитализируются (прибавляются) раз в год. А что если они будут капитализироваться два раза в год? То есть будет начисляться по 50% каждые полгода, причем вторые 50% будут начисляться уже не от начальной суммы, а от суммы, увеличенной на первые 50%. Будет ли это выгоднее для нас?

Наглядная инфографика, отображающая геометрический смысл числа π .

Разумеется, будет. При капитализации два раза в год, спустя полгода у нас будет 1,50 доллара на счете. К концу года прибавится еще 50% от 1,50 доллара, то есть общая сумма составит 2,25 доллара. Что же будет, если капитализацию проводить каждый месяц?

Нам будут начислять по 100/12% (то есть, примерно по 8,(3)%) каждый месяц, что окажется еще более выгодным - к концу года у нас будет 2,61 доллара. Общая формула для вычисления итоговой суммы при произвольном количестве капитализаций (n) в год выглядит так:

Итоговая сумма = 1(1+1/n) n

Получается, при значении n = 365 (то есть, если наши проценты будут капитализироваться каждый день), мы получим вот такую формулу: 1(1+1/365) 365 = 2,71 доллара. Из учебников и справочников мы знаем, что е приблизительно равно 2,71828, то есть, рассматривая ежедневную капитализацию нашего сказочного вклада мы уже подошли к приблизительному значению е, которое уже достаточно для многих вычислений.

Рост n можно продолжать бесконечно и чем больше будет его значение, тем точнее мы сможем вычислить число Эйлера, вплоть до необходимого нам, по какой-либо причине, знака после запятой.

Это правило, конечно, не ограничивается только нашими финансовыми интересами. Математические константы далеко не «узкие специалисты» - они действуют одинаково хорошо вне зависимости от области применения. Поэтому хорошенько покопавшись, можно обнаружить их практически в любой сфере жизни.

Получается, число е что-то вроде меры всех изменений и «натуральный язык математического анализа». Ведь «матан» крепко повязан с понятиями дифференцирования и интегрирования, а обе эти операции имеют дело с бесконечно малыми изменениями, которые так великолепно характеризует число е .

Уникальные свойства числа Эйлера

Рассмотрев самый доходчивый пример объяснения построения одной из формул для вычисления числа е , кратко рассмотрим еще пару вопросов, которые к нему напрямую относятся. И один из них: что же такого уникального в числе Эйлера?

По идее, абсолютно любая математическая константа уникальна и у каждой есть своя история, но, согласитесь, претензия на звание натурального языка математического анализа - довольно весомая претензия.

Первая тысяча значений ϕ (n) для функции Эйлера.

Однако, у числа е есть на то основания. При построении графика функции y = e x выясняется поразительный факт: не только y равен e x , этому же показателю равен градиент кривой и площадь под кривой. То есть площадь под кривой от определенного значения y до минус бесконечности.

Никакое другое число этим похвастаться не может. Нам, гуманитариям (ну, или просто НЕ математикам), такое заявление мало что говорит, но сами математики утверждают, что это очень важно. Почему важно? Мы попробуем разобраться в этом вопросе в другой раз.

Логарифм, как предпосылка Числа Эйлера

Возможно, кто-то помнит со школы, что число Эйлера - это также основание натурального логарифма. Что ж, это согласуется с его природой, как меры всех изменений. Все-таки, причем же тут Эйлер? Справедливости ради нужно отметить, что е также иногда называется числом Непера, но без Эйлера история будет неполной, как и без упоминания о логарифмах.

Изобретение в XVII веке логарифмов шотландским математиком Джоном Непером стало одним из важнейших событий истории математики. На праздновании в честь юбилея этого события, которое прошло в 1914 году Лорд Мултон (Lord Moulton) так отозвался о нем:

«Изобретение логарифмов было для научного мира как гром среди ясного неба. Никакая предшествующая работа не вела к нему, не предсказывала и не обещала это открытие. Оно стоит особняком, оно прорывается из человеческой мысли внезапно, не заимствуя ничего из работы других разумов и не следуя уже известным тогда направлениям математической мысли».

Пьер-Симон Лаплас, знаменитый французский математик и астроном, еще более драматично выразил важность этого открытия: «Изобретение логарифмов, уменьшив часы кропотливого труда, вдвое увеличило жизнь астронома». Что же так впечатлило Лапласа? А причина очень проста - логарифмы позволили ученым в разы уменьшить время, обычно затрачиваемое для громоздких вычислений.

В общем и целом, логарифмы упрощали вычисления - опускали их на один уровень ниже по шкале сложности. Проще говоря, вместо умножения и деления приходилось совершать операции сложения и вычитания. А это намного эффективнее.

е - основание натурального логарифма

Давайте примем за данность тот факт, что Непер был первопроходцем в сфере логарифмов - их изобретателем. По крайней мере, он опубликовал свои открытия первым. В таком случае возникает вопрос: в чем заслуга Эйлера?

Все просто - его можно назвать идейным наследником Непера и человеком, который довел дело жизни шотландского ученного до логарифмического (читать логического) завершения. Интересное такое вообще возможно?

Какой-то очень важный график построенный при помощи натурального логорифма.

Если говорить конкретнее, то Эйлер вывел основание натурального логарифма, теперь известное как число е или число Эйлера. Кроме этого, он вписал свое имя в историю науки столько раз, сколько и не снилось Васе, который, кажется, успел «побывать» везде.

К сожалению, конкретно принципы работы с логарифмами - это тема отдельной большой статьи. Поэтому пока будет достаточно сказать, что благодаря работе ряда самоотверженных ученых, которые, буквально, посвятили годы своей жизни составлению логарифмических таблиц в те времена, когда никто и слыхом не слыхивал о калькуляторах, прогресс науки сильно ускорился.

На фото: Джон Непер - шотландский математик, изобретатель логарифма (1550—1617.)

Забавно, но этот прогресс, в конце концов, привел к выходу из употребления данных таблиц, а причиной тому послужило именно появление ручных калькуляторов, которые полностью переняли на себя задачу по выполнению такого рода вычислений.

Возможно, вы еще слышали о логарифмических линейках? Когда-то без них инженерам или математикам бывало не обойтись, а сейчас это почти как астролябия - интересный инструмент, но скорее в плане истории науки, чем повседневной практики.

Почему так важно быть основанием логарифма?

Оказывается, основанием логарифма может быть любое число (например, 2 или 10), но, именно благодаря уникальным свойствам числа Эйлера логарифм по основанию е называется натуральным. Он как бы встроен в структуру реальности - от него никуда не убежать, да и не нужно, ведь он значительно упрощает жизнь ученым, работающим в самых разных областях.

Приведем доходчивое объяснение природы логарифма с сайта Павла Бердова . Логарифм по основанию a от аргумента x - это степень, в которую надо возвести число a, чтобы получить число x. Графически это обозначается так:

log a x = b, где a - основание, x - аргумент, b - это то, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен 3-м, поскольку 2 3 = 8).

Выше мы видели число 2 в образе основания логарифма, но математики говорят, что самый талантливый актер на эту роль - число Эйлера. Поверим им на слово… А потом проверим, чтобы убедиться самим.

Выводы

Наверное, плохо, что в рамках высшего образования так сильно разделены естественные и гуманитарные науки. Иногда это приводит к слишком сильному «перекосу» и получается так, что с человеком, прекрасно разбирающимся, допустим, в физике и математике, абсолютно неинтересно говорить на другие темы.

И наоборот, можно быть первоклассным специалистом-литературоведом, но, в то же время, быть совершенно беспомощным, когда речь заходит о той же физике и математике. А ведь все науки интересны по-своему.

Надеемся, что мы, пытаясь преодолеть свою собственную ограниченность в рамках импровизированной программы «я - гуманитарий, но я лечусь», помогли и вам узнать и, главное, понять, что-то новое из не совсем привычной научной сферы.

Ну а тем, кто захочет поподробнее узнать о числе Эйлера, можем порекомендовать несколько источников, в которых может при желании разобраться даже далекий от математики человек: Эли Маор в своей книге «е: история одного числа» («e: the story of a number») подробно и доступно описывает предысторию и историю числа Эйлера.

Также, в разделе «Рекомендуем« под этой статьей Вы сможете название youtube-каналов и видео, которые были сняты профессиональными математиками, пытающимися доходчиво объяснить число Эйлера так, чтобы это было понятно даже не специалистам Русские субтитры в наличие.