Как найти суммарную солнечную радиацию. Суммарная радиация

Солнечная радиация - излучение, свойственное светилу нашей планетной системы. Солнце - главная звезда, вокруг которой обращается Земля, а также соседние планеты. Фактически это огромный раскаленный газовый шар, постоянно испускающий в пространство вокруг себя потоки энергии. Именно их и называют радиацией. Смертельная, одновременно именно эта энергия - один из основных факторов, делающих возможной жизнь на нашей планете. Как и все в этом мире, польза и вред солнечной радиации для органической жизни тесно взаимосвязаны.

Общее представление

Чтобы понять, что представляет собой солнечная радиация, необходимо сперва разобраться, что же такое Солнце. Основной источник тепла, обеспечивающий условия для органического существования на нашей планете, во вселенских просторах представляет собой лишь небольшую звездочку на галактических окраинах Млечного Пути. А вот для землян Солнце - это центр мини-вселенной. Ведь именно вокруг этого газового сгустка обращается наша планета. Солнце дает нам тепло и освещение, то есть поставляет формы энергии, без которых наше существование было бы невозможно.

В древности источник солнечной радиации - Солнце - было божеством, объектом, достойным поклонения. Солнечная траектория по небу людям казалась очевидным доказательством божьей воли. Попытки вникнуть в суть явления, объяснить, что представляет собой это светило, предпринимались с давних пор, и особенно значимый вклад в них внес Коперник, сформировав идею гелиоцентризма, разительно отличавшуюся от общепринятого в ту эпоху геоцентризма. Впрочем, доподлинно известно, что и в древности ученые не раз задумывались над тем, что же такое Солнце, почему оно столь важно для любых форм жизни на нашей планете, почему передвижение этого светила именно таково, каким мы его видим.

Прогресс технологий позволил глубже понять, что представляет собой Солнце, какие процессы происходят внутри звезды, на ее поверхности. Ученые познали, что представляет собой солнечная радиация, каким образом газовый объект воздействует на планеты в своей зоне влияния, в частности, на земной климат. Сейчас человечество располагает достаточно объемной базой знаний, чтобы с уверенностью говорить: удалось выяснить, что такое по своей сути радиация, излучаемая Солнцем, как измерить этот энергетической поток и как сформулировать особенности его воздействия на разные формы органической жизни на Земле.

О терминах

Наиболее важный шаг в освоении сути понятия был сделан в прошлом столетии. Именно тогда именитый астроном А. Эддингтон сформулировал предположение: в солнечных глубинах происходит термоядерный синтез, что позволяет выделяться огромному количеству энергии, излучаемому в пространство вокруг звезды. Пытаясь оценить величину солнечной радиации, были предприняты усилия для определения фактических параметров среды на светиле. Так, температура ядра, по расчетам ученых, достигает 15 миллионов градусов. Этого достаточного, чтобы справиться со взаимным отталкивающим влиянием протонов. Столкновение единиц приводит к формированию гелиевых ядер.

Новые сведения привлекли внимание многих видных ученых, включая А. Эйнштейна. В попытках оценить величину солнечной радиации научные деятели выяснили, что гелиевые ядра по своей массе уступают суммарной величине 4 протонов, необходимых для формирования новой структуры. Так была выявлена особенность реакций, получившая название «дефект масс». Но ведь в природе ничто не может пропасть бесследно! В попытке отыскать «сбежавшие» величины ученые сравнили энергетическое излечение и специфику изменения массы. Именно тогда удалось выявить, что разность излучается гамма-квантами.

Излучаемые объекты пробиваются от ядра нашей звезды к ее поверхности сквозь многочисленные газовые атмосферные слои, что приводит к дроблению элементов и формированию на их основе электромагнитного излучения. Среди прочих видов солнечной радиации - свет, воспринимаемый человеческим глазом. Приблизительные оценки позволили предположить, что процесс прохождения гамма-квантов занимает около 10 миллионов лет. Еще восемь минут - и излученная энергия достигает поверхности нашей планеты.

Как и что?

Солнечной радиацией называют суммарный комплекс электромагнитного излучения, которому свойственен довольно обширный диапазон. Сюда входит так называемый солнечный ветер, то есть энергетический поток, сформированный электронами, легкими частицами. На пограничном слое атмосферы нашей планеты постоянно наблюдается одинаковая интенсивности излучения Солнца. Энергия звезды дискретна, ее перенос осуществляется через кванты, при этом корпускулярный нюанс настолько малозначим, что можно рассматривать лучи в качестве электромагнитных волн. А их распространение, как выяснили физики, происходит равномерно и по прямой линии. Таким образом, чтобы описать солнечную радиацию, необходимо определить свойственную ей длину волны. На основании этого параметра принято выделять несколько типов излучения:

  • тепло;
  • радиоволна;
  • белый свет;
  • ультрафиолет;
  • гамма;
  • рентген.

Соотношение инфракрасных, видимых, ультрафиолетовых лучшей оценивается следующим образом: 52%, 43%, 5%.

Для количественной радиационной оценки необходимо рассчитать плотность потока энергии, то есть количество энергии, которое в заданный временной промежуток достигает ограниченного участка поверхности.

Как показали исследования, солнечная радиация преимущественно поглощается планетарной атмосферой. Благодаря этому происходит нагрев до температуры, комфортной для органической жизни, свойственной Земле. Имеющаяся оболочка из озона позволяет пройти лишь одной сотой ультрафиолетового излучения. При этом полностью блокируются волны короткой длины, опасные для живых существ. Атмосферные слои способны рассеять почти треть лучей Солнца, еще 20% поглощаются. Следовательно, поверхности планеты достигает не более половины всей энергии. Именно этот «остаток» в науке назвали прямой солнечной радиацией.

А если поподробнее?

Известно несколько аспектов, от которых зависит, насколько интенсивным будет прямое излучение. Наиболее значимыми считаются угол падения, зависящий от широты (географическая характеристика местности на земном шаре), время года, определяющее, как велико расстояние до конкретной точки от источника излучения. Многое зависит от особенностей атмосферы - насколько она загрязнена, как много в заданный момент облаков. Наконец, играет роль характер поверхности, на которую падает луч, а именно, ее способности отражать поступившие волны.

Суммарной солнечной радиацией называют величину, объединяющую рассеянные объемы и прямое излучение. Параметр, используемый для оценки интенсивности, оценивается в калориях в расчете на единицу территории. При этом помнят, что в разное время суток значения, свойственные излучению, отличаются. Кроме того, энергия не может распределяться по поверхности планеты равномерно. Чем ближе к полюсу, тем интенсивность выше, при этом снежные покровы обладают высокой отражающей способностью, а значит, воздух не получает возможности прогреться. Следовательно, чем дальше от экватора, тем суммарные показатели солнечного волнового излучения будут меньше.

Как удалось выявить ученым, энергия солнечной радиации оказывает серьезное воздействие на планетарный климат, подчиняет себе жизнедеятельность разнообразных организмов, существующих на Земле. В нашей стране, а также на территории ближайших соседей, как и в прочих странах, расположенных в северном полушарии, зимой преимущественная доля принадлежит рассеянному излучению, а вот летом доминирует прямое.

Инфракрасные волны

Из общего количества суммарной солнечной радиации внушительный процент принадлежит именно инфракрасному спектру, не воспринимаемому глазом человека. За счет таких волн нагревается поверхность планеты, постепенно передающая тепловую энергию воздушным массам. Это помогает сохранять комфортный климат, поддерживать условия для существования органической жизни. Если не происходит каких-то серьезных сбоев, климат остается условно неизменным, а значит, все существа могут обитать в привычных им условиях.

Наше светило - не единственный источник волн инфракрасного спектра. Аналогичное излучение свойственно любому нагретому объекту, включая обычную батарею в человеческом доме. Именно на принципе восприятия инфракрасного излучения работают многочисленные приборы, дающие возможность видеть в темноте, иных некомфортных для глаз условиях нагретые тела. Кстати говоря, по аналогичному принципу работают ставшие столь популярными в последнее время компактные приборы для оценки, через какие участки здания происходят наибольшие теплопотери. Эти механизмы особенно широко распространены в среде строителей, а также владельцев частных домов, поскольку помогают выявить, через какие участки тепло теряется, организовать их защиту и предупредить лишний расход энергии.

Не стоит недооценивать влияние солнечной радиации инфракрасного спектра на человеческий организм только по причине того, что наши глаза не могут воспринимать такие волны. В частности, излучение активно используется в медицине, поскольку позволяет повысить концентрацию лейкоцитов в кровеносной системе, а также привести в норму кровоток за счет увеличения просветов кровеносных сосудов. Приборы, основанные на ИК-спектре, применяются в качестве профилактических против кожных патологий, терапевтических при воспалительных процессах в острой и хронической форме. Наиболее современные препараты помогают справиться с коллоидными рубцами и трофическими ранами.

Это любопытно

На основе изучения факторов солнечной радиации удалось создать поистине уникальные приборы, называемые термографами. Они дают возможность своевременно обнаружить различные болезни, не доступные для выявления иными способами. Именно так можно найти рак или тромб. ИК в некоторой степени защищает от ультрафиолета, опасного для органической жизни, что позволило использовать волны такого спектра для восстановления здоровья продолжительное время находившихся в космосе астронавтов.

Природа вокруг нас и по сей день загадочна, касается это и излучения различных длин волн. В частности, инфракрасный свет все еще исследован не досконально. Ученые знают, что его неправильное применение может стать причиной вреда здоровью. Так, недопустимо использовать оборудование, формирующее такой свет, для терапии гнойных воспаленных участков, кровотечений и злокачественных новообразований. Инфракрасный спектр противопоказан людям, страдающим нарушениями функционирования сердца, сосудов, включая расположенные в мозге.

Видимый свет

Один из элементов суммарной солнечной радиации - видимый человеческому глазу свет. Волновые пучки распространяются по прямым линиям, поэтому не происходит наложения друг на друга. В свое время это стало темой немалого количества научных работ: ученые задались целью понять, по какой причине вокруг нас так много оттенков. Оказалось, что свою роль играют ключевые параметры света:

  • преломление;
  • отражение;
  • поглощение.

Как выяснили ученые, объекты не способны сами по себе быть источниками видимого света, но могут поглощать излучение и отражать его. Варьируются углы отражения, частота волн. На протяжении многих веков способность человека видеть постепенно совершенствовалась, но определенные ограничения обусловлены биологическим строением глаза: сетчатка такова, что может воспринять лишь определенные лучи отраженных световых волн. Это излучение - небольшой промежуток между ультрафиолетом и инфракрасными волнами.

Многочисленные любопытные и загадочные световые особенности не только стали темой множества работ, но и были основанием для зарождения новой физической дисциплины. Одновременно появились ненаучные практики, теории, приверженцы которых считают, что цвет способен повлиять на физическое состояние человека, психику. На основании таких предположений люди окружают себя предметами, наиболее приятными для их глаза, делая бытовую повседневность комфортнее.

Ультрафиолет

Не менее важный аспект суммарной солнечной радиации - ультрафиолетовое изучение, сформированное волнами большой, средней и малой длины. Они отличны друг от друга как по физическим параметрам, так и по особенностям влияния на формы органической жизни. Длинные ультрафиолетовые волны, к примеру, в атмосферных слоях в основном рассеиваются, а до земной поверхности добирается лишь незначительный процент. Чем короче длина волны, тем глубже такое излучение может проникнуть в человеческую (и не только) кожу.

С одной стороны, ультрафиолет опасен, но без него невозможно существование многообразной органической жизни. Такое излучение отвечает за формирование кальциферола в организме, а этот элемент необходим для строительства костной ткани. УФ-спектр - это мощная профилактика рахита, остеохондроза, что особенно важно в детском возрасте. Кроме того, такое излучение:

  • приводит в норму метаболизм;
  • активизирует производство незаменимых ферментов;
  • усиливает регенеративные процессы;
  • стимулирует кровоток;
  • расширяет кровеносные сосуды;
  • стимулирует иммунную систему;
  • приводит к формированию эндорфина, а значит, уменьшается нервное перевозбуждение.

Обратная сторона медали

Выше было указано, что суммарной солнечной радиацией называют количество излучения, достигшего поверхности планеты и рассеянного в атмосфере. Соответственно, элементом этого объема является ультрафиолет всех длин. Нужно помнить, что этот фактор имеет как положительные, так и отрицательные стороны влияния на органическую жизнь. Солнечные ванны, зачастую полезные, могут быть источником опасности для здоровья. Слишком продолжительное нахождение под прямым солнечным светом, особенно в условиях повышенной активности светила, вредно и опасно. Продолжительное влияние на организм, а также слишком высокая активность облучения становятся причиной:

  • ожогов, покраснений;
  • отеков;
  • гиперемии;
  • жара;
  • тошноты;
  • рвоты.

Продолжительное ультрафиолетовое облучение провоцирует нарушение аппетита, функционирования ЦНС, иммунной системы. Кроме того, начинает болеть голова. Описанные признаки - классические проявления солнечного удара. Сам человек не всегда может осознать, что происходит - состояние ухудшается постепенно. Если заметно, что кому-то поблизости стало плохо, следует оказать первую помощь. Схема следующая:

  • помочь перейти из-под прямого света в прохладное затененное место;
  • положить больного на спину так, чтобы ноги были выше головы (это поможет привести в норму кровоток);
  • охладить водой шею, лицо, а на лоб положить холодный компресс;
  • расстегнуть галстук, ремень, снять тесную одежду;
  • через полчаса после приступа дать выпить прохладной воды (небольшое количество).

Если пострадавший потерял сознание, важно сразу обратиться за помощью к доктору. Бригада скорой помощи переместит человека в безопасное место и сделает инъекцию глюкозы или витамина С. Лекарство вводят в вену.

Как загорать правильно?

Чтобы не узнать на своем опыте, каким неприятным может быть излишнее количество солнечной радиации, получаемое при загаре, важно соблюдать правила безопасного времяпрепровождения на солнце. Ультрафиолет инициирует выработку меланина - гормона, помогающего кожным покровам защититься от негативного влияния волн. Под воздействием этого вещества кожа становится темнее, а оттенок переходит в бронзовый. И по сей день не стихают споры о том, насколько это полезно и вредно для человека.

С одной стороны, загар - попытка организма защититься от излишнего воздействия излучения. При этом повышается вероятность формирования злокачественных новообразований. С другой стороны, загар считается модным и красивым. Чтобы минимизировать для себя риски, разумно перед началом пляжных процедур разобрать, чем опасно количество солнечной радиации, получаемое во время солнечных ванн, как минимизировать риски для себя. Чтобы впечатления были максимально приятными, любители загорать должны:

  • пить много воды;
  • пользоваться защищающими кожу средствами;
  • загорать вечером или утром;
  • проводить под прямыми лучами солнышка не больше часа;
  • не употреблять спиртное;
  • включить в меню богатые селеном, токоферолом, тирозином продукты. Не стоит забывать и о бета-каротине.

Значение солнечной радиации для человеческого организма исключительно велико, не стоит упускать из внимания и положительные, и отрицательные аспекты. Следует осознавать, что у разных людей биохимические реакции происходят с индивидуальными особенностями, поэтому для кого-то и получасовые солнечные ванны могут быть опасны. Разумно перед пляжным сезоном проконсультироваться с доктором, оценить тип, состояние кожных покровов. Это поможет предупредить вред здоровью.

По возможности следует избегать загара в преклонном возрасте, в период вынашивания малыша. Не сочетаются с солнечными ваннами раковые заболевания, нарушения психики, кожные патологии и недостаточность функционирования сердца.

Суммарная радиация: где недостача?

Довольно интересным для рассмотрения является процесс распределения солнечной радиации. Как выше было упомянуто, лишь около половины всех волн могут достигнуть поверхности планеты. Куда же пропадают остальные? Свою роль играют разные слои атмосферы и микроскопические частицы, из которых они сформированы. Внушительная часть, как было указано, поглощается озоновым слоем - это все волны, длина которых менее 0,36 мкм. Дополнительно озон способен поглотить некоторые типы волн из видимого человеческому глазу спектра, то есть промежутка 0,44-1,18 мкм.

Ультрафиолет в некоторой степени поглощается кислородным слоем. Это свойственно излучению с длиной волны 0,13-0,24 мкм. Углекислый газ, пар воды могут поглотить небольшой процент инфракрасного спектра. Аэрозоль атмосферы поглощает некоторую часть (ИК-спектр) от общего количества солнечной радиации.

Волны из категории коротких рассеиваются в атмосфере из-за наличия здесь микроскопических неоднородных частиц, аэрозоля, облаков. Неоднородные элементы, частицы, чьи габариты уступают длине волны, провоцируют молекулярное рассеивание, а для более крупных свойственно явление, описываемое индикатрисой, то есть аэрозольное.

Прочее количество солнечной радиации достигает земной поверхности. Оно сочетает прямое излучение, рассеянное.

Суммарная радиация: важные аспекты

Суммарная величина - это количество солнечной радиации, получаемое территорией, а также поглощенное в атмосфере. Если на небе нет облаков, суммарная величина излучения зависит от широты местности, высоты положения небесного тела, типа поверхности земли на этом участке, а также уровня прозрачности воздуха. Чем больше в атмосфере рассеяно аэрозольных частиц, тем ниже прямое излучение, зато возрастает доля рассеянного. В норме при отсутствии облачности в суммарной радиации рассеянная - это одна четвертая часть.

Наша страна принадлежит к числу северных, поэтому большую часть года в южных регионах излучение существенно больше, чем в северных. Это обусловлено положением светила на небе. А вот короткий временной промежуток май-июль - это уникальный период, когда даже на севере суммарная радиация довольно внушительная, поскольку солнце находится высоко в небе, а продолжительность светового дня больше, чем в прочие месяцы года. При этом в среднем на азиатской половине страны при отсутствии облачности суммарная радиация существеннее, нежели на западе. Максимальная сила волнового излучения наблюдается в полдень, а годовой максимум приходится на июнь, когда солнце выше всего в небе.

Суммарной солнечной радиацией называют количество солнечной энергии, достигающей нашей планеты. При этом нужно помнить, что разные атмосферные факторы приводят к тому, что годовой приход суммарной радиации меньше, нежели мог бы быть. Самая большая разница между реально наблюдаемым и максимально возможным характерна для дальневосточных регионов в летний период. Муссоны провоцируют исключительно плотную облачность, поэтому суммарная радиация уменьшается приблизительно вполовину.

Любопытно знать

Наибольший процент от максимально возможного облучения солнечной энергией в реальности наблюдается (в расчете на 12 месяцев) на юге страны. Показатель достигает 80%.

Облачность не всегда приводит к одинаковому показателю рассеивания солнечного излучения. Играет роль форма облаков, особенности солнечного диска в конкретный момент времени. Если таковой открыт, тогда облачность становится причиной уменьшения прямого излучения, одновременно рассеянное резко возрастает.

Возможны и такие дни, когда прямое излучение по своей силе приблизительно такое же, как рассеянное. Суточная суммарная величина может быть даже больше, нежели излучение, свойственное совсем безоблачному дню.

В расчете на 12 месяцев особенное внимание необходимо уделять астрономическим явлениям как определяющим общие численные показатели. При этом облачность приводит к тому, что реально радиационный максимум может наблюдаться не в июне, а месяцем раньше или позже.

Радиация в космосе

С границы магнитосферы нашей планеты и дальше в космические пространства солнечная радиация становится фактором, сопряженным со смертельной опасностью для человека. Еще в 1964 был выпущен важный научно-популярный труд, посвященный методам защиты. Его авторами выступили советские ученые Каманин, Бубнов. Известно, что для человека доза облучения в расчете на неделю должна быть не более 0,3 рентгена, при этом за год - в пределах 15 Р. При кратковременном облучении пределом для человека обозначено 600 Р. Полеты в космос, особенно в условиях непредсказуемой солнечной активности, могут сопровождаться значительным облучением астронавтов, что обязывает принимать дополнительные меры защиты от волн разной длины.

После миссий "Аполлон", в ходе которых тестировались способы защиты, исследовались факторы, влияющие на человеческое здоровье, прошло не одно десятилетие, но и по сей день ученые не могут найти результативные, надежные методы прогнозирования геомагнитных бурь. Можно составить прогноз в расчете на часы, иногда - на несколько дней, но даже для недельного предположения шансы реализации - не более 5%. Солнечный ветер - еще более непредсказуемое явление. С вероятностью один к трем космонавты, отправляясь в новую миссию, могут попасть в мощные потоки излучений. Это делает еще более важным вопрос как исследования и прогнозирования радиационных особенностей, так и разработки методов защиты от него.

Солнечная радиация - ведущий климатообразующий фактор и практически единственный источник энергии для всех физических процессов, происходящих на земной поверхности и в ее атмосфере. Она обусловливает жизнедеятельность организмов, создавая тот или иной температурный режим; приводит к возникновению облаков и выпадению осадков; является основополагающей причиной общей циркуляции атмосферы, тем самым оказывая огромное влияние на жизнь людей во всех ее проявлениях. В строительстве и архитектуре солнечная радиация является важнейшим средовым фактором - от нее зависит ориентация зданий, их конструктивные, объемно-планировочные, колористические, пластические решения и многие другие особенности.

Согласно ГОСТ Р 55912-2013 «Климатология строительная» приняты следующие определения и понятия, связанные с солнечной радиацией:

  • прямая радиация - часть суммарной солнечной радиации, поступающей на поверхности в виде пучка параллельных лучей, приходящих непосредственно от видимого диска солнца;
  • рассеянная солнечная радиация - часть суммарной солнечной радиации, поступающей на поверхности со всего небосвода после рассеяния в атмосфере;
  • отраженная радиация - часть суммарной солнечной радиации, отраженной от подстилающей поверхности (в том числе от фасадов, кровель зданий);
  • интенсивность солнечной радиации - количество солнечной радиации, проходящее за единицу времени через единичную площадку, расположенную перпендикулярно лучам.

Все величины солнечной радиации в современных отечественных ГОСТах, СП (СНиПах) и других нормативных документах, связанных со строительством и архитектурой, измеряются в киловаттах в час на 1 м 2 (кВт ч/м 2). За единицу времени, как правило, принимается месяц. Чтобы получить мгновенное (секундное) значение мощности потока солнечной радиации (кВт/м 2), приведенную за месяц величину следует разделить на количество дней в месяце, количестве часов в сутках и секунд в часах.

Во многих ранних изданиях нормативных документов по строительству и во многих современных справочниках по климатологии значения солнечной радиации приводятся в мегаджоулях или килокалориях на м 2 (МДж/м 2 , Ккал/м 2). Коэффициенты перевода этих величин из одной в другую приведены в приложении 1.

Физическая сущность. Солнечная радиация приходит к Земле от Солнца. Солнце - ближайшая к нам звезда, которая в среднем отстоит от Земли на 149 450 000 км. В начале июля, когда Земля наиболее удалена от Солнца («афелий»), это расстояние увеличивается до 152 млн км, а в начале января оно уменьшается до 147 млн км («перигелий»).

Внутри солнечного ядра температура превышает 5 млн К, а давление больше земного в несколько миллиардов раз, вследствие чего водород превращается в гелий. В ходе этой термоядерной реакции и рождается лучистая энергия, которая распространяется от Солнца по всем направлениям в виде электромагнитных волн. При этом к Земле приходит целый спектр длин волн, который в метеорологии принято делить на коротковолновый и длинноволновый участки. Коротковолновой называют радиацию в диапазоне длин волн от 0,1 до 4 мкм (1 мкм = 10~ 6 м). Радиацию с большими длинами (от 4 до 120 мкм) относят к длинноволновой. Солнечная радиация является преимущественно коротковолновой - на указанный диапазон длин волн приходится 99% всей энергии солнечного излучения, в то время как земная поверхность и атмосфера излучают длинноволновую радиацию, а коротковолновую могут только отражать.

Солнце является источником не только энергии, но и света. Видимый свет занимает узкий интервал длин волн, всего от 0,40 до 0,76 мкм, однако в этом интервале заключается 47% всей солнечной лучистой энергии. Свет с длиной волны около 0,40 мкм воспринимается как фиолетовый, с длиной волны около 0,76 мкм - как красный. Все остальные длины волн человеческий глаз не воспринимает, т.е. они невидимы для нас 1 . На инфракрасное излучение (от 0,76 до 4 мкм) приходится 44%, а на ультрафиолетовое (от 0,01 до 0,39 мкм) - 9% всей энергии. Максимум энергии в спектре солнечной радиации на верхней границе атмосферы лежит в сине-голубой области спектра, а у поверхности земли - в желто-зеленой.

Количественной мерой солнечной радиации, поступающей на некоторую поверхность, служит энергетическая освещенность, или поток солнечной радиации, - количество лучистой энергии, падающей на единицу площади в единицу времени. Максимальное количество солнечной радиации поступает на верхнюю границу атмосферы и характеризуется величиной солнечной постоянной. Солнечная постоянная - это поток солнечной радиации на верхней границе земной атмосферы через площадку, перпендикулярную солнечным лучам, при среднем расстоянии Земли от Солнца. По последним данным, утвержденным Всемирной Метеорологической Организацией (ВМО) в 2007 г., эта величина составляет 1,366 кВт/м 2 (1366 Вт/м 2).

До земной поверхности доходит значительно меньшее количество солнечной радиации, поскольку по мере движения солнечных лучей через атмосферу радиация претерпевает ряд существенных изменений. Часть ее поглощается атмосферными газами и аэрозолями и переходит в теплоту, т.е. идет на нагревание атмосферы, а часть рассеивается и переходит в особую форму рассеянной радиации.

Процесс поглощения радиации в атмосфере носит селективный характер - разные газы поглощают ее в разных участках спектра и в разной степени. Основными газами, поглощающими солнечную радиацию, являются водяной пар (Н 2 0), озон (0 3) и углекислый газ (С0 2). Например, как было сказано выше, стратосферный озон полностью поглощает вредную для живых организмов радиацию с длинами волн короче 0,29 мкм, именно поэтому озоновый слой является естественным щитом существования жизни на Земле. В среднем озоном поглощается около 3% солнечного излучения. В красной и инфракрасной областях спектра наиболее существенно солнечную радиацию поглощает водяной пар. В этой же области спектра находятся полосы поглощения углекислого газа, однако

Более подробно о свете и цвете говорится в других разделах дисциплины «Архитектурная физика».

в целом поглощение им прямой радиации невелико. Поглощение солнечной радиации происходит и аэрозолями естественного и антропогенного происхождения, особенно сильно - частицами сажи. Всего водяным паром и аэрозолями поглощается около 15% солнечной радиации, облаками - примерно 5%.

Рассеяние радиации представляет собой физический процесс взаимодействия электромагнитного излучения и вещества, в ходе которого молекулы и атомы поглощают часть радиации, а потом переизлучают ее во всех направлениях. Это очень важный процесс, который зависит от соотношения величины рассеивающих частиц и длины волны падающего излучения. В абсолютно чистом воздухе, где рассеяние производится только молекулами газов, оно подчиняется закону Рэлея , т.е. обратно пропорционально четвертой степени длины волны рассеиваемых лучей. Таким образом, голубой цвет неба - это цвет самого воздуха, обусловленный рассеянием в нем солнечных лучей, поскольку фиолетовые и голубые лучи рассеиваются воздухом гораздо лучше, чем оранжевые и красные.

Если в воздухе присутствуют частицы, размеры которых сравнимы с длиной волны излучения - аэрозоли, капельки воды, кристаллы льда, - то рассеяние не будет подчиняться закону Рэлея, и рассеянная радиация окажется не так богата коротковолновыми лучами. На частицах же диаметром больше 1-2 мкм будет происходить не рассеяние, а диффузное отражение, что определяет белесый цвет неба.

Рассеяние играет огромную роль в формировании естественной освещенности: в отсутствие Солнца в дневное время оно создает рассеянный (диффузный) свет. Если бы не было рассеяния, светло было бы только там, куда попадали бы прямые солнечные лучи. Сумерки и заря, цвет облаков на восходе и закате также связаны с этим явлением.

Итак, к земной поверхности солнечная радиация поступает в виде двух потоков: прямой и рассеянной радиации.

Прямая радиация (5) приходит к земной поверхности непосредственно от солнечного диска. При этом максимально возможное количество радиации получит единичная площадка, расположенная перпендикулярно к солнечным лучам (5). На единицу горизонтальной поверхности придется меньшее количество лучистой энергии У, называемое также инсоляцией :

У = ?-8шА 0 , (1.1)

где И 0 - высота Солнца над горизонтом, определяющая угол падения солнечных лучей на горизонтальную поверхность.

Рассеянная радиация (/)) поступает на земную поверхность от всех точек небесного свода, за исключением солнечного диска.

Всю солнечную радиацию, приходящую на земную поверхность, называют суммарной солнечной радиацией (0:

  • (1.2)
  • 0 = + /) = И 0 + /).

Приход этих видов радиации существенно зависит не только от астрономических причин, но и от облачности. Поэтому в метеорологии принято различать возможные суммы радиации , наблюдающиеся при безоблачных условиях, и действительные суммы радиации , имеющие место при реальных условиях облачности.

Не вся падающая на земную поверхность солнечная радиация поглощается ею и превращается в тепло. Часть ее отражается и, следовательно, теряется подстилающей поверхностью. Эта часть называется отраженной радиацией (/? к), а ее величина зависит от альбедо земной поверхности (Л к):

А к = - 100%.

Величина альбедо измеряется в долях единицы или в процентах. В строительстве и архитектуре чаще используются доли единицы. В них также измеряются отражательная способность строительных и отделочных материалов, светлота окраски фасадов и т.д. В климатологии принято измерение альбедо в процентах.

Альбедо оказывает значительное влияние на процессы формирования климата Земли, так как является интегральным показателем отражательной способности подстилающей поверхности. Оно зависит от состояния этой поверхности (шероховатости, цвета, увлажненности) и меняется в очень широких пределах. Самые высокие значения альбедо (до 75%) характерны для свежевыпавшего снега, а самые низкие - для водной поверхности при отвесном падении солнечных лучей («3%). Альбедо поверхности почвы и растительности в среднем меняется от 10 до 30%.

Если рассматривать всю Землю в целом, то ее альбедо составляет 30%. Эта величина носит название планетарного альбедо Земли и представляет собой отношение уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству радиации, поступающей к атмосфере.

На территории городов альбедо, как правило, ниже, чем в естественных, ненарушенных ландшафтах. Характерное значение альбедо для территории крупных городов умеренного климата составляет 15-18%. В южных городах альбедо, как правило, выше за счет применения более светлых тонов в окраске фасадов и кровель, в северных городах с плотной застройкой и темными колористическими решениями зданий альбедо ниже. Это позволяет в южных жарких странах уменьшать количество поглощенной солнечной радиации, снижая тем самым тепловой фон застройки, а в северных холодных районах, наоборот, увеличивать долю поглощенной солнечной радиации, повышая общий тепловой фон.

Поглощенная радиация (*У П0ГЛ) называется также балансом коротковолновой радиации (В к) и представляет собой разность суммарной и отраженной радиации (двух коротковолновых потоков):

^погл = 5 к = 0~ Я К- (1.4)

Она нагревает верхние слои земной поверхности и все, что на ней расположено (растительный покров, дороги, здания, сооружения и т.д.), вследствие чего они излучают длинноволновую радиацию, невидимую человеческим глазом. Эту радиацию чаще называют собственным излучением земной поверхности (? 3). Величина ее, согласно закону Стефана - Больцмана, пропорциональна четвертой степени абсолютной температуры.

Атмосфера также излучает длинноволновую радиацию, большая часть которой приходит к земной поверхности и почти полностью поглощается ею. Эту радиацию называют встречным излучением атмосферы (Е а). Встречное излучение атмосферы возрастает с увеличением облачности и влажности воздуха и является очень важным источником тепла для земной поверхности. Тем не менее длинноволновое излучение атмосферы всегда немного меньше земного, за счет чего земная поверхность теряет тепло, а разница между этими значениями называется эффективным излучением Земли (Е эф).

В среднем в умеренных широтах земная поверхность через эффективное излучение теряет примерно половину того количества тепла, которое она получает от поглощенной солнечной радиации. Поглощая земное излучение и посылая встречное излучение к земной поверхности, атмосфера уменьшает охлаждение этой поверхности в ночное время суток. Днем же она мало препятствует нагреванию поверхности Земли. Это влияние земной атмосферы на тепловой режим земной поверхности и носит название парникового эффекта. Таким образом, явление парникового эффекта состоит в удерживании тепла вблизи поверхности Земли. Большую роль в этом процессе играют газы техногенного происхождения, прежде всего - углекислый газ, концентрация которого на территории городов особенно высока. Но главная роль все же принадлежит газам естественного происхождения.

Основной субстанцией в атмосфере, поглощающей длинноволновое излучение Земли и посылающей встречное излучение, является водяной пар. Он поглощает практически всю длинноволновую радиацию за исключением интервала длин волн от 8,5 до 12 мкм, который называется «окном прозрачности» водяного пара. Только в этом интервале земное излучение проходит в мировое пространство сквозь атмосферу. Кроме водяного пара сильно поглощает длинноволновое излучение углекислый газ, причем именно в окне прозрачности водяного пара, гораздо слабее - озон, а также метан, оксид азота, хлорфторуглероды (фреоны) и некоторые другие газовые примеси.

Удержание тепла вблизи земной поверхности - очень важный процесс для поддержания жизни. Не будь его, средняя температура у Земли была бы на 33°С ниже существующей, и на Земле вряд ли могли бы обитать живые организмы. Поэтому дело не в парниковом эффекте как таковом (ведь он возник с момента образования атмосферы), а в том, что под влиянием антропогенной деятельности происходит усиление этого эффекта. Причина - в быстром росте концентрации парниковых газов техногенного происхождения, в основном - С0 2 , выбрасываемого при сжигании органического топлива. Это может привести к тому, что при той же поступающей радиации доля остающегося на планете тепла увеличится, а следовательно, увеличится и температура земной поверхности и атмосферы. За последние 100 лет температура воздуха нашей планеты в среднем увеличилась на 0,6°С.

Считается, что при удвоении концентрации С0 2 относительно ее доиндустриального значения глобальное потепление составит около 3°С (по разным оценкам - от 1,5 до 5,5°С). При этом наибольшие изменения должны произойти в тропосфере высоких широт в осенне-зимний период. Как следствие, начнет таять лед в Арктике и Антарктиде и уровень Мирового океана начнет повышаться. Это повышение может составить от 25 до 165 см, а значит, многие города, расположенные в прибрежных зонах морей и океанов, будут затоплены.

Таким образом, это очень важная проблема, касающаяся жизни миллионов людей. Учитывая это в 1988 г. в Торонто состоялась первая Международная конференция по проблеме антропогенного изменения климата. Ученые пришли к выводу, что последствия усиления парникового эффекта из-за роста содержания в атмосфере углекислого газа уступают лишь последствиям мировой ядерной войны. Тогда же при Организации Объединенных Наций (ООН) была образована Межправительственная группа экспертов по проблемам изменения климата - МГЭИК (IPCC - Intergovernmental Panel on Climate Change ), которая изучает влияние повышения приземной температуры на климат, экосистему Мирового океана, биосферу в целом, в том числе на жизнь и здоровье населения планеты.

В 1992 г. в Нью-Йорке была принята Рамочная конвенция об изменении климата (РКИК), главной целью которой провозглашено обеспечение стабилизации концентраций парниковых газов в атмосфере на уровнях, позволяющих предотвратить опасные последствия вмешательства человека в климатическую систему. Для практической реализации конвенции в декабре 1997 г. в г. Киото (Япония) на международной конференции был принят Киотский протокол. В нем определены конкретные квоты на выброс парниковых газов странами-участницами, в том числе и Россией, ратифицировавшей этот Протокол в 2005 г.

К моменту написания данной книги одной из последних конференций, посвященных климатическим изменениям, является Конференция по климату в Париже, проходившая с 30 ноября по 12 декабря 2015 г. Цель этой конференции - подписание международного соглашения по сдерживанию увеличения средней температуры планеты к 2100 г. не выше 2°С.

Итак, в результате взаимодействия разнообразных потоков коротковолновой и длинноволновой радиации земная поверхность непрерывно получает и теряет тепло. Результирующей величиной прихода и расхода радиации является радиационный баланс (В ), который и определяет тепловое состояние земной поверхности и приземного слоя воздуха, а именно их нагревание или охлаждение:

В = Q -« к - ?эф = 60 - А )-? эф =

= (5"sin/^ > + D)(l-А)-Е^ф = В к +В а. (

Данные о радиационном балансе необходимы для оценки степени нагревания и охлаждения различных поверхностей как в естественных условиях, так и в архитектурной среде, расчета теплового режима зданий и сооружений, определения испарения, теплоза-пасов в почве, нормирования орошения сельскохозяйственных полей и других народно-хозяйственных целей.

Методы измерения. Ключевое значение исследований радиационного баланса Земли для понимания закономерностей климата и формирования микроклиматических условий определяет основополагающую роль данных наблюдений за его составляющими - актинометрических наблюдений.

На метеорологических станциях России применяется термоэлектрический метод измерения радиационных потоков. Измеряемая радиация поглощается черной приемной поверхностью приборов, превращается в тепло и нагревает активные спаи термобатареи, тогда как пассивные спаи не нагреваются радиацией и имеют более низкую температуру. Вследствие различия температур активных и пассивных спаев на выводе термобатареи возникает термоэлектродвижущая сила, пропорциональная интенсивности измеряемой радиации. Таким образом, большинство актинометрических приборов являются относительными - они измеряют не сами потоки радиации, а пропорциональные им величины - силу тока или напряжение. Для этого приборы присоединяются, например, к цифровым мультиметрам, а ранее - к стрелочным гальванометрам. При этом в паспорте каждого прибора приводится так называемый «переводной множитель» - цена деления электроизмерительного прибора (Вт/м 2). Этот множитель рассчитывается путем сравнения показаний того или иного относительного прибора с показаниями абсолютных приборов - пиргелиометров.

Принцип действия абсолютных приборов иной. Так, в компенсационном пиргелиометре Ангстрема зачерненная металлическая пластинка выставляется на солнце, а другая такая же пластинка остается в тени. Между ними возникает разность температур, которая передается спаям термоэлемента, прикрепленным к пластинам, и таким образом возбуждается термоэлектрический ток. При этом через затененную пластину пропускается ток от батареи до тех пор, пока она не нагреется до той же температуры, что и пластина, находящаяся на солнце, после чего термоэлектрический ток исчезает. По силе пропущенного «компенсирующего» тока можно определить количество тепла, полученного зачерненной пластиной, которое, в свою очередь, будет равно количеству тепла, полученному от Солнца первой пластиной. Таким образом, можно определить величину солнечной радиации.

На метеостанциях России (а ранее - СССР), проводящих наблюдения за составляющими радиационного баланса, однородность рядов актинометрических данных обеспечивается использованием однотипных приборов и их тщательной градуировкой, а также одинаковой методикой измерений и обработки данных. В качестве приемников интегральной солнечной радиации (

В термоэлектрическом актинометре Савинова - Янишевского, внешний вид которого показан на рис. 1.6, приемная часть представляет собой тонкий металлический зачерненный диск из серебряной фольги, к которому через изоляцию приклеены нечетные (активные) спаи термобатареи. При измерениях этот диск поглощает солнечную радиацию, вследствие чего температура диска и активных спаев повышается. Четные же (пассивные) спаи через изоляцию приклеены к медному кольцу в корпусе прибора и имеют температуру, близкую к температуре наружного воздуха. Эта разность температур при замыкании внешней цепи термобатареи и создает термоэлектрический ток, сила которого пропорциональна интенсивности солнечной радиации.

Рис. 1.6.

В пиранометре (рис. 1.7) приемная часть чаще всего представляет собой батарею термоэлементов, например из манганина и кон-стантана, с зачерненными и белыми спаями, которые неодинаково нагреваются под действием приходящей радиации. Приемная часть прибора должна иметь горизонтальное положение, чтобы воспринимать рассеянную радиацию со всего небесного свода. От прямой радиации пиранометр затеняется экраном, а от встречного излучения атмосферы защищен стеклянным колпаком. При измерениях суммарной радиации пиранометр от прямых лучей не затеняют.

Рис. 1.7.

Специальное устройство (откидная плита) позволяет придавать головке пиранометра два положения: приемником вверх и приемником вниз. В последнем случае пиранометр измеряет отраженную от земной поверхности коротковолновую радиацию. В маршрутных наблюдениях для этого применяют так называемый походный алъбе-дометр, представляющий собой головку пиранометра, соединенную с опрокидывающимся кардановым подвесом с рукояткой.

Термоэлектрический балансомер состоит из корпуса с термобатареей, двух приемных пластинок и рукоятки (рис. 1.8). В дискообразном корпусе (/) имеется квадратный вырез, где укреплена термобатарея (2). Рукоять (3 ), припаянная к корпусу, служит для установки балансомера на стойке.

Рис. 1.8.

Одна зачерненная приемная пластинка балансомера направлена вверх, другая - вниз, к земной поверхности. Принцип действия незатененного балансомера основан на том, что все виды радиации, приходящей к деятельной поверхности (У, /) и Е а), поглощаются зачерненной приемной поверхностью прибора, обращенной вверх, а все виды радиации, уходящей от деятельной поверхности (/? к, /? л и Е 3), поглощаются пластиной, направленной вниз. Каждая приемная пластинка сама также излучает длинноволновую радиацию, кроме того, происходит теплообмен с окружающим воздухом и корпусом прибора. Однако благодаря высокой теплопроводности корпуса происходит большая отдача тепла, что не позволяет образовываться существенной разности температур приемных пластинок. По этой причине собственным излучением обоих пластин можно пренебречь, а по разности их нагрева - определить величину радиационного баланса любой поверхности, в плоскости которой расположен балансомер.

Поскольку приемные поверхности балансомера не закрыты стеклянным колпаком (иначе было бы невозможно измерить длинноволновую радиацию), показания этого прибора зависят от скорости ветра, уменьшающего разность температур приемных поверхностей. По этой причине показания балансомера приводят к штилевым условиям, предварительно измерив скорость ветра на уровне прибора.

Для автоматической регистрации измерений термоэлектрический ток, возникающий в описанных выше приборах, подводят на самопишущий электронный потенциометр. Изменения силы тока записываются на движущейся бумажной ленте, при этом актинометр должен автоматически вращаться так, чтобы его приемная часть следовала за Солнцем, а пиранометр должен быть всегда затенен от прямой радиации особой кольцевой защитой.

Актинометрические наблюдения, в отличие от основных метеонаблюдений, проводятся шесть раз в сутки в сроки: 00 ч 30 мин, 06 ч 30 мин, 09 ч 30 мин, 12 ч 30 мин, 15 ч 30 мин и 18 ч 30 мин. Поскольку интенсивность всех видов коротковолновой радиации зависит от высоты Солнца над горизонтом, сроки наблюдений устанавливаются по среднему солнечному времени станции.

Характерные значения. Величины потоков прямой и суммарной радиации играют одну из важнейших ролей в архитектурно-климатическом анализе. Именно с их учетом связаны ориентация зданий по сторонам горизонта, их объемно-планировочное и колористическое решение, внутренняя планировка, размеры светопроемов и ряд других архитектурных особенностей. Поэтому суточный и годовой ход характерных значений будет рассмотрен именно для этих величин солнечной радиации.

Энергетическая освещенность прямой солнечной радиации в условиях безоблачного неба зависит от высоты солнца, свойств атмосферы на пути солнечного луча, характеризуемой коэффициентом прозрачности (величиной, показывающей, какая доля солнечной радиации доходит до земной поверхности при отвесном падении солнечных лучей) и от длины этого пути.

Прямая солнечная радиация при безоблачном небе имеет довольно простой суточный ход с максимумом в околополуденные часы (рис. 1.9). Как следует из рисунка, в течение дня поток солнечной радиации сначала быстро, потом медленнее нарастает от восхода Солнца до полудня и сначала медленно, потом быстро убывает от полудня до захода Солнца. Различия в энергетической освещенности в полдень при ясном небе в январе и июле в первую очередь связаны с различиями в полуденной высоте Солнца, которая зимой меньше, чем летом. В то же время в континентальных районах часто наблюдается асимметричность суточного хода, обусловленная различием прозрачности атмосферы в до- и послеполуденные часы. Влияет прозрачность атмосферы и на годовой ход среднемесячных значений прямой солнечной радиации. Максимум радиации при безоблачном небе может смещаться на весенние месяцы, поскольку весной запыленность и влагосодержание атмосферы ниже, чем осенью.

5 1 , кВт/м 2

б", кВт/м 2

Рис. 1.9.

и при средних условиях облачности (б):

7 - на перпендикулярную к лучам поверхность в июле; 2 - на горизонтальную поверхность в июле; 3 - на перпендикулярную поверхность в январе; 4 - на горизонтальную поверхность в январе

Облачность снижает приход солнечной радиации и может существенно изменить ее суточный ход, что проявляется в соотношении до- и послеполуденных часовых сумм. Так, в большей части континентальных районов России в весенне-летние месяцы часовые суммы прямой радиации в дополуденные часы больше, чем в послеполуденные (рис. 1.9, б). Это в основном определяется суточным ходом облачности, которая начинает развиваться в 9-10 часов утра и достигает максимума в послеполуденные часы, уменьшая, таким образом, радиацию. Общее же снижение притока прямой солнечной радиации при действительных условиях облачности может быть очень существенным. Например, во Владивостоке с его муссонным климатом эти потери летом составляют 75%, а в Санкт-Петербурге даже в среднем за год облака не пропускают к земной поверхности 65% прямой радиации, в Москве - около половины.

Распределение годовых сумм прямой солнечной радиации при средних условиях облачности по территории России показано на рис. 1.10. В значительной степени этот фактор, снижающий количество солнечной радиации, зависит от циркуляции атмосферы, что приводит к нарушению широтного распределения радиации.

Как видно из рисунка, в целом годовые суммы прямой радиации, приходящей на горизонтальную поверхность, увеличиваются от высоких широт к более низким от 800 до почти 3000 МДж/м 2 . Большое количество облаков в европейской части России приводит к уменьшению годовых сумм по сравнению с районами Восточной Сибири, где в основном за счет влияния азиатского антициклона в зимний период годовые суммы возрастают. В то же время летний муссон приводит к уменьшению годового прихода радиации в прибрежных районах на Дальнем Востоке. Диапазон изменения полуденной интенсивности прямой солнечной радиации на территории России изменяется от 0,54-0,91 кВт/м 2 летом до 0,02-0,43 кВт/м 2 зимой.

Рассеянная радиация, поступающая на горизонтальную поверхность, также изменяется в течение дня, возрастая до полудня и убывая после него (рис. 1.11).

Как и в случае с прямой солнечной радиацией, на приход рассеянной радиации влияет не только высота солнца и продолжительность дня, но и прозрачность атмосферы. Однако уменьшение последней ведет к увеличению рассеянной радиации (в отличие от прямой). Кроме того, рассеянная радиация в очень широких пределах зависит от облачности: при средних условиях облачности ее приход более чем в два раза превосходит значения, наблюдающиеся при ясном небе. В отдельные же дни облачность увеличивает этот показатель в 3-4 раза. Таким образом, рассеянная радиация может существенно дополнять прямую, особенно при низком положении Солнца.


Рис. 1.10. Прямая солнечная радиация, поступающая на горизонтальную поверхность при средних условиях облачности, МДж/м 2 в год (1 МДж/м 2 = 0,278 кВт? ч/м 2)

/), кВт/м 2 0,3 г

  • 0,2 -
  • 0,1 -

4 6 8 10 12 14 16 18 20 22 Часы

Рис. 1.11.

и при средних условиях облачности (б)

Величина рассеянной солнечной радиации в тропиках составляет от 50 до 75% прямой; под 50-60° широты она близка к прямой, а в высоких широтах почти весь год превышает прямую солнечную радиацию.

Очень важным фактором, влияющим на поток рассеянной радиации, является альбедо подстилающей поверхности. Если альбедо достаточно велико, то отраженная от подстилающей поверхности радиация, рассеиваемая атмосферой в обратном направлении, может обусловить значительное увеличение прихода рассеянной радиации. Наиболее сильно эффект проявляется при наличии снежного покрова, обладающего наибольшей отражательной способностью.

Суммарная радиация при безоблачном небе (возможная радиация) зависит от широты места, высоты солнца, оптических свойств атмосферы и характера подстилающей поверхности. В условиях ясного неба она имеет простой суточный ход с максимумом в полдень. Асимметрия суточного хода, характерная для прямой радиации, в суммарной радиации проявляется мало, так как уменьшение прямой радиации в связи с ростом замутнения атмосферы во второй половине дня компенсируется увеличением рассеянной благодаря тому же фактору. В годовом ходе максимальная интенсивность суммарной радиации при безоблачном небе на большей части тер-

ритории России наблюдается в июне в связи с максимальной полуденной высотой солнца. Однако в некоторых районах это влияние перекрывается влиянием прозрачности атмосферы, и максимум смещается на май (например, в Забайкалье, Приморье, на Сахалине и в ряде районов Восточной Сибири). Распределение месячных и годовых сумм суммарной солнечной радиации при безоблачном небе приведено в табл. 1.9 и на рис. 1.12 в виде осредненных по широтам значений.

Из приведенных таблицы и рисунка видно, что во все сезоны года как интенсивность, так и суммы радиации возрастают с севера на юг в соответствии с изменением высоты солнца. Исключение составляет период с мая по июль, когда сочетание большой продолжительности дня и высоты солнца обеспечивает довольно высокие значения суммарной радиации на севере и в целом на территории России поле радиации размыто, т.е. не имеет выраженных градиентов.

Таблица 1.9

Суммарная солнечная радиация на горизонтальную поверхность

при безоблачном небе (кВт ч/м 2)

Географическая широта, ° с.ш.

Сентябрь

Рис. 1.12. Суммарная солнечная радиация на горизонтальную поверхность при безоблачном небе на различных широтах (1 МДж/м 2 = 0,278 кВт ч/м 2)

При наличии облачности суммарная солнечная радиация определяется не только количеством и формой облаков, но и состоянием солнечного диска. При просвечивающем сквозь облака солнечном диске суммарная радиация по сравнению с безоблачными условиями может даже увеличиваться вследствие роста рассеянной радиации.

Для средних условий облачности наблюдается вполне закономерный суточный ход суммарной радиации: постепенное нарастание от восхода солнца до полудня и убывание от полудня до захода. В то же время суточный ход облачности нарушает симметрию хода относительно полудня, характерную для безоблачного неба. Так, в большинстве районов России в теплый период дополуденные значения суммарной радиации на 3-8% превышают послеполуденные, за исключением муссонных областей Дальнего Востока, где соотношение обратное. В годовом ходе средних многолетних месячных сумм суммарной радиации наряду с определяющим астрономическим фактором проявляется циркуляционный (через влияние облачности), поэтому максимум может смещаться с июня на июль и даже на май (рис. 1.13).

  • 600 -
  • 500 -
  • 400 -
  • 300 -
  • 200 -

м. Челюскин

Салехард

Архангельск

С.-Петербург

Петропавловск

Камчатский

Хабаровск

Астрахань

Рис. 1.13. Суммарная солнечная радиация на горизонтальную поверхность в отдельных городах России при реальных условиях облачности (1 МДж/м 2 = 0,278 кВт ч/м 2)

5", МДж/м 2 700

Итак, реальный месячный и годовой приход суммарной радиации составляет лишь часть возможного. Самые большие отклонения реальных сумм от возможных летом отмечаются на Дальнем Востоке, где облачность снижает суммарную радиацию на 40-60%. В целом же общий годовой приход суммарной радиации изменяется по территории России в широтном направлении, увеличиваясь от 2800 МДж/м 2 на побережьях северных морей до 4800- 5000 МДж/м 2 в южных районах России - Северном Кавказе, Нижнем Поволжье, Забайкалье и Приморском крае (рис. 1.14).


Рис. 1.14. Суммарная радиация, поступающая на горизонтальную поверхность, МДж/м 2 в год

Летом различия в суммарной солнечной радиации при реальных условиях облачности между городами, расположенными на разных широтах, не такие «драматичные», как это может показаться с первого взгляда. Для европейской части России от Астрахани до мыса Челюскин эти значения лежат в пределах 550-650 МДж/м 2 . Зимой в большинстве городов, за исключением Заполярья, где наступает полярная ночь, суммарная радиация составляет 50-150 МДж/м 2 в месяц.

Для сравнения: средние за январь показатели теплотности 1 городской застройки (рассчитанные по фактическим данным для Москвы), составляют от 220 МДж/м 2 в месяц в городских градостроительных узлах до 120-150 МДж/м 2 на межмагистральных территориях с низкоплотной жилой застройкой. На территориях производственных и коммунально-складских зон показатели теплотности в январе составляют 140 МДж/м 2 . Суммарная солнечная радиация в Москве составляет в январе 62 МДж/м 2 . Таким образом, в зимнее время за счет использования солнечной радиации возможно покрыть не более 10-15% (с учетом эффективности солнечных батарей 40%) расчетной теплотности застройки средней плотности даже в известных своей солнечной зимней погодой Иркутске и Якутске, даже если полностью покрыть их территорию фотоэлектрическими панелями.

Летом суммарная солнечная радиация возрастает в 6-9 раз, а те-плопотребление сокращается в 5-7 раз по сравнению с зимой. Показатели теплотности в июле снижаются до значений 35 МДж/м 2 и менее - на жилых территориях и 15 МДж/м 2 и менее - на территориях производственного назначения, т.е. до величин, составляющих не более 3-5% от суммарной солнечной радиации. Поэтому летом, когда потребности в отоплении и освещении минимальны, по всей территории России наблюдается избыток этого возобновляемого природного ресурса, который невозможно утилизировать, что еще раз ставит под сомнение целесообразность применения фотоэлектрических панелей, по крайней мере, в городах и многоквартирных зданиях.

Потребление электроэнергии (без отопления и горячего водоснабжения), также связанное с неравномерностью распределения общей площади застройки, плотности населения и функциональным назначением различных территорий, находится в пре-

Теплотность - усредненный показатель потребления всех видов энергии (электричество, отопление, горячее водоснабжение) на 1 м 2 территории застройки.

делах от 37 МДж/м 2 в месяц (рассчитано как 1/12 годовой суммы) в плотно застроенных районах и до 10-15 МДж/м 2 в месяц в районах с низкой плотностью застройки. В дневные часы и летом потребление электроэнергии, естественно, падает. Плотность потребления электроэнергии в июле в большинстве районов жилой и смешанной застройки составляет 8-12 МДж/м 2 при суммарной солнечной радиации в реальных условиях облачности в Москве около 600 МДж/м 2 . Таким образом, для покрытия нужд в электроснабжении городской застройки (на примере Москвы) требуется утилизировать лишь около 1,5-2% солнечной радиации. Остальная радиация, в случае ее утилизации, будет избыточной. При этом еще предстоит решить вопрос о накоплении и сохранении дневной солнечной радиации для освещения в вечернее и ночное время, когда нагрузки на системы электроснабжения максимальны, а солнце почти или совсем не светит. Для этого потребуется передача электроэнергии на большие расстояния между районами, где Солнце еще достаточно высоко, и теми, где Солнце уже зашло за горизонт. При этом потери электроэнергии в сетях будут сопоставимы с ее экономией за счет использования фотоэлектрических панелей. Либо потребуется использование аккумуляторных батарей большой емкости, производство, установка и последующая утилизация которых потребует энергозатрат, которые вряд ли покроются за счет экономии электроэнергии, накопленной за весь период их эксплуатации.

Другим, не менее важным фактором, делающим сомнительной целесообразность перехода на солнечные батареи как альтернативный источник электроснабжения в масштабах города, является то, что в конечном счете работа фотоэлементов приведет к значительному увеличению поглощенной на территории города солнечной радиации, а следовательно, к повышению температуры воздуха в городе в летнее время. Таким образом, одновременно с охлаждением за счет фотопанелей и запитываемых от них кондиционеров воздуха внутренней среды будет происходить общее повышение температуры воздуха в городе, что в конечном счете сведет к нулю всю выгоду экономическую и экологическую от экономии электроэнергии за счет использования пока еще очень дорогих фотоэлектрических панелей.

Отсюда следует, что установка оборудования для преобразования солнечной радиации в электричество оправдывает себя в весьма ограниченном перечне случаев: только летом, только в климатических районах с сухой жаркой малооблачной погодой, только в малых городах или отдельных коттеджных поселках и только если эта электроэнергия используется для работы установок по кондиционированию и вентиляции внутренней среды зданий. В иных случаях - других районах, других градостроительных условиях и в другое время года - применение фотоэлектрических панелей и солнечных коллекторов для нужд электро-и теплоснабжения рядовой застройки в средних и крупных городах, расположенных в умеренном климате, неэффективно.

Биоклиматическое значение солнечной радиации. Определяющая роль воздействия солнечной радиации на живые организмы сводится к участию в формировании их радиационного и теплового балансов за счет тепловой энергии в видимой и инфракрасной части солнечного спектра.

Видимые лучи имеют особенно большое значение для организмов. Большинство животных, как и человек, хорошо различают спектральный состав света, а некоторые насекомые видят даже в ультрафиолетовом диапазоне. Наличие светового зрения и световой ориентации является важным фактором выживания. Например, у человека наличие цветового зрения - один из наиболее психоэмоциональных и оптимизирующих факторов жизни. Пребывание в темноте оказывает противоположное действие.

Как известно, зеленые растения синтезируют органическое вещество и, следовательно, производят пищу для всех остальных организмов, в том числе человека. Этот важнейший для жизни процесс происходит при ассимиляции солнечного излучения, причем растениями используется определенный диапазон спектра в интервале длин волн 0,38-0,71 мкм. Эта радиация называется фотосинтетически активной радиацией (ФАР) и имеет очень большое значение для продуктивности растений.

Видимая часть света создает естественную освещенность. По отношению к ней все растения делятся на светолюбивые и теневыносливые. Недостаточная освещенность обусловливает слабость стебля, ослабляет образование колосьев и початков на растениях, снижает содержание сахара и количества масел в культурных растениях, затрудняет использование ими минерального питания и удобрений.

Биологическое действие инфракрасных лучей состоит в тепловом эффекте при их поглощении тканями растений и животных. При этом изменяется кинетическая энергия молекул, происходит ускорение электрических и химических процессов. За счет инфракрасной радиации компенсируется недостаток тепла (особенно в высокогорных районах и в высоких широтах), получаемого растениями и животными из окружающего пространства.

Ультрафиолетовое излучение по биологическим свойствам и воздействию на человека принято делить на три области: область А - с длинами волн от 0,32 до 0,39 мкм; область В - от 0,28 до 0,32 мкм и область С - от 0,01 до 0,28 мкм. Область А характеризуется сравнительно слабо выраженным биологическим действием. Она вызывает лишь флюоресценцию ряда органических веществ, у человека способствует образованию пигмента в коже и слабой эритемы (покраснение кожи).

Значительно более активными являются лучи области В. Многообразные реакции организмов на ультрафиолетовое облучение, изменения в коже, крови и т.д. в основном обусловлены ими. Известное витаминообразующее действие ультрафиолета заключается в том, что эргостерон питательных веществ переходит в витамин О, оказывающий сильное возбуждающее влияние на рост и обмен веществ.

Самое мощное биологическое действие на живые клетки оказывают лучи области С. Бактерицидное действие солнечного света в основном обусловлено ими. В небольших дозах ультрафиолетовые лучи необходимы растениям, животным и человеку, особенно детям. Однако в большом количестве лучи области С губительны для всего живого, и жизнь на Земле возможна лишь потому, что это коротковолновое излучение практически полностью задерживается озоновым слоем атмосферы. Особенно актуальным решение вопроса о воздействии избыточных доз ультрафиолетовой радиации на биосферу и человека стало в последние десятилетия в связи с истощением озонового слоя атмосферы Земли.

Действие ультрафиолетовой радиации (УФР), достигающей земной поверхности, на живой организм весьма разнообразно. Как было указано выше, в умеренных дозах она оказывает благотворное влияние: повышает жизненный тонус, усиливает стойкость организма к инфекционным заболеваниям. Недостаток УФР приводит к патологическим явлениям, которые получили название УФ недостаточности или УФ голодания и проявляются в недостатке витамина Э, что ведет к нарушению фосфорно-кальциевого обмена в организме.

Избыток УФР может привести к очень серьезным последствиям: образованию рака кожи, развитию других онкологических образований, появлению фотокератита («снежная слепота»), фотоконъюнктивита и даже катаракты; нарушению иммунной системы живых организмов, а также мутагенным процессам в растениях; изменению свойств и разрушению полимерных материалов, широко использующихся в строительстве и архитектуре. Например, УФР может обесцвечивать фасадные краски или приводить к механическому разрушению полимерных отделочных и конструктивных строительных изделий.

Архитектурно-строительное значение солнечной радиации. Данные о солнечной энергии используются при расчете теплового баланса зданий и систем отопления и кондиционирования воздуха, при анализе процессов старения различных материалов, учете влияния радиации на тепловое состояние человека, выборе оптимального породного состава зеленых насаждений для озеленения конкретного района и многих других целей. Солнечная радиация определяет режим естественной освещенности земной поверхности, знание которого необходимо при планировании расхода электроэнергии, проектировании различных сооружений и организации работы транспорта. Таким образом, радиационный режим является одним из ведущих градостроительных и архитектурно-строительных факторов.

Инсоляция зданий - одно из важнейших условий гигиеничности застройки, поэтому облучению поверхностей прямыми солнечными лучами уделяют особое внимание как важному экологическому фактору. При этом Солнце оказывает не только гигиеническое воздействие на внутреннюю среду, убивая болезнетворные организмы, но и психологически влияет на человека. Эффект такого облучения зависит от длительности процесса воздействия солнечных лучей, поэтому инсоляцию измеряют в часах, а ее продолжительность нормируют соответствующими документами Минздрава России.

Необходимый минимум солнечной радиации, обеспечивающий комфортные условия внутренней среды зданий, условия для труда и отдыха человека, складывается из требуемой освещенности жилых и рабочих помещений, количества требуемой для организма человека ультрафиолетовой радиации, количества поглощенного наружными ограждениями и переданного внутрь зданий тепла, обеспечивающего тепловой комфорт внутренней среды. Исходя из этих требований принимаются архитектурно-планировочные решения, определяется ориентация жилых комнат, кухонь, подсобных и рабочих помещений. При избытке солнечной радиации предусматривается устройство лоджий, жалюзи, ставень и других солнцезащитных устройств.

Анализ сумм солнечной радиации (прямой и рассеянной), поступающей на различно ориентированные поверхности (вертикальные и горизонтальную), рекомендуется проводить по следующей шкале:

  • менее 50 кВт ч/м 2 в мес - незначительная радиация;
  • 50-100 кВт ч/м 2 в мес - средняя радиация;
  • 100-200 кВт ч/м 2 в мес - высокая радиация;
  • более 200 кВт ч/м 2 в мес - избыточная радиация.

При незначительной радиации, наблюдающейся в умеренных широтах в основном в зимние месяцы, ее вклад в тепловой баланс зданий настолько мал, что им можно пренебречь. При средней радиации в умеренных широтах происходит переход в область отрицательных значений радиационного баланса земной поверхности и расположенных на ней зданий, сооружений, искусственных покрытий и т.д. В связи с этим они в суточном ходе начинают терять больше тепловой энергии, чем получают тепла от солнца днем. Эти потери в тепловом балансе зданий не покрываются за счет внутренних источников тепла (электроприборов, труб горячего водоснабжения, метаболического тепловыделения людей И Т.Д.), и их необходимо компенсировать за счет работы отопительных систем - начинается отопительный период.

При высокой радиации и при реальных условиях облачности тепловой фон территории городской застройки и внутренней среды зданий находится в зоне комфорта без использования искусственных систем обогрева и охлаждения.

При избыточной радиации в городах умеренных широт, особенно тех, которые расположены в умеренном континентальном и резко континентальном климате, летом может наблюдаться перегрев зданий, их внутренней и наружной среды. В связи с этим перед архитекторами встает задача по защите архитектурной среды от избыточной инсоляции. Применяют соответствующие объемно-планировочные решения, выбирают оптимальную ориентацию зданий по сторонам горизонта, архитектурные солнцезащитные элементы фасадов и светопроемов. Если архитектурных средств по защите от перегрева оказывается недостаточно, то возникает необходимость искусственного кондиционирования внутренней среды зданий.

Радиационный режим также влияет на выбор ориентации и размеров светопроемов. При низкой радиации размер светопроемов может быть увеличен до любых размеров при условии сохранения теплопотерь через наружные ограждения на уровне не выше нормативного. При избыточной радиации светопроемы делаются минимальными по размерам, обеспечивающими требования по инсоляции и естественной освещенности помещений.

Светлота фасадов, определяющая их отражательную способность (альбедо), также выбирается исходя из требований солнцезащиты или, наоборот, с учетом возможности максимального поглощения солнечной радиации в районах с прохладным и холодным влажным климатом и со средним или незначительным уровнем солнечной радиации в летние месяцы. Для выбора облицовочных материалов, исходя из их отражающей способности, необходимо знать, какое количество солнечной радиации поступает к стенам зданий различной ориентации и какова способность различных материалов поглощать эту радиацию. Поскольку приход радиации к стене зависит от широты места и того, как ориентирована стена по отношению к сторонам горизонта, то от этого и будет зависеть нагрев стены и температура внутри примыкающих к ней помещений.

Поглощающая способность различных материалов отделки фасадов зависит от их цвета и состояния (табл. 1.10). Если известны месячные суммы солнечной радиации, поступающей на стены различной ориентации 1 и альбедо этих стен, то можно определить количество поглощенного ими тепла.

Таблица 1.10

Поглощающая способность строительных материалов

Данные о количестве приходящей солнечной радиации (прямой и рассеянной) при безоблачном небе на вертикальные поверхности различной ориентации приводятся в СП «Строительная климатология».

Наименование материала и обработка

Характеристика

поверхности

поверхности

Поглощенная радиация,%

Бетонная ошту-катуренная

Шероховатая

Светло-голубой

Темно-серый

Голубоватый

Отесанная

Желтовато-

коричневый

Полированная

Чисто отесанная

Светло-серый

Отесанная

Кровля

Рубероид

коричневый

Оцинкованная сталь

Светло-серый

Черепица

Подбирая соответствующие материалы и цвета для ограждающих конструкций зданий, т.е. меняя альбедо стен, можно изменять величину радиации, поглощаемую стеной и, таким образом, уменьшать или увеличивать нагрев стен солнечным теплом. Этот прием активно используется в традиционной архитектуре различных стран. Всем известно, что южные города отличаются общей светлой (белой с цветным декором) окраской большинства жилых домов, в то время как, например, скандинавские города - это в основном города, построенные из темного кирпича или с использованием для обшивки зданий теса с темной окраской.

Подсчитано, что 100 кВт ч/м 2 поглощенной радиации повышают температуру наружной поверхности примерно на 4°С. Такое количество радиации в среднем за час получают стены зданий в большинстве районов России, если они ориентированы на юг и восток, а также западные, юго-западные и юго-восточные, если они сделаны из темного кирпича и не оштукатурены или имеют штукатурку темного цвета.

Для перехода от средней за месяц температуры стены без учета радиации к наиболее часто употребляемой в теплотехнических расчетах характеристике - температуре наружного воздуха вводится дополнительная температурная добавка At, зависящая от месячного количества поглощаемой стеной солнечной радиации В к (рис. 1.15). Таким образом, зная интенсивность суммарной солнечной радиации, приходящей к стене, и альбедо поверхности этой стены, можно рассчитать ее температуру, вводя соответствующую поправку к температуре воздуха.

В к, кВт ч/м 2

Рис. 1.15. Увеличение температуры наружной поверхности стены за счет поглощения солнечной радиации

В общем случае температурная добавка за счет поглощенной радиации определяется при прочих равных условиях, т.е. при той же температуре воздуха, его влажности и термическом сопротивлении ограждающей конструкции, независимо от скорости ветра.

При ясной погоде в полуденные часы южные, до полудня - юго-восточные и после полудня - юго-западные стены могут поглощать до 350-400 кВт ч/м 2 солнечного тепла и нагреваются так, что их температура на 15-20°С может превышать температуру наружного воздуха. При этом создаются большие температурные кон-

трасты между стенами одного и того же здания. Эти контрасты в некоторых районах оказываются существенными не только летом, но и в холодное время года при солнечной маловетреной погоде, даже при очень низкой температуре воздуха. Особенно сильному перегреву подвергаются металлические конструкции. Так, по имеющимся наблюдениям, в Якутии, расположенной в умеренном резко континентальном климате, характеризующимся малооблачной погодой зимой и летом, в полуденные часы при ясном небе алюминиевые части ограждающих конструкций и кровля Якутской ГЭС нагреваются на 40-50°С выше температуры воздуха, даже при низких значениях последней.

Перегрев инсолируемых стен за счет поглощения солнечной радиации необходимо предусматривать уже на стадии архитектурного проектирования. Этот эффект требует не только защиты стен от избыточной инсоляции архитектурными методами, но и соответствующих планировочных решений зданий, применения различных по мощности систем отопления для различно ориентированных фасадов, закладки в проект швов для снятия напряжения в конструкциях и нарушения герметичности стыков из-за их температурных деформаций и т.д.

В табл. 1.11 в качестве примера приводятся месячные суммы поглощенной солнечной радиации в июне для нескольких географических объектов бывшего СССР при заданных значениях альбедо. Из этой таблицы видно, что если альбедо северной стены здания 30%, а южной - 50%, то в Одессе, Тбилиси и Ташкенте они будут нагреваться в одинаковой степени. Если в северных районах альбедо северной стены снизить до 10%, то она получит тепла почти в 1,5 раза больше, чем стена с альбедо 30%.

Таблица 1.11

Месячные суммы солнечной радиации, поглощаемой стенами зданий в июне при различных значениях альбедо (кВт ч/м 2)

В приведенных выше примерах, основанных на данных о суммарной (прямой и рассеянной) солнечной радиации, содержащихся в СП «Строительная климатология» и климатических справочниках, не учтена отраженная от земной поверхности и окружающих предметов (например, существующей застройки) солнечная радиация, поступающая на различные стены зданий. Она меньше зависит от их ориентации, поэтому в нормативных документах по строительству и не приводится. Однако эта отраженная радиация может быть достаточно интенсивной и по мощности сопоставимой с прямой или рассеянной радиацией. Поэтому при архитектурном проектировании ее необходимо учитывать, рассчитывая для каждого конкретного случая.

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).

Земля получает от Солнца 1,36*10в24 кал тепла в год. По сравнению с этим количеством энергии остальной приход лучистой энергии на поверхность Земли ничтожно мал. Так, лучистая энергия звезд составляет одну стомиллионную долю солнечной энергии, космическое излучение - две миллиардные доли, внутреннее тепло Земли у ее поверхности равно одной пятитысячной доли солнечного тепла.
Излучение Солнца - солнечная радиация - является основным источником энергии почти всех процессов, происходящих в атмосфере, гидросфере и в верхних слоях литосферы.
За единицу измерения интенсивности солнечной радиации принимают количество калорий тепла, поглощенное 1 см2 абсолютно черной поверхности, перпендикулярной направлению солнечных лучей, за 1 минуту (кал/см2*мин).

Поток лучистой энергии Солнца, достигающий земной атмосферы, отличается большим постоянством. Его интенсивность называют солнечной постоянной (Io) и принимают в среднем равной 1,88 ккал/см2 мин.
Величина солнечной постоянной колеблется в зависимости от расстояния Земли от Солнца и от солнечной активности. Колебания ее в течение года составляют 3,4-3,5%.
Если бы солнечные лучи всюду падали на земную поверхность отвесно, то при отсутствии атмосферы и при солнечной постоянной 1,88 кал/см2*мин каждый квадратный сантиметр ее получал бы в год 1000 ккал. Благодаря тому что Земля шарообразна, это количество уменьшается в 4 раза, и 1 кв. см получает в среднем 250 ккал в год.
Количество солнечной радиации, получаемое поверхностью, зависит от угла падения лучей.
Максимальное количество радиации получает поверхность, перпендикулярная направлению солнечных лучей, потому что в этом случае вся энергия распределяется на площадку с сечением, равным сечению пучка лучей - а. При наклонном падении того же пучка лучей энергия распределяется на большую площадь (сечение в) и единица поверхности получает меньшее ее количество. Чем меньше угол падения лучей, тем меньше интенсивность солнечной радиации.
Зависимость интенсивности солнечной радиации от угла падения лучей выражается формулой:

I1 = I0 * sin h,


где I0 - интенсивность солнечной радиации при отвесном падении лучей. За пределами атмосферы - солнечная постоянная;
I1 - интенсивность солнечной радиации при падении солнечных лучей под углом h.
I1 во столько раз меньше I0, во сколько раз сечение а меньше сечения в.
На рисунке 27 видно, что a/b = sin А.
Угол падения солнечных лучей (высота Солнца) бывает равен 90° только на широтах от 23°27" с. до 23°27" ю. (т. е. между тропиками). На остальных широтах он всегда меньше 90° (табл. 8). Соответственно уменьшению угла падения лучей должна уменьшаться и интенсивность солнечной радиации, поступающей на поверхность на разных широтах. Так как в течение года и в течение суток высота Солнца не остается постоянной, количество солнечного тепла, получаемого поверхностью, непрерывно изменяется.

Количество солнечной радиации, полученное поверхностью, находится в прямой зависимости от продолжительности освещения ее солнечными лучами.

В экваториальной зоне вне атмосферы количество солнечного тепла в течение года не испытывает больших колебаний, тогда как в высоких широтах эти колебания очень велики (см. табл. 9). В зимний период различия в приходе солнечного тепла между высокими и низкими широтами особенно значительны. В летний период, в условиях непрерывного освещения, полярные районы получают максимальное на Земле количество солнечного тепла за сутки. В день летнего солнцестояния в северном полушарии оно на 36% превышает суточные суммы тепла на экваторе. Ho так как продолжительность дня на экваторе не 24 часа (как в это время на полюсе), а 12 часов, количество солнечной радиации на единицу времени на экваторе остается наибольшим. Летний максимум суточной суммы солнечного тепла, наблюдаемый около 40-50° широты, связан со сравнительно большой продолжительностью дня (большей, чем в это время на 10-20° широты) при значительной высоте Солнца. Различия в количестве тепла, получаемого экваториальными и полярными районами, летом меньше, чем зимой.
Южное полушарие летом получает больше тепла, чем северное, зимой - наоборот (влияет изменение расстояния Земли от Солнца). И если бы поверхность обоих полушарий была совершенно однородной, годовые амплитуды колебания температуры в южном полушарии были бы больше, чем в северном.
Солнечная радиация в атмосфере претерпевает количественные и качественные изменения.
Даже идеальная, сухая и чистая, атмосфера поглощает и рассеивает лучи, уменьшая интенсивность солнечной радиации. Ослабляющее влияние реальной атмосферы, содержащей водяные пары и твердые примеси, на солнечную радиацию значительно больше, чем идеальной. Атмосфера (кислород, озон, углекислый газ, пыль и водяной пар) поглощает главным образом ультрафиолетовые и инфракрасные лучи. Поглощенная атмосферой лучистая энергия Солнца переходит в другие виды энергии: тепловую, химическую и др. В общем поглощение ослабляет солнечную радиацию на 17-25%.
Молекулами газов атмосферы рассеиваются лучи с относительно короткими волнами - фиолетовые, синие. Именно этим объясняется голубой цвет неба. Примесями одинаково рассеиваются лучи с волнами различной длины. Поэтому при значительном их содержании небо приобретает белесоватый оттенок.
Благодаря рассеянию и отражению солнечных лучей атмосферой наблюдается дневное освещение в пасмурные дни, видны предметы в тени, возникает явление сумерек.
Чем длиннее путь луча в атмосфере, тем большую толщу ее он должен пройти и тем значительнее ослабляется солнечная радиация. Поэтому с поднятием влияние атмосферы на радиацию уменьшается. Длина пути солнечных лучей в атмосфере зависит от высоты Солнца. Если принять за единицу длину пути солнечного луча в атмосфере при высоте Солнца 90° (m), соотношение между высотой Солнца и длиной пути луча в атмосфере будет таким, как показано в табл. 10.

Общее ослабление радиации в атмосфере при любой высоте Солнца можно выразить формулой Буге: Im= I0*pm, где Im - измененная в атмосфере интенсивность солнечной радиации у земной поверхности; I0 - солнечная постоянная; m - путь луча в атмосфере; при высоте Солнца 90° он равен 1 (масса атмосферы), р - коэффициент прозрачности (дробное число, показывающее, какая доля радиации достигает поверхности при m=1).
При высоте Солнца 90°, при m=1, интенсивность солнечной радиации у земной поверхности I1 в р раз меньше, чем Io, т. е. I1=Io*p.
Если высота Солнца меньше 90°, то т всегда больше 1. Путь солнечного луча может состоять из кескольких отрезков, каждый из которых равен 1. Интенсивность солнечной радиации на границе между первым (aa1) и вторым (а1a2) отрезками I1 равна, очевидно, Io*р, интенсивность радиации после прохождения второго отрезка I2=I1*p=I0 р*р=I0 р2; I3=I0p3 к т. д.


Прозрачность атмосферы непостоянна и неодинакова в различных условиях. Отношение прозрачности реальной атмосферы к прозрачности идеальной атмосферы - фактор мутности - всегда больше единицы. Он зависит от содержания в воздухе водяного пара и пыли. С увеличением географической широты фактор мутности уменьшайся: на широтах от 0 до 20° с. ш. он равен в среднем 4,6, на широтах от 40 до 50° с. ш. - 3,5, на широтах от 50 до 60° с. ш. - 2,8 и на широтах от 60 до 80° с. ш. - 2,0. В умеренных широтах фактор мутности зимой меньше, чем летом, утром меньше, чем днем. С высотой он убывает. Чем больше фактор мутности, тем больше ослабление солнечной радиации.
Различают солнечную радиацию прямую, рассеянную и суммарную.
Часть солнечной радиации, которая проникает через атмосферу к земной поверхности, представляет собой прямую радиацию. Часть радиации, рассеивающаяся атмосферой, превращается в рассеянную радиацию. Вся солнечная радиация, поступающая на земную поверхность, прямая и рассеянная, называется суммарной радиацией.
Соотношение между прямой и рассеянной радиацией изменяется в значительных пределах в зависимости от облачности, запыленности атмосферы, а также от высоты Солнца. При ясном небе доля рассеянной радиации не превышает 0,1%, при облачном небе рассеянная радиация может быть больше прямой.
При малой высоте Солнца суммарная радиация почти полностью состоит из рассеянной. При высоте Солнца 50° и ясном небе доля рассеянной радиации не превышает 10-20%.
Карты средних годовых и месячных величин суммарной радиации позволяют заметить основные закономерности в ее географическом распределении. Годовые величины суммарной радиации распределяются в основном зонально. Наибольшее на Земле годовое количество суммарной радиации получает поверхность в тропических внутриконтинентальных пустынях (Восточная Сахара и центральная часть Аравии). Заметное снижение суммарной радиации на экваторе вызывается высокой влажностью воздуха и большой облачностью. В Арктике суммарная радиация составляет 60-70 ккал/см2 в год; в Антарктике вследствие частой повторяемости ясных дней и большей прозрачности атмосферы она несколько больше.

В июне наибольшие суммы радиации получает северное полушарие, и особенно внутриконтинентальные тропические и субтропические области. Суммы солнечной радиации, получаемые поверхностью в умеренных и полярных широтах северного полушария, отличаются мало вследствие главным образом большой продолжительности дня в полярных районах. Зональность в распределении суммарной радиации над. континентами в северном полушарии и в тропических широтах южного полушария почти не выражена. Лучше проявляется она в северном полушарии над Океаном и ясно выражена во внетропических широтах южного полушария. У южного полярного круга величина суммарной солнечной радиации приближается к 0.
В декабре наибольшие суммы радиации поступают в южное полушарие. Высоко лежащая ледяная поверхность Антарктиды при большой прозрачности воздуха получает значительно больше суммарной радиации, чем поверхность Арктики в июне. Много тепла в пустынях (Калахари, Большая Австралийская), но вследствие большей океаничности южного полушария (влияние высокой влажности воздуха и облачности) суммы его здесь несколько меньше, чем в июне в тех же широтах северного полушария. В экваториальных и тропических широтах северного полушария суммарная радиация изменяется сравнительно мало, и зональность в ее распределении выражена четко только к северу от северного тропика. С увеличением широты суммарная радиация довольно быстро уменьшается, ее нулевая изолиния проходит несколько севернее северного полярного круга.
Суммарная солнечная радиация, попадая на поверхность Земли, частично отражается обратно в атмосферу. Отношение количества радиации, отраженной от поверхности, к количеству радиации, падающей на эту поверхность, называется альбедо . Альбедо характеризует отражательную способность поверхности.
Альбедо земной поверхности зависит от ее состояния и свойств: цвета, влажности, шероховатости и пр. Наибольшей отражательной способностью обладает свежевыпавший снег (85-95%). Спокойная водная поверхность при отвесном падении на нее солнечных лучей отражает всего 2-5%, а при низком стоянии Солнца - почти все падающие на нее лучи (90%). Альбедо сухого чернозема - 14%, влажного - 8, леса - 10-20, луговой растительности - 18-30, поверхности песчаной пустыни - 29-35, поверхности морского льда - 30-40%.
Большое альбедо поверхности льда, особенно покрытого свежевыпавшим снегом (до 95%), - причина низких температур в полярных районах в летний период, когда приход солнечной радиации там значителен.
Излучение земной поверхности и атмосферы. Всякое тело, обладающее температурой выше абсолютного нуля (больше минус 273°), испускает лучистую энергию. Полная лучеиспускательная способность абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры (T):
Е = σ*Т4 ккал/см2 в мин (закон Стефана - Больцмана), где σ - постоянный коэффициент.
Чем выше температура излучающего тела, тем короче длина волн испускаемых нм лучей. Раскаленное Солнце посылает в пространство коротковолновую радиацию . Земная поверхность, поглощая коротковолновую солнечную радиацию, нагревается и также становится источником излучения (земной радиации). Ho так как температура земной поверхности не превышает нескольких десятков градусов, ее излучение длинноволновое, невидимое.
Земная радиация в значительной степени задерживается атмосферой (водяным паром, углекислым газом, озоном), но лучи с длиной волны 9-12 мк свободно уходят за пределы атмосферы, и поэтому Земля теряет часть тепла.
Атмосфера, поглощая часть проходящей через нее солнечной радиации и больше половины земной, сама излучает энергию и в мировое пространство, и к земной поверхности. Атмосферное излучение, направленное к земной поверхности навстречу земному, называется встречным излучением. Это излучение, как и земное, длинноволновое, невидимое.
В атмосфере встречаются два потока длинноволновой радиации - излучение поверхности Земли и излучение атмосферы. Разность между ними, определяющая фактическую потерю тепла земной поверхностью, называется эффективным излучением. Эффективное излучение тем больше, чем выше температура излучающей поверхности. Влажность воздуха уменьшает эффективное излучение, сильно снижают его облака.
Наибольшее значение годовых сумм эффективного излучения наблюдается в тропических пустынях - 80 ккал/см2 в год - благодаря высокой температуре поверхности, сухости воздуха и ясности неба. На экваторе, при большой влажности воздуха, эффективное излучение составляет всего около 30 ккал/см2 в год, причем величина его для суши и для Океана очень мало отличается. Наименьшее эффективное излучение в полярных районах. В умеренных широтах земная поверхность теряет примерно половину того количества тепла, которое она получает от поглощения суммарной радиации.
Способность атмосферы пропускать коротковолновое излучение Солнца (прямую и рассеянную радиацию) и задерживать длинноволновое излучение Земли называют оранжерейным (парниковым) эффектом. Благодаря оранжерейному эффекту средняя температура земной поверхности составляет +16°, при отсутствии атмосферы она была бы -22° (на 38° ниже).
Радиационный баланс (остаточная радиация). Земная поверхность одновременно получает радиацию и отдает ее. Приход радиации составляют суммарная солнечная радиация и встречное излучение атмосферы. Расход - отражение солнечных лучей от поверхности (альбедо) и собственное излучение земной поверхности. Разность между приходом и расходом радиации - радиационный баланс, или остаточная радиация. Величина радиационного баланса определяется уравнением

R = Q*(1-α) - I,


где Q - суммарная солнечная радиация, поступающая на единицу поверхности; α - альбедо (дробь); I - эффективное излучение.
Если приход больше расхода, радиационный баланс положительный, если приход меньше расхода, баланс отрицательный. Ночью на всех широтах радиационный баланс отрицательный, днем до полудня - положительный везде, кроме высоких широт зимой; после полудня - снова отрицательный. В среднем за сутки радиационный баланс может быть как положительным, так и отрицательным (табл. 11).


На карте годовых сумм радиационного баланса земной поверхности видно резкое изменение положения изолиний при переходе их с суши на Океан. Как правило, радиационный баланс поверхности Океана превышает радиационный баланс суши (влияние альбедо и эффективного излучения). Распределение радиационного баланса в общем зонально. На Океане в тропических широтах годовые величины радиационного баланса достигают 140 ккал/см2 (Аравийское море) и не превышают 30 ккал/см2 у границы плавучих льдов. Отклонения от зонального распределения радиационного баланса на Океане незначительны и вызываются распределением облачности.
На суше в экваториальных и тропических широтах годовые значения радиационного баланса изменяются от 60 до 90 ккал/см2 в зависимости от условий увлажнения. Наибольшие годовые суммы радиационного баланса отмечаются в тех районах, где альбедо и эффективное излучение сравнительно невелики (влажные тропические леса, саванны). Наименьшим их значение оказывается в очень влажных (большая облачность) и в очень сухих (большое эффективное излучение) районах. В умеренных и высоких широтах годовая величина радиационного баланса уменьшается с увеличением широты (влияние уменьшения суммарной радиации).
Годовые суммы радиационного баланса над центральными районами Антарктиды отрицательны (несколько калорий на 1 см2). В Арктике значения этих величин близки к нулю.
В июле радиационный баланс земной поверхности в значительной части южного полушария отрицательный. Линия нулевого баланса проходит между 40 и 50° ю. ш. Наивысшее значение величины радиационного баланса достигают на поверхности Океана в тропических широтах северного полушария и на поверхности некоторых внутренних морей, например Черного (14-16 ккал/см2 в мес.).
В январе линия нулевого баланса расположена между 40 и 50° с. ш. (над океанами она несколько поднимается к северу, над материками - спускается к югу). Значительная часть северного полушария имеет отрицательный радиационный баланс. Наибольшие величины радиационного баланса приурочены к тропическим широтам южного полушария.
В среднем за год радиационный баланс земной поверхности положителен. При этом температура поверхности не повышается, а остается приблизительно постоянной, что можно объяснить только непрерывным расходованием излишков тепла.
Радиационный баланс атмосферы складывается из поглощенной ею солнечной и земной радиации, с одной стороны, и атмосферного излучения - с другой. Он всегда отрицателен, так как атмосфера поглощает лишь незначительную часть солнечной радиации, а излучает почти столько же, сколько и поверхность.
Радиационный баланс поверхности и атмосферы вместе, как целого, для всей Земли за год равен в среднем нулю, но по широтам он может быть и положительным и отрицательным.
Следствием такого распределения радиационного баланса должен быть перенос тепла в направлении от экватора к полюсам.
Тепловой баланс. Радиационный баланс - важнейшая составляющая теплового баланса. Уравнение теплового баланса поверхности показывает, как преобразуется на земной поверхности поступающая энергия солнечной радиации:

где R - радиационный баланс; LE - затраты тепла на испарение (L - скрытая теплота парообразования, E - испарение);
P - турбулентный теплообмен между поверхностью и атмосферой;
А - теплообмен между поверхностью и нижележащими слоями почвогрунта или воды.
Радиационный баланс поверхности считается положительным, если радиация, поглощенная поверхностью, превышает потери тепла, и отрицательным, если она не восполняет их. Все остальные члены теплового баланса считаются положительными, если за их счет происходит потеря тепла поверхностью (если они соответствуют расходу тепла). Так как. все члены уравнения могут изменяться, тепловой баланс все время нарушается и снова восстанавливается.
Рассмотренное выше уравнение теплового баланса поверхности приближенное, так как в нем не учтены некоторые второстепенные, но в конкретных условиях приобретающие важное значение факторы, например выделение тепла при замерзании, его расход на таяние и др.
Тепловой баланс атмосферы складывается из радиационного баланса атмосферы Ra, тепла, поступающего от поверхности, Pа, тепла, выделяющегося в атмосфере при конденсации, LE, и горизонтального переноса тепла (адвекции) Aа. Радиационный баланс атмосферы всегда отрицателен. Приток тепла в результате конденсации влаги и величины турбулентного теплообмена - положительны. Адвекция тепла приводит в среднем за год к переносу его из низких широт в высокие: таким образом, она означает расход тепла в низких широтах и приход в высоких. В многолетнем выводе тепловой баланс атмосферы можно выразить уравнением Ra=Pa+LE.
Тепловой баланс поверхности и атмосферы вместе, как целого, в многолетнем среднем равен 0 (рис. 35).

За 100% принята величина солнечной радиации, поступающей к атмосфере за год (250 ккал/см2). Солнечная радиация, проникая в атмосферу, частично отражается от облаков и уходит обратно за пределы атмосферы - 38%, частично поглощается атмосферой - 14% и частично в виде прямой солнечной радиации достигает земной поверхности - 48%. Из 48%, дошедших до поверхности, 44% ею поглощаются, а 4% отражаются. Таким образом, альбедо Земли составляет 42% (38+4).
Поглощенная земной поверхностью радиация расходуется следующим образом: 20% теряются через эффективное излучение, 18% затрачиваются на испарение с поверхности, 6% - на нагревание воздуха при турбулентном теплообмене (итого 24%). Расход тепла поверхностью уравновешивает его приход. Тепло, полученное атмосферой (14% непосредственно от Солнца, 24% от земной поверхности), вместе с эффективным излучением Земли направляется в мировое пространство. Альбедо Земли (42%) и излучение (58%) уравновешивают поступление солнечной радиации к атмосфере.