प्राथमिक कार्यों के व्युत्पन्न के लिए भेदभाव नियम। विभेदन नियम

प्रथम स्तर

फ़ंक्शन व्युत्पन्न। व्यापक गाइड (2019)

एक पहाड़ी क्षेत्र से गुजरने वाली सीधी सड़क की कल्पना करें। यानी यह ऊपर और नीचे जाता है, लेकिन दाएं या बाएं नहीं मुड़ता। यदि अक्ष को सड़क के साथ क्षैतिज रूप से और लंबवत रूप से निर्देशित किया जाता है, तो सड़क रेखा कुछ निरंतर कार्य के ग्राफ के समान होगी:

धुरी शून्य ऊंचाई का एक निश्चित स्तर है, जीवन में हम समुद्र के स्तर का उपयोग करते हैं।

ऐसी सड़क पर आगे बढ़ते हुए हम भी ऊपर या नीचे जा रहे हैं। हम यह भी कह सकते हैं: जब तर्क बदलता है (भुजाकार अक्ष के साथ आगे बढ़ते हुए), फ़ंक्शन का मान बदलता है (ऑर्डिनेट अक्ष के साथ आगे बढ़ता है)। अब आइए विचार करें कि हमारी सड़क की "खड़ीपन" का निर्धारण कैसे करें? यह मूल्य क्या हो सकता है? बहुत सरल: एक निश्चित दूरी को आगे बढ़ने पर ऊंचाई कितनी बदलेगी। दरअसल, सड़क के अलग-अलग हिस्सों पर, एक किलोमीटर आगे (एब्सिस्सा के साथ) आगे बढ़ते हुए, हम समुद्र तल (ऑर्डिनेट के साथ) के सापेक्ष अलग-अलग मीटर की संख्या में उठेंगे या गिरेंगे।

हम आगे की प्रगति को दर्शाते हैं ("डेल्टा एक्स" पढ़ें)।

ग्रीक अक्षर (डेल्टा) आमतौर पर गणित में उपसर्ग के रूप में प्रयोग किया जाता है जिसका अर्थ है "परिवर्तन"। अर्थात् - यह परिमाण में परिवर्तन है, - परिवर्तन; तब यह क्या है? यह सही है, आकार में बदलाव।

महत्वपूर्ण: व्यंजक एक इकाई है, एक चर है। आपको "x" या किसी अन्य अक्षर से "डेल्टा" को कभी नहीं फाड़ना चाहिए! यानी, उदाहरण के लिए।

तो, हम आगे बढ़े हैं, क्षैतिज रूप से, आगे। यदि हम सड़क की रेखा की तुलना किसी फलन के ग्राफ से करते हैं, तो हम वृद्धि को कैसे निरूपित करते हैं? निश्चित रूप से, । यानी जब हम आगे बढ़ते हैं तो हम और ऊपर उठते हैं।

मूल्य की गणना करना आसान है: यदि शुरुआत में हम ऊंचाई पर थे, और आगे बढ़ने के बाद हम ऊंचाई पर थे, तो। यदि अंत बिंदु प्रारंभिक बिंदु से कम निकला, तो यह नकारात्मक होगा - इसका मतलब है कि हम आरोही नहीं, बल्कि अवरोही हैं।

वापस "स्थिरता" पर: यह एक ऐसा मान है जो इंगित करता है कि प्रति इकाई दूरी आगे बढ़ने पर ऊंचाई कितनी (तेजी से) बढ़ जाती है:

मान लीजिए कि पथ के किसी भाग पर, किमी से आगे बढ़ने पर, सड़क किमी से ऊपर उठती है। तब इस स्थान की खड़ीपन बराबर होती है। और अगर सड़क, मी से आगे बढ़ने पर, किमी से डूब जाती है? फिर ढलान बराबर है।

अब एक पहाड़ी की चोटी पर विचार करें। यदि आप खंड की शुरुआत आधा किलोमीटर ऊपर और अंत - इसके बाद आधा किलोमीटर लेते हैं, तो आप देख सकते हैं कि ऊंचाई लगभग समान है।

यानी हमारे तर्क के अनुसार पता चलता है कि यहां का ढलान लगभग शून्य के बराबर है, जो स्पष्ट रूप से सच नहीं है. कुछ ही मील दूर बहुत कुछ बदल सकता है। ढलान के अधिक पर्याप्त और सटीक अनुमान के लिए छोटे क्षेत्रों पर विचार करने की आवश्यकता है। उदाहरण के लिए, यदि आप एक मीटर चलते समय ऊंचाई में परिवर्तन को मापते हैं, तो परिणाम अधिक सटीक होगा। लेकिन यह सटीकता भी हमारे लिए पर्याप्त नहीं हो सकती है - आखिरकार, अगर सड़क के बीच में कोई खंभा है, तो हम आसानी से उससे फिसल सकते हैं। तब हमें कौन सी दूरी चुननी चाहिए? सेंटीमीटर? मिलीमीटर? कम बेहतर है!

वास्तविक जीवन में, निकटतम मिलीमीटर की दूरी को मापना पर्याप्त से अधिक है। लेकिन गणितज्ञ हमेशा पूर्णता के लिए प्रयास करते हैं। इसलिए, अवधारणा थी बहुत छोता, अर्थात्, मॉड्यूल मान किसी भी संख्या से कम है जिसे हम नाम दे सकते हैं। उदाहरण के लिए, आप कहते हैं: एक खरब! कितना कम? और आप इस संख्या को - से विभाजित करते हैं और यह और भी कम होगा। आदि। यदि हम यह लिखना चाहते हैं कि मान असीम रूप से छोटा है, तो हम इस तरह लिखते हैं: (हम पढ़ते हैं "x शून्य की ओर जाता है")। समझना बहुत जरूरी है कि यह संख्या शून्य के बराबर नहीं है!लेकिन इसके बहुत करीब। इसका मतलब है कि इसे में विभाजित किया जा सकता है।

अपरिमित रूप से छोटे के विपरीत अवधारणा अपरिमित रूप से बड़ी है ()। जब आप असमानताओं पर काम कर रहे थे, तब आप शायद पहले ही इसका सामना कर चुके हैं: यह संख्या मापांक में किसी भी संख्या से अधिक है जिसके बारे में आप सोच सकते हैं। यदि आप सबसे बड़ी संभव संख्या के साथ आते हैं, तो बस इसे दो से गुणा करें और आपको और भी अधिक मिलता है। और अनंत जो होता है उससे कहीं अधिक है। वास्तव में, असीम रूप से बड़े और असीम रूप से छोटे एक दूसरे के विपरीत होते हैं, अर्थात्, पर, और इसके विपरीत: पर।

अब वापस हमारी सड़क पर। आदर्श रूप से गणना की गई ढलान पथ के एक असीम रूप से छोटे खंड के लिए गणना की गई ढलान है, जो है:

मैं ध्यान देता हूं कि असीम रूप से छोटे विस्थापन के साथ, ऊंचाई में परिवर्तन भी असीम रूप से छोटा होगा। लेकिन मैं आपको याद दिला दूं कि असीम रूप से छोटे का मतलब शून्य के बराबर नहीं है। यदि आप अतिसूक्ष्म संख्याओं को एक दूसरे से विभाजित करते हैं, तो आप पूरी तरह से सामान्य संख्या प्राप्त कर सकते हैं, उदाहरण के लिए,। अर्थात्, एक छोटा मान दूसरे से ठीक दोगुना बड़ा हो सकता है।

यह सब क्यों? सड़क, ढलान ... हम रैली में नहीं जा रहे हैं, लेकिन हम गणित सीख रहे हैं। और गणित में सब कुछ बिल्कुल वैसा ही है, केवल अलग-अलग कहा जाता है।

व्युत्पन्न की अवधारणा

किसी फ़ंक्शन का व्युत्पन्न तर्क के एक अनंतिम वेतन वृद्धि पर तर्क की वृद्धि के लिए फ़ंक्शन की वृद्धि का अनुपात है।

वेतन वृद्धिगणित में परिवर्तन कहा जाता है। अक्ष के अनुदिश चलने पर तर्क () कितना बदल गया है, कहलाता है तर्क वृद्धिऔर दूरी से अक्ष के साथ आगे बढ़ने पर फ़ंक्शन (ऊंचाई) कितना बदल गया है, द्वारा दर्शाया गया है समारोह वृद्धिऔर अंकित है।

तो, किसी फ़ंक्शन का व्युत्पन्न कब का संबंध है। हम व्युत्पन्न को फ़ंक्शन के समान अक्षर से निरूपित करते हैं, केवल ऊपर दाईं ओर से एक स्ट्रोक के साथ: या बस। तो, आइए इन नोटेशन का उपयोग करके व्युत्पन्न सूत्र लिखें:

जैसा कि सड़क के सादृश्य में, यहाँ, जब फ़ंक्शन बढ़ता है, तो व्युत्पन्न धनात्मक होता है, और जब यह घटता है, तो यह ऋणात्मक होता है।

लेकिन क्या व्युत्पन्न शून्य के बराबर है? निश्चित रूप से। उदाहरण के लिए, यदि हम समतल क्षैतिज सड़क पर गाड़ी चला रहे हैं, तो ढलान शून्य है। दरअसल, ऊंचाई बिल्कुल नहीं बदलती है। तो व्युत्पन्न के साथ: एक स्थिर कार्य (स्थिर) का व्युत्पन्न शून्य के बराबर है:

चूंकि इस तरह के फ़ंक्शन की वृद्धि किसी के लिए शून्य है।

आइए पहाड़ी की चोटी का उदाहरण लें। यह पता चला कि शीर्ष के विपरीत पक्षों पर खंड के सिरों को इस तरह से व्यवस्थित करना संभव था कि सिरों पर ऊंचाई समान हो, अर्थात खंड अक्ष के समानांतर हो:

लेकिन बड़े खंड गलत माप के संकेत हैं। हम अपने सेगमेंट को अपने समानांतर ऊपर उठाएंगे, फिर इसकी लंबाई कम हो जाएगी।

अंत में, जब हम अनंत रूप से शीर्ष के करीब होंगे, तो खंड की लंबाई असीम रूप से छोटी हो जाएगी। लेकिन साथ ही, यह अक्ष के समानांतर रहा, यानी इसके सिरों पर ऊंचाई का अंतर शून्य के बराबर है (प्रवृत्त नहीं होता है, लेकिन बराबर है)। तो व्युत्पन्न

इसे इस प्रकार समझा जा सकता है: जब हम सबसे ऊपर खड़े होते हैं, तो बाईं या दाईं ओर एक छोटा सा बदलाव हमारी ऊंचाई को नगण्य रूप से बदल देता है।

एक विशुद्ध रूप से बीजगणितीय व्याख्या भी है: शीर्ष के बाईं ओर, फ़ंक्शन बढ़ता है, और दाईं ओर, यह घटता है। जैसा कि हम पहले ही जान चुके हैं कि जब फलन बढ़ता है तो अवकलज धनात्मक होता है और जब घटता है तो ऋणात्मक होता है। लेकिन यह बिना छलांग के आसानी से बदल जाता है (क्योंकि सड़क अपनी ढलान को कहीं भी तेजी से नहीं बदलती है)। इसलिए, नकारात्मक और सकारात्मक मूल्यों के बीच होना चाहिए। यह वह जगह होगी जहां फ़ंक्शन न तो बढ़ता है और न ही घटता है - शीर्ष बिंदु पर।

घाटी के लिए भी यही सच है (वह क्षेत्र जहाँ फ़ंक्शन बाईं ओर घटता है और दाईं ओर बढ़ता है):

वेतन वृद्धि के बारे में थोड़ा और।

इसलिए हम तर्क को एक मान में बदलते हैं। हम किस मूल्य से बदलते हैं? वह (तर्क) अब क्या हो गया है? हम कोई भी बिंदु चुन सकते हैं, और अब हम उससे नृत्य करेंगे।

एक निर्देशांक के साथ एक बिंदु पर विचार करें। इसमें फंक्शन का मान बराबर होता है। फिर हम एक ही वेतन वृद्धि करते हैं: निर्देशांक बढ़ाएँ। अब क्या तर्क है? बहुत आसान: । अब फ़ंक्शन का मूल्य क्या है? जहां तर्क जाता है, समारोह वहां जाता है:। फ़ंक्शन वृद्धि के बारे में क्या? कुछ भी नया नहीं: यह अभी भी वह राशि है जिसके द्वारा फ़ंक्शन बदल गया है:

वेतन वृद्धि खोजने का अभ्यास करें:

  1. के बराबर तर्क की वृद्धि के साथ एक बिंदु पर फ़ंक्शन की वृद्धि का पता लगाएं।
  2. एक बिंदु पर एक समारोह के लिए वही।

समाधान:

अलग-अलग बिंदुओं पर, तर्क के समान वेतन वृद्धि के साथ, फ़ंक्शन की वृद्धि अलग-अलग होगी। इसका मतलब है कि प्रत्येक बिंदु पर व्युत्पन्न का अपना होता है (हमने शुरुआत में ही इस पर चर्चा की थी - विभिन्न बिंदुओं पर सड़क की ढलान अलग है)। इसलिए, जब हम एक व्युत्पन्न लिखते हैं, तो हमें किस बिंदु पर इंगित करना चाहिए:

ऊर्जा समीकरण।

एक पावर फ़ंक्शन को एक फ़ंक्शन कहा जाता है जहां तर्क कुछ हद तक होता है (तार्किक, सही?)

और - किसी भी हद तक: .

सबसे सरल मामला तब होता है जब घातांक होता है:

आइए एक बिंदु पर इसका व्युत्पन्न खोजें। व्युत्पन्न की परिभाषा याद रखें:

तो तर्क से बदल जाता है। फंक्शन इंक्रीमेंट क्या है?

वृद्धि है। लेकिन किसी भी बिंदु पर फलन उसके तर्क के बराबर होता है। इसलिए:

व्युत्पन्न है:

का व्युत्पन्न है:

b) अब द्विघात फलन () पर विचार करें: .

आइए अब इसे याद करते हैं। इसका मतलब यह है कि वेतन वृद्धि के मूल्य की उपेक्षा की जा सकती है, क्योंकि यह असीम रूप से छोटा है, और इसलिए किसी अन्य शब्द की पृष्ठभूमि के खिलाफ महत्वहीन है:

तो, हमारे पास एक और नियम है:

ग) हम तार्किक श्रृंखला जारी रखते हैं:।

इस व्यंजक को विभिन्न तरीकों से सरल बनाया जा सकता है: योग के घन के संक्षिप्त गुणन के लिए सूत्र का उपयोग करके पहला कोष्ठक खोलें, या घनों के अंतर के लिए सूत्र का उपयोग करके संपूर्ण व्यंजक को कारकों में विघटित करें। सुझाए गए किसी भी तरीके से इसे स्वयं करने का प्रयास करें।

तो, मुझे निम्नलिखित मिला:

और चलिए इसे फिर से याद करते हैं। इसका मतलब है कि हम सभी शर्तों की उपेक्षा कर सकते हैं जिनमें शामिल हैं:

हम पाते हैं: ।

डी) बड़ी शक्तियों के लिए समान नियम प्राप्त किए जा सकते हैं:

ई) यह पता चला है कि इस नियम को एक मनमाना घातांक के साथ एक शक्ति फ़ंक्शन के लिए सामान्यीकृत किया जा सकता है, पूर्णांक भी नहीं:

(2)

आप शब्दों के साथ नियम बना सकते हैं: "डिग्री को गुणांक के रूप में आगे लाया जाता है, और फिर घट जाता है"।

हम इस नियम को बाद में (लगभग अंत में) सिद्ध करेंगे। अब आइए कुछ उदाहरण देखें। कार्यों के व्युत्पन्न खोजें:

  1. (दो तरीकों से: सूत्र द्वारा और व्युत्पन्न की परिभाषा का उपयोग करके - फ़ंक्शन की वृद्धि की गणना करके);
  1. . मानो या न मानो, यह एक शक्ति कार्य है। यदि आपके कोई प्रश्न हैं जैसे "यह कैसा है? और डिग्री कहाँ है? ”, विषय याद रखें“ ”!
    हाँ, हाँ, जड़ भी एक डिग्री है, केवल एक भिन्नात्मक:।
    तो हमारा वर्गमूल एक घातांक के साथ सिर्फ एक शक्ति है:
    .
    हम हाल ही में सीखे गए फॉर्मूले का उपयोग करके व्युत्पन्न की तलाश कर रहे हैं:

    यदि इस बिंदु पर यह फिर से अस्पष्ट हो गया, तो "" विषय दोहराएं !!! (एक नकारात्मक संकेतक के साथ एक डिग्री के बारे में)

  2. . अब प्रतिपादक:

    और अब परिभाषा के माध्यम से (क्या आप अभी तक भूल गए हैं?):
    ;
    .
    अब, हमेशा की तरह, हम इस शब्द की उपेक्षा करते हैं:
    .

  3. . पिछले मामलों का संयोजन:।

त्रिकोणमितीय कार्य।

यहां हम उच्च गणित के एक तथ्य का उपयोग करेंगे:

जब अभिव्यक्ति।

आप संस्थान के पहले वर्ष में सबूत सीखेंगे (और वहां पहुंचने के लिए, आपको परीक्षा को अच्छी तरह से पास करना होगा)। अब मैं इसे केवल ग्राफिक रूप से दिखाऊंगा:

हम देखते हैं कि जब फ़ंक्शन मौजूद नहीं होता है - ग्राफ़ पर बिंदु पंचर हो जाता है। लेकिन मूल्य के जितना करीब होता है, कार्य उतना ही करीब होता है। यह बहुत "प्रयास" है।

इसके अतिरिक्त, आप कैलकुलेटर से इस नियम की जांच कर सकते हैं। हां, हां, शरमाएं नहीं, कैलकुलेटर लें, हम अभी परीक्षा में नहीं हैं।

तो चलो कोशिश करें: ;

कैलकुलेटर को रेडियन मोड में स्विच करना न भूलें!

आदि। हम देखते हैं कि अनुपात जितना छोटा होगा, अनुपात का मान उतना ही अधिक होगा।

ए) एक समारोह पर विचार करें। हमेशा की तरह, हम इसकी वृद्धि पाते हैं:

आइए ज्या के अंतर को उत्पाद में बदल दें। ऐसा करने के लिए, हम सूत्र का उपयोग करते हैं (विषय "" याद रखें):।

अब व्युत्पन्न:

आइए एक प्रतिस्थापन करें: . फिर, असीम रूप से छोटे के लिए, यह भी असीम रूप से छोटा है:। के लिए अभिव्यक्ति रूप लेती है:

और अब हम याद करते हैं कि अभिव्यक्ति के साथ। और यह भी, क्या होगा यदि योग (अर्थात, पर) में एक असीम रूप से छोटे मूल्य की उपेक्षा की जा सकती है।

तो हमें निम्नलिखित नियम मिलता है: ज्या का व्युत्पन्न कोज्या के बराबर है:

ये बुनियादी ("टेबल") डेरिवेटिव हैं। यहाँ वे एक सूची में हैं:

बाद में हम उनमें कुछ और जोड़ेंगे, लेकिन ये सबसे महत्वपूर्ण हैं, क्योंकि इनका उपयोग अक्सर किया जाता है।

अभ्यास:

  1. किसी बिंदु पर किसी फलन का अवकलज ज्ञात कीजिए;
  2. फ़ंक्शन के व्युत्पन्न का पता लगाएं।

समाधान:

  1. सबसे पहले, हम एक सामान्य रूप में व्युत्पन्न पाते हैं, और फिर हम इसके बजाय इसके मूल्य को प्रतिस्थापित करते हैं:
    ;
    .
  2. यहां हमारे पास पावर फंक्शन के समान कुछ है। आइए उसे लाने की कोशिश करें
    सामान्य दृश्य:
    .
    ठीक है, अब आप सूत्र का उपयोग कर सकते हैं:
    .
    .
  3. . ईईईईईई… .. यह क्या है ????

ठीक है, आप सही कह रहे हैं, हम अभी भी नहीं जानते कि इस तरह के डेरिवेटिव कैसे खोजें। यहां हमारे पास कई प्रकार के कार्यों का संयोजन है। उनके साथ काम करने के लिए, आपको कुछ और नियम सीखने होंगे:

घातांक और प्राकृतिक लघुगणक।

गणित में एक ऐसा फलन होता है, जिसका अवकलज किसी के लिए उसी के फलन के मान के बराबर होता है। इसे "घातांक" कहा जाता है, और यह एक घातांकीय फलन है

इस फ़ंक्शन का आधार - एक स्थिर - एक अनंत दशमलव अंश है, जो एक अपरिमेय संख्या (जैसे) है। इसे "यूलर नंबर" कहा जाता है, इसलिए इसे एक अक्षर से दर्शाया जाता है।

तो नियम है:

याद रखना बहुत आसान है।

खैर, हम दूर नहीं जाएंगे, हम तुरंत उलटा कार्य करेंगे। घातांक फ़ंक्शन का व्युत्क्रम क्या है? लघुगणक:

हमारे मामले में, आधार एक संख्या है:

इस तरह के एक लघुगणक (अर्थात, आधार के साथ एक लघुगणक) को "प्राकृतिक" कहा जाता है, और हम इसके लिए एक विशेष संकेतन का उपयोग करते हैं: हम इसके बजाय लिखते हैं।

किसके बराबर है? बेशक, ।

प्राकृतिक लघुगणक का व्युत्पन्न भी बहुत सरल है:

उदाहरण:

  1. फ़ंक्शन के व्युत्पन्न का पता लगाएं।
  2. फ़ंक्शन का व्युत्पन्न क्या है?

उत्तर: घातांक और प्राकृतिक लघुगणक ऐसे कार्य हैं जो व्युत्पन्न के संदर्भ में विशिष्ट रूप से सरल हैं। किसी अन्य आधार के साथ घातीय और लघुगणकीय कार्यों का एक अलग व्युत्पन्न होगा, जिसका हम बाद में विश्लेषण करेंगे, जब हम भेदभाव के नियमों से गुजरेंगे।

विभेदन नियम

क्या नियम? एक और नया शब्द, फिर से?!...

भेदभावव्युत्पन्न खोजने की प्रक्रिया है।

केवल और सब कुछ। इस प्रक्रिया के लिए दूसरा शब्द क्या है? नहीं proizvodnovanie... गणित के अंतर को फ़ंक्शन का बहुत वेतन वृद्धि कहा जाता है। यह शब्द लैटिन डिफरेंशियल - डिफरेंशियल से आया है। यहां।

इन सभी नियमों को प्राप्त करते समय, हम दो कार्यों का उपयोग करेंगे, उदाहरण के लिए, और। हमें उनकी वेतन वृद्धि के लिए सूत्रों की भी आवश्यकता होगी:

कुल 5 नियम हैं।

स्थिरांक को व्युत्पन्न के चिन्ह से निकाला जाता है।

अगर - कुछ स्थिर संख्या (स्थिर), तो।

जाहिर है, यह नियम अंतर के लिए भी काम करता है:।

आइए इसे साबित करें। चलो, या आसान।

उदाहरण।

कार्यों के व्युत्पन्न खोजें:

  1. बिंदु पर;
  2. बिंदु पर;
  3. बिंदु पर;
  4. बिंदु पर।

समाधान:

  1. (व्युत्पन्न सभी बिंदुओं पर समान है, क्योंकि यह एक रैखिक कार्य है, याद रखें?);

किसी उत्पाद का व्युत्पन्न

यहां सब कुछ समान है: हम एक नया फ़ंक्शन पेश करते हैं और इसकी वृद्धि पाते हैं:

व्युत्पन्न:

उदाहरण:

  1. कार्यों के व्युत्पन्न खोजें और;
  2. किसी बिंदु पर किसी फ़ंक्शन के व्युत्पन्न का पता लगाएं।

समाधान:

घातीय फ़ंक्शन का व्युत्पन्न

अब आपका ज्ञान यह जानने के लिए पर्याप्त है कि किसी घातांकीय फलन का व्युत्पन्न कैसे खोजा जाए, न कि केवल घातांक (क्या आप भूल गए हैं कि यह अभी तक क्या है?)

तो कुछ संख्या कहाँ है।

हम पहले से ही फ़ंक्शन के व्युत्पन्न को जानते हैं, तो आइए अपने फ़ंक्शन को एक नए आधार पर लाने का प्रयास करें:

ऐसा करने के लिए, हम एक सरल नियम का उपयोग करते हैं: . फिर:

अच्छा, यह काम किया। अब अवकलज ज्ञात करने का प्रयास करें, और यह न भूलें कि यह फलन जटिल है।

हो गई?

यहां, अपने आप को जांचें:

सूत्र घातांक के व्युत्पन्न के समान निकला: जैसा था, वैसा ही रहता है, केवल एक कारक दिखाई देता है, जो सिर्फ एक संख्या है, लेकिन एक चर नहीं है।

उदाहरण:
कार्यों के व्युत्पन्न खोजें:

उत्तर:

यह केवल एक संख्या है जिसकी गणना बिना कैलकुलेटर के नहीं की जा सकती है, अर्थात इसे सरल रूप में नहीं लिखा जा सकता है। अतः उत्तर में इसे इस रूप में छोड़ दिया जाता है।

लॉगरिदमिक फ़ंक्शन का व्युत्पन्न

यहाँ यह समान है: आप पहले से ही प्राकृतिक लघुगणक के व्युत्पन्न को जानते हैं:

इसलिए, एक अलग आधार के साथ लघुगणक से एक मनमाना खोजने के लिए, उदाहरण के लिए, :

हमें इस लघुगणक को आधार पर लाने की जरूरत है। आप लघुगणक का आधार कैसे बदलते हैं? मुझे आशा है कि आपको यह सूत्र याद होगा:

इसके बजाय अब हम लिखेंगे:

भाजक सिर्फ एक स्थिर (एक स्थिर संख्या, एक चर के बिना) निकला। व्युत्पन्न बहुत सरल है:

परीक्षा में घातीय और लघुगणकीय कार्यों के डेरिवेटिव लगभग कभी नहीं पाए जाते हैं, लेकिन उन्हें जानना अतिश्योक्तिपूर्ण नहीं होगा।

एक जटिल कार्य का व्युत्पन्न।

एक "जटिल कार्य" क्या है? नहीं, यह लघुगणक नहीं है, और चाप स्पर्शरेखा नहीं है। इन कार्यों को समझना मुश्किल हो सकता है (हालांकि यदि लघुगणक आपको मुश्किल लगता है, तो "लघुगणक" विषय पढ़ें और सब कुछ काम करेगा), लेकिन गणित के संदर्भ में, "जटिल" शब्द का अर्थ "मुश्किल" नहीं है।

एक छोटे कन्वेयर की कल्पना करें: दो लोग बैठे हैं और कुछ वस्तुओं के साथ कुछ क्रिया कर रहे हैं। उदाहरण के लिए, पहला चॉकलेट बार को रैपर में लपेटता है, और दूसरा इसे रिबन से बांधता है। यह एक ऐसी समग्र वस्तु प्राप्त करता है: एक चॉकलेट बार लपेटा जाता है और एक रिबन से बंधा होता है। चॉकलेट बार खाने के लिए, आपको विपरीत चरणों को उल्टे क्रम में करने की आवश्यकता है।

आइए एक समान गणितीय पाइपलाइन बनाएं: पहले हम किसी संख्या की कोज्या ज्ञात करेंगे, और फिर हम परिणामी संख्या का वर्ग करेंगे। तो, वे हमें एक नंबर (चॉकलेट) देते हैं, मैं इसकी कोसाइन (रैपर) ढूंढता हूं, और फिर जो मुझे मिला है उसे आप वर्ग (रिबन से बांधें)। क्या हुआ? समारोह। यह एक जटिल कार्य का एक उदाहरण है: जब, इसका मान ज्ञात करने के लिए, हम पहली क्रिया सीधे चर के साथ करते हैं, और फिर दूसरी क्रिया जो पहले के परिणामस्वरूप हुई उसके साथ होती है।

हम समान क्रियाओं को उल्टे क्रम में अच्छी तरह से कर सकते हैं: पहले आप वर्ग करें, और फिर मैं परिणामी संख्या के कोसाइन की तलाश करता हूं:। यह अनुमान लगाना आसान है कि परिणाम लगभग हमेशा अलग होगा। जटिल कार्यों की एक महत्वपूर्ण विशेषता: जब क्रियाओं का क्रम बदलता है, तो कार्य बदल जाता है।

दूसरे शब्दों में, एक जटिल कार्य एक ऐसा कार्य है जिसका तर्क एक अन्य कार्य है: .

पहले उदाहरण के लिए, .

दूसरा उदाहरण: (वही)। .

हमारे द्वारा की जाने वाली अंतिम क्रिया कहलाएगी "बाहरी" समारोह, और पहले की गई क्रिया - क्रमशः "आंतरिक" समारोह(ये अनौपचारिक नाम हैं, मैं इनका उपयोग केवल सामग्री को सरल भाषा में समझाने के लिए करता हूं)।

अपने लिए यह निर्धारित करने का प्रयास करें कि कौन सा कार्य बाहरी है और कौन सा आंतरिक है:

उत्तर:आंतरिक और बाहरी कार्यों का पृथक्करण परिवर्तनशील चर के समान है: उदाहरण के लिए, फ़ंक्शन में

  1. हम पहले क्या कार्रवाई करेंगे? पहले हम साइन की गणना करते हैं, और उसके बाद ही हम इसे एक घन तक बढ़ाते हैं। तो यह एक आंतरिक कार्य है, बाहरी नहीं।
    और मूल कार्य उनकी रचना है: .
  2. आंतरिक: ; बाहरी: ।
    इंतिहान: ।
  3. आंतरिक: ; बाहरी: ।
    इंतिहान: ।
  4. आंतरिक: ; बाहरी: ।
    इंतिहान: ।
  5. आंतरिक: ; बाहरी: ।
    इंतिहान: ।

हम चर बदलते हैं और एक फ़ंक्शन प्राप्त करते हैं।

खैर, अब हम अपनी चॉकलेट निकालेंगे - व्युत्पन्न की तलाश करें। प्रक्रिया हमेशा उलट जाती है: पहले, हम बाहरी फ़ंक्शन के व्युत्पन्न की तलाश करते हैं, फिर हम परिणाम को आंतरिक फ़ंक्शन के व्युत्पन्न से गुणा करते हैं। मूल उदाहरण के लिए, यह इस तरह दिखता है:

एक और उदाहरण:

तो, आइए अंत में आधिकारिक नियम तैयार करें:

एक जटिल फ़ंक्शन के व्युत्पन्न को खोजने के लिए एल्गोरिदम:

सब कुछ सरल लगता है, है ना?

आइए उदाहरणों के साथ जांचें:

समाधान:

1) आंतरिक: ;

बाहरी: ;

2) आंतरिक: ;

(बस अब तक कम करने की कोशिश मत करो! कोसाइन के नीचे से कुछ भी नहीं निकाला जाता है, याद है?)

3) आंतरिक: ;

बाहरी: ;

यह तुरंत स्पष्ट है कि यहां एक तीन-स्तरीय जटिल कार्य है: आखिरकार, यह पहले से ही अपने आप में एक जटिल कार्य है, और हम अभी भी इससे जड़ निकालते हैं, अर्थात, हम तीसरी क्रिया करते हैं (चॉकलेट को एक आवरण में डालते हैं) और एक ब्रीफकेस में एक रिबन के साथ)। लेकिन डरने का कोई कारण नहीं है: वैसे भी, हम इस फ़ंक्शन को हमेशा की तरह उसी क्रम में "अनपैक" करेंगे: अंत से।

अर्थात्, पहले हम मूल में अंतर करते हैं, फिर कोसाइन और उसके बाद ही कोष्ठक में व्यंजक। और फिर हम इसे सभी गुणा करते हैं।

ऐसे मामलों में, कार्यों को नंबर देना सुविधाजनक होता है। यानी हम जो जानते हैं उसकी कल्पना करें। इस व्यंजक के मान की गणना करने के लिए हम किस क्रम में क्रिया करेंगे? आइए एक उदाहरण देखें:

बाद में कार्रवाई की जाती है, संबंधित फ़ंक्शन जितना अधिक "बाहरी" होगा। क्रियाओं का क्रम - पहले की तरह:

यहां नेस्टिंग आमतौर पर 4-स्तर की होती है। आइए कार्रवाई के पाठ्यक्रम को निर्धारित करें।

1. कट्टरपंथी अभिव्यक्ति। .

2. जड़। .

3. साइनस। .

4. स्क्वायर। .

5. यह सब एक साथ रखना:

व्युत्पन्न। संक्षेप में मुख्य के बारे में

फ़ंक्शन व्युत्पन्न- तर्क की एक असीम वृद्धि के साथ तर्क की वृद्धि के लिए फ़ंक्शन की वृद्धि का अनुपात:

मूल व्युत्पन्न:

भेदभाव नियम:

व्युत्पन्न के संकेत से स्थिरांक निकाला जाता है:

योग का व्युत्पन्न:

व्युत्पन्न उत्पाद:

भागफल का व्युत्पन्न:

एक जटिल कार्य का व्युत्पन्न:

एक जटिल फ़ंक्शन के व्युत्पन्न को खोजने के लिए एल्गोरिदम:

  1. हम "आंतरिक" फ़ंक्शन को परिभाषित करते हैं, इसके व्युत्पन्न पाते हैं।
  2. हम "बाहरी" फ़ंक्शन को परिभाषित करते हैं, इसके व्युत्पन्न पाते हैं।
  3. हम पहले और दूसरे अंक के परिणामों को गुणा करते हैं।

यदि हम परिभाषा का पालन करते हैं, तो एक बिंदु पर एक फ़ंक्शन का व्युत्पन्न फ़ंक्शन के वृद्धि अनुपात की सीमा है आपतर्क की वृद्धि के लिए एक्स:

ऐसा लगता है कि सब कुछ स्पष्ट हो गया है। लेकिन इस सूत्र द्वारा गणना करने का प्रयास करें, मान लीजिए, फ़ंक्शन का व्युत्पन्न एफ(एक्स) = एक्स 2 + (2एक्स+ 3) · एक्सपाप एक्स. यदि आप परिभाषा के अनुसार सब कुछ करते हैं, तो गणना के कुछ पन्नों के बाद आप बस सो जाएंगे। इसलिए, सरल और अधिक प्रभावी तरीके हैं।

आरंभ करने के लिए, हम ध्यान दें कि तथाकथित प्राथमिक कार्यों को विभिन्न प्रकार के कार्यों से अलग किया जा सकता है। ये अपेक्षाकृत सरल भाव हैं, जिनके डेरिवेटिव की गणना लंबे समय से की गई है और उन्हें तालिका में दर्ज किया गया है। इस तरह के कार्यों को उनके डेरिवेटिव के साथ याद रखना काफी आसान है।

प्राथमिक कार्यों के व्युत्पन्न

प्राथमिक कार्य नीचे सूचीबद्ध सब कुछ हैं। इन कार्यों के व्युत्पन्न को दिल से जाना जाना चाहिए। इसके अलावा, उन्हें याद करना मुश्किल नहीं है - इसलिए वे प्राथमिक हैं।

तो, प्राथमिक कार्यों के व्युत्पन्न:

नाम समारोह यौगिक
नियत एफ(एक्स) = सी, सीआर 0 (हाँ, हाँ, शून्य!)
तर्कसंगत घातांक के साथ डिग्री एफ(एक्स) = एक्स एन एन · एक्स एन − 1
साइनस एफ(एक्स) = पाप एक्स क्योंकि एक्स
कोज्या एफ(एक्स) = कोस एक्स - पाप एक्स(माइनस साइन)
स्पर्शरेखा एफ(एक्स) = टीजी एक्स 1/कोस 2 एक्स
कोटैंजेंट एफ(एक्स) = सीटीजी एक्स - 1/पाप2 एक्स
प्राकृतिक एफ(एक्स) = लॉग एक्स 1/एक्स
मनमाना लघुगणक एफ(एक्स) = लॉग एक्स 1/(एक्सएलएन )
घातांक प्रकार्य एफ(एक्स) = एक्स एक्स(कुछ नहीं बदला)

यदि किसी प्राथमिक फलन को एक मनमाना स्थिरांक से गुणा किया जाता है, तो नए फलन का व्युत्पन्न भी आसानी से परिकलित किया जाता है:

(सी · एफ)’ = सी · एफ ’.

सामान्य तौर पर, व्युत्पन्न के संकेत से स्थिरांक निकाले जा सकते हैं। उदाहरण के लिए:

(2एक्स 3)' = 2 ( एक्स 3)' = 2 3 एक्स 2 = 6एक्स 2 .

जाहिर है, प्राथमिक कार्यों को एक दूसरे में जोड़ा जा सकता है, गुणा किया जा सकता है, विभाजित किया जा सकता है, और बहुत कुछ। इस तरह से नए कार्य दिखाई देंगे, जो अब बहुत प्राथमिक नहीं हैं, बल्कि कुछ नियमों के अनुसार अलग-अलग भी हैं। इन नियमों पर नीचे चर्चा की गई है।

योग और अंतर का व्युत्पन्न

कार्यों को करने दें एफ(एक्स) और जी(एक्स), जिनके डेरिवेटिव हमें ज्ञात हैं। उदाहरण के लिए, आप ऊपर चर्चा किए गए प्राथमिक कार्यों को ले सकते हैं। तब आप इन कार्यों के योग और अंतर का व्युत्पन्न पा सकते हैं:

  1. (एफ + जी)’ = एफ ’ + जी
  2. (एफजी)’ = एफ ’ − जी

तो, दो कार्यों के योग (अंतर) का व्युत्पन्न डेरिवेटिव के योग (अंतर) के बराबर है। और भी शर्तें हो सकती हैं। उदाहरण के लिए, ( एफ + जी + एच)’ = एफ ’ + जी ’ + एच ’.

कड़ाई से बोलते हुए, बीजगणित में "घटाव" की कोई अवधारणा नहीं है। "नकारात्मक तत्व" की अवधारणा है। इसलिए, अंतर एफजीयोग के रूप में फिर से लिखा जा सकता है एफ+ (−1) जी, और तब केवल एक सूत्र शेष रहता है - योग का व्युत्पन्न।

एफ(एक्स) = एक्स 2 + सिनक्स; जी(एक्स) = एक्स 4 + 2एक्स 2 − 3.

समारोह एफ(एक्स) दो प्राथमिक कार्यों का योग है, इसलिए:

एफ ’(एक्स) = (एक्स 2+ पाप एक्स)’ = (एक्स 2)'+ (पाप .) एक्स)’ = 2एक्स+ कॉक्स;

हम फ़ंक्शन के लिए इसी तरह तर्क देते हैं जी(एक्स) केवल पहले से ही तीन पद हैं (बीजगणित के दृष्टिकोण से):

जी ’(एक्स) = (एक्स 4 + 2एक्स 2 − 3)’ = (एक्स 4 + 2एक्स 2 + (−3))’ = (एक्स 4)’ + (2एक्स 2)’ + (−3)’ = 4एक्स 3 + 4एक्स + 0 = 4एक्स · ( एक्स 2 + 1).

जवाब:
एफ ’(एक्स) = 2एक्स+ कॉक्स;
जी ’(एक्स) = 4एक्स · ( एक्स 2 + 1).

किसी उत्पाद का व्युत्पन्न

गणित एक तार्किक विज्ञान है, इसलिए बहुत से लोग मानते हैं कि यदि योग का व्युत्पन्न व्युत्पन्न के योग के बराबर है, तो उत्पाद का व्युत्पन्न हड़ताल"\u003e डेरिवेटिव के उत्पाद के बराबर। लेकिन आपके लिए अंजीर! उत्पाद के व्युत्पन्न की गणना पूरी तरह से अलग सूत्र का उपयोग करके की जाती है। अर्थात्:

(एफ · जी) ’ = एफ ’ · जी + एफ · जी

सूत्र सरल है, लेकिन अक्सर भुला दिया जाता है। और न केवल स्कूली बच्चे, बल्कि छात्र भी। परिणाम गलत तरीके से हल की गई समस्याएं हैं।

काम। कार्यों के व्युत्पन्न खोजें: एफ(एक्स) = एक्स 3 कॉक्स; जी(एक्स) = (एक्स 2 + 7एक्स- 7) · एक्स .

समारोह एफ(एक्स) दो प्राथमिक कार्यों का एक उत्पाद है, इसलिए सब कुछ सरल है:

एफ ’(एक्स) = (एक्स 3 कोस एक्स)’ = (एक्स 3)' कोस एक्स + एक्स 3 (कोस एक्स)’ = 3एक्स 2 कोस एक्स + एक्स 3 (-sin एक्स) = एक्स 2 (3cos एक्सएक्सपाप एक्स)

समारोह जी(एक्स) पहला गुणक थोड़ा अधिक जटिल है, लेकिन सामान्य योजना इससे नहीं बदलती है। जाहिर है, फ़ंक्शन का पहला गुणक जी(एक्स) एक बहुपद है, और इसका व्युत्पन्न योग का व्युत्पन्न है। हमारे पास है:

जी ’(एक्स) = ((एक्स 2 + 7एक्स- 7) · एक्स)’ = (एक्स 2 + 7एक्स- 7)' · एक्स + (एक्स 2 + 7एक्स- 7) ( एक्स)’ = (2एक्स+ 7) · एक्स + (एक्स 2 + 7एक्स- 7) · एक्स = एक्स(2 .) एक्स + 7 + एक्स 2 + 7एक्स −7) = (एक्स 2 + 9एक्स) · एक्स = एक्स(एक्स+ 9) · एक्स .

जवाब:
एफ ’(एक्स) = एक्स 2 (3cos एक्सएक्सपाप एक्स);
जी ’(एक्स) = एक्स(एक्स+ 9) · एक्स .

ध्यान दें कि अंतिम चरण में, व्युत्पन्न को गुणनखंडित किया जाता है। औपचारिक रूप से, यह आवश्यक नहीं है, लेकिन अधिकांश डेरिवेटिव की गणना स्वयं नहीं की जाती है, बल्कि फ़ंक्शन का पता लगाने के लिए की जाती है। इसका मतलब यह है कि आगे व्युत्पन्न शून्य के बराबर हो जाएगा, इसके संकेत मिल जाएंगे, और इसी तरह। ऐसे मामले के लिए, अभिव्यक्ति को कारकों में विघटित करना बेहतर है।

यदि दो कार्य हैं एफ(एक्स) और जी(एक्स), और जी(एक्स) 0 हमारे लिए रुचि के सेट पर, हम एक नया फ़ंक्शन परिभाषित कर सकते हैं एच(एक्स) = एफ(एक्स)/जी(एक्स) ऐसे फ़ंक्शन के लिए, आप व्युत्पन्न भी पा सकते हैं:

कमजोर नहीं, है ना? माइनस कहां से आया? क्यों जी 2? लेकिन इस तरह! यह सबसे जटिल फ़ार्मुलों में से एक है - आप इसे बोतल के बिना नहीं समझ सकते। इसलिए, विशिष्ट उदाहरणों के साथ इसका अध्ययन करना बेहतर है।

काम। कार्यों के व्युत्पन्न खोजें:

प्रत्येक अंश के अंश और हर में प्राथमिक कार्य होते हैं, इसलिए हमें केवल भागफल के व्युत्पन्न के लिए सूत्र की आवश्यकता होती है:


परंपरा से, हम अंश को कारकों में विभाजित करते हैं - यह उत्तर को बहुत सरल करेगा:

एक जटिल फलन जरूरी नहीं कि आधा किलोमीटर लंबा एक सूत्र हो। उदाहरण के लिए, यह फ़ंक्शन लेने के लिए पर्याप्त है एफ(एक्स) = पाप एक्सऔर चर बदलें एक्स, कहना, पर एक्स 2+एलएन एक्स. यह पता चला है एफ(एक्स) = पाप ( एक्स 2+एलएन एक्स) एक जटिल कार्य है। उसके पास एक व्युत्पन्न भी है, लेकिन यह ऊपर चर्चा किए गए नियमों के अनुसार इसे खोजने के लिए काम नहीं करेगा।

कैसे बनें? ऐसे मामलों में, एक चर के प्रतिस्थापन और एक जटिल फ़ंक्शन के व्युत्पन्न के लिए सूत्र मदद करता है:

एफ ’(एक्स) = एफ ’(टी) · टी', अगर एक्सद्वारा प्रतिस्थापित किया जाता है टी(एक्स).

एक नियम के रूप में, इस सूत्र की समझ के साथ स्थिति भागफल के व्युत्पन्न से भी अधिक दुखद है। इसलिए, प्रत्येक चरण के विस्तृत विवरण के साथ, विशिष्ट उदाहरणों के साथ इसकी व्याख्या करना भी बेहतर है।

काम। कार्यों के व्युत्पन्न खोजें: एफ(एक्स) = 2एक्स + 3 ; जी(एक्स) = पाप ( एक्स 2+एलएन एक्स)

ध्यान दें कि यदि समारोह में एफ(एक्स) अभिव्यक्ति 2 . के बजाय एक्स+3 आसान हो जाएगा एक्स, तो हमें एक प्राथमिक कार्य मिलता है एफ(एक्स) = एक्स. इसलिए, हम एक प्रतिस्थापन करते हैं: मान लीजिए 2 एक्स + 3 = टी, एफ(एक्स) = एफ(टी) = टी. हम सूत्र द्वारा एक जटिल कार्य के व्युत्पन्न की तलाश कर रहे हैं:

एफ ’(एक्स) = एफ ’(टी) · टी ’ = ( टी)’ · टी ’ = टी · टी

और अब - ध्यान! एक रिवर्स प्रतिस्थापन करना: टी = 2एक्स+ 3. हमें मिलता है:

एफ ’(एक्स) = टी · टी ’ = 2एक्स+ 3 (2 .) एक्स + 3)’ = 2एक्स+ 3 2 = 2 2एक्स + 3

अब फंक्शन को देखते हैं जी(एक्स) जाहिर है प्रतिस्थापित करने की जरूरत है। एक्स 2+एलएन एक्स = टी. हमारे पास है:

जी ’(एक्स) = जी ’(टी) · टी' = (पाप टी)’ · टी' = कोस टी · टी

रिवर्स रिप्लेसमेंट: टी = एक्स 2+एलएन एक्स. फिर:

जी ’(एक्स) = क्योंकि ( एक्स 2+एलएन एक्स) · ( एक्स 2+एलएन एक्स)' = क्योंकि ( एक्स 2+एलएन एक्स) · (2 ​​.) एक्स + 1/एक्स).

बस इतना ही! जैसा कि अंतिम अभिव्यक्ति से देखा जा सकता है, पूरी समस्या को योग के व्युत्पन्न की गणना करने के लिए कम कर दिया गया है।

जवाब:
एफ ’(एक्स) = 2 2एक्स + 3 ;
जी ’(एक्स) = (2एक्स + 1/एक्स) क्योंकि ( एक्स 2+एलएन एक्स).

अपने पाठों में बहुत बार, मैं "डेरिवेटिव" शब्द के बजाय "स्ट्रोक" शब्द का उपयोग करता हूं। उदाहरण के लिए, योग का स्ट्रोक स्ट्रोक के योग के बराबर है। क्या यह स्पष्ट है? अच्छा, यह तो अच्छी बात है।

इस प्रकार, ऊपर चर्चा किए गए नियमों के अनुसार इन बहुत ही स्ट्रोक से छुटकारा पाने के लिए व्युत्पन्न की गणना नीचे आती है। अंतिम उदाहरण के रूप में, आइए एक परिमेय घातांक के साथ व्युत्पन्न शक्ति पर लौटते हैं:

(एक्स एन)’ = एन · एक्स एन − 1

कम ही लोग जानते हैं कि भूमिका में एनएक भिन्नात्मक संख्या हो सकती है। उदाहरण के लिए, जड़ है एक्स 0.5. लेकिन क्या होगा अगर जड़ के नीचे कुछ मुश्किल है? फिर से, एक जटिल कार्य होगा - वे परीक्षण और परीक्षा में ऐसे निर्माण देना पसंद करते हैं।

काम। किसी फ़ंक्शन के व्युत्पन्न का पता लगाएं:

सबसे पहले, आइए रूट को एक परिमेय घातांक के साथ एक घात के रूप में फिर से लिखें:

एफ(एक्स) = (एक्स 2 + 8एक्स − 7) 0,5 .

अब हम एक प्रतिस्थापन करते हैं: let एक्स 2 + 8एक्स − 7 = टी. हम सूत्र द्वारा व्युत्पन्न पाते हैं:

एफ ’(एक्स) = एफ ’(टी) · टी ’ = (टी 0.5)' टी' = 0.5 टी-0.5 टी ’.

हम एक रिवर्स प्रतिस्थापन करते हैं: टी = एक्स 2 + 8एक्स- 7. हमारे पास है:

एफ ’(एक्स) = 0.5 ( एक्स 2 + 8एक्स- 7) -0.5 ( एक्स 2 + 8एक्स- 7)' = 0.5 (2 .) एक्स+ 8) ( एक्स 2 + 8एक्स − 7) −0,5 .

अंत में, वापस जड़ों की ओर:

अवकलज ज्ञात करने की क्रिया को विभेदन कहते हैं।

तर्क की वृद्धि के अनुपात की सीमा के रूप में व्युत्पन्न को परिभाषित करके सबसे सरल (और बहुत सरल नहीं) कार्यों के डेरिवेटिव खोजने की समस्याओं को हल करने के परिणामस्वरूप, डेरिवेटिव की एक तालिका और भेदभाव के सटीक परिभाषित नियम दिखाई दिए . आइजैक न्यूटन (1643-1727) और गॉटफ्राइड विल्हेम लिबनिज़ (1646-1716) ने डेरिवेटिव खोजने के क्षेत्र में काम करने वाले पहले व्यक्ति थे।

इसलिए, हमारे समय में, किसी भी फ़ंक्शन के व्युत्पन्न को खोजने के लिए, फ़ंक्शन की वृद्धि के अनुपात की उपर्युक्त सीमा की गणना तर्क की वृद्धि के लिए करना आवश्यक नहीं है, लेकिन केवल तालिका का उपयोग करने की आवश्यकता है डेरिवेटिव और भेदभाव के नियम। निम्नलिखित एल्गोरिदम व्युत्पन्न खोजने के लिए उपयुक्त है।

व्युत्पन्न खोजने के लिए, आपको स्ट्रोक साइन के तहत एक अभिव्यक्ति की आवश्यकता है सरल कार्यों को तोड़ोऔर निर्धारित करें कि क्या कार्रवाई (उत्पाद, योग, भागफल)ये कार्य संबंधित हैं। इसके अलावा, हम डेरिवेटिव की तालिका में प्राथमिक कार्यों के व्युत्पन्न पाते हैं, और उत्पाद, योग और भागफल के डेरिवेटिव के लिए सूत्र - भेदभाव के नियमों में। पहले दो उदाहरणों के बाद व्युत्पन्न और विभेदन नियमों की तालिका दी गई है।

उदाहरण 1किसी फ़ंक्शन के व्युत्पन्न का पता लगाएं

फेसला। विभेदन के नियमों से हम पाते हैं कि कार्यों के योग का व्युत्पन्न कार्यों के व्युत्पन्न का योग है, अर्थात।

डेरिवेटिव की तालिका से, हम पाते हैं कि "एक्स" का व्युत्पन्न एक के बराबर है, और साइन का व्युत्पन्न कोसाइन है। हम इन मानों को डेरिवेटिव के योग में प्रतिस्थापित करते हैं और समस्या की स्थिति के लिए आवश्यक व्युत्पन्न पाते हैं:

उदाहरण 2किसी फ़ंक्शन के व्युत्पन्न का पता लगाएं

फेसला। हम योग के व्युत्पन्न के रूप में अंतर करते हैं, जिसमें एक स्थिर कारक के साथ दूसरा शब्द व्युत्पन्न के संकेत से निकाला जा सकता है:

यदि अभी भी प्रश्न हैं कि कुछ कहाँ से आता है, तो वे, एक नियम के रूप में, डेरिवेटिव की तालिका और भेदभाव के सबसे सरल नियमों को पढ़ने के बाद स्पष्ट हो जाते हैं। हम अभी उनके पास जा रहे हैं।

सरल कार्यों के डेरिवेटिव की तालिका

1. एक स्थिरांक (संख्या) का व्युत्पन्न। कोई भी संख्या (1, 2, 5, 200...) जो फलन व्यंजक में है। हमेशा शून्य। यह याद रखना बहुत महत्वपूर्ण है, क्योंकि इसकी बहुत बार आवश्यकता होती है
2. स्वतंत्र चर का व्युत्पन्न। सबसे अधिक बार "एक्स"। हमेशा एक के बराबर। यह भी याद रखना जरूरी है
3. डिग्री का व्युत्पन्न। समस्याओं को हल करते समय, आपको गैर-वर्गमूलों को एक शक्ति में बदलने की आवश्यकता होती है।
4. -1 . की घात के लिए एक चर का व्युत्पन्न
5. वर्गमूल का व्युत्पन्न
6. साइन व्युत्पन्न
7. कोसाइन व्युत्पन्न
8. स्पर्शरेखा व्युत्पन्न
9. कोटैंजेंट का व्युत्पन्न
10. आर्क्सिन का व्युत्पन्न
11. चाप कोज्या का व्युत्पन्न
12. चाप स्पर्शरेखा का व्युत्पन्न
13. व्युत्क्रम स्पर्शरेखा का व्युत्पन्न
14. प्राकृतिक लघुगणक का व्युत्पन्न
15. एक लघुगणकीय फलन का व्युत्पन्न
16. घातांक का व्युत्पन्न
17. घातीय फलन का व्युत्पन्न

विभेदन नियम

1. योग या अंतर का व्युत्पन्न
2. उत्पाद का व्युत्पन्न
2ए. एक स्थिर कारक से गुणा किए गए व्यंजक का व्युत्पन्न
3. भागफल का व्युत्पन्न
4. एक जटिल कार्य का व्युत्पन्न

नियम 1यदि कार्य

किसी बिंदु पर अलग-अलग होते हैं, फिर उसी बिंदु पर कार्य

और

वे। फलनों के बीजीय योग का अवकलज इन फलनों के व्युत्पन्नों के बीजगणितीय योग के बराबर होता है।

परिणाम। यदि दो अवकलनीय फलन एक अचर से भिन्न हैं, तो उनके अवकलज हैं, अर्थात।

नियम 2यदि कार्य

किसी बिंदु पर अवकलनीय होते हैं, तो उनका गुणनफल भी उसी बिंदु पर अवकलनीय होता है

और

वे। दो कार्यों के उत्पाद का व्युत्पन्न इन कार्यों में से प्रत्येक के उत्पादों के योग और दूसरे के व्युत्पन्न के बराबर है।

परिणाम 1. अचर गुणनखंड को अवकलज के चिह्न से निकाला जा सकता है:

परिणाम 2. कई अलग-अलग कार्यों के उत्पाद का व्युत्पन्न प्रत्येक कारक और अन्य सभी के व्युत्पन्न के उत्पादों के योग के बराबर होता है।

उदाहरण के लिए, तीन गुणकों के लिए:

नियम 3यदि कार्य

किसी बिंदु पर अलग-अलग और , तो इस बिंदु पर उनका भागफल भी अवकलनीय है।यू/वी, और

वे। दो कार्यों के भागफल का व्युत्पन्न एक अंश के बराबर होता है जिसका अंश हर के उत्पादों और अंश और अंश के व्युत्पन्न और हर के व्युत्पन्न के बीच का अंतर होता है, और हर पूर्व अंश का वर्ग होता है .

अन्य पृष्ठों पर कहां देखें

वास्तविक समस्याओं में उत्पाद के व्युत्पन्न और भागफल को खोजने पर, एक साथ कई भेदभाव नियम लागू करना हमेशा आवश्यक होता है, इसलिए इन डेरिवेटिव पर अधिक उदाहरण लेख में हैं।"एक उत्पाद और एक भागफल का व्युत्पन्न".

टिप्पणी।आपको एक स्थिरांक (अर्थात एक संख्या) को योग में एक पद के रूप में और एक स्थिर गुणनखंड के रूप में भ्रमित नहीं करना चाहिए! एक पद के मामले में, इसका व्युत्पन्न शून्य के बराबर होता है, और एक स्थिर कारक के मामले में, इसे व्युत्पन्न के चिह्न से निकाल दिया जाता है। यह एक सामान्य गलती है जो डेरिवेटिव के अध्ययन के प्रारंभिक चरण में होती है, लेकिन जैसा कि औसत छात्र कई एक-दो-घटक उदाहरणों को हल करता है, यह गलती अब नहीं होती है।

और यदि, किसी उत्पाद या भागफल में अंतर करते समय, आपके पास एक पद है तुम"वी, जिसमें तुम- एक संख्या, उदाहरण के लिए, 2 या 5, यानी एक स्थिर, तो इस संख्या का व्युत्पन्न शून्य के बराबर होगा और इसलिए, पूरा पद शून्य के बराबर होगा (ऐसे मामले का विश्लेषण उदाहरण 10 में किया गया है) .

एक अन्य सामान्य गलती एक साधारण फ़ंक्शन के व्युत्पन्न के रूप में एक जटिल फ़ंक्शन के व्युत्पन्न का यांत्रिक समाधान है। इसलिए एक जटिल कार्य का व्युत्पन्नएक अलग लेख के लिए समर्पित। लेकिन पहले हम सरल फलनों के अवकलज ज्ञात करना सीखेंगे।

साथ ही, आप भावों के परिवर्तन के बिना नहीं कर सकते। ऐसा करने के लिए, आपको नए विंडोज़ मैनुअल में खोलने की आवश्यकता हो सकती है शक्तियों और जड़ों के साथ क्रियाऔर भिन्न के साथ क्रिया .

यदि आप शक्तियों और जड़ों के साथ डेरिवेटिव के समाधान की तलाश में हैं, यानी, जब फ़ंक्शन जैसा दिखता है , फिर पाठ का पालन करें " शक्तियों और जड़ों के साथ अंशों के योग का व्युत्पन्न"।

यदि आपके पास कोई कार्य है जैसे , तो आप "सरल त्रिकोणमितीय फलनों के व्युत्पन्न" पाठ में हैं।

चरण-दर-चरण उदाहरण - व्युत्पन्न कैसे खोजें

उदाहरण 3किसी फ़ंक्शन के व्युत्पन्न का पता लगाएं

फेसला। हम फ़ंक्शन की अभिव्यक्ति के कुछ हिस्सों को निर्धारित करते हैं: संपूर्ण अभिव्यक्ति उत्पाद का प्रतिनिधित्व करती है, और इसके कारक योग होते हैं, जिनमें से दूसरे शब्दों में से एक में एक स्थिर कारक होता है। हम उत्पाद भेदभाव नियम लागू करते हैं: दो कार्यों के उत्पाद का व्युत्पन्न इन कार्यों में से प्रत्येक के उत्पादों के योग और दूसरे के व्युत्पन्न के बराबर है:

इसके बाद, हम योग के विभेदन के नियम को लागू करते हैं: कार्यों के बीजीय योग का व्युत्पन्न इन कार्यों के व्युत्पन्न के बीजीय योग के बराबर होता है। हमारे मामले में, प्रत्येक योग में, दूसरा पद एक ऋण चिह्न के साथ। प्रत्येक योग में, हम दोनों एक स्वतंत्र चर देखते हैं, जिसका व्युत्पन्न एक के बराबर होता है, और एक स्थिरांक (संख्या), जिसका व्युत्पन्न शून्य के बराबर होता है। तो, "x" एक में बदल जाता है, और माइनस 5 - शून्य में। दूसरे व्यंजक में, "x" को 2 से गुणा किया जाता है, इसलिए हम "x" के अवकलज के समान इकाई से दो गुणा करते हैं। हमें डेरिवेटिव के निम्नलिखित मूल्य मिलते हैं:

हम पाए गए डेरिवेटिव को उत्पादों के योग में प्रतिस्थापित करते हैं और समस्या की स्थिति के लिए आवश्यक संपूर्ण फ़ंक्शन का व्युत्पन्न प्राप्त करते हैं:

उदाहरण 4किसी फ़ंक्शन के व्युत्पन्न का पता लगाएं

फेसला। हमें भागफल का अवकलज ज्ञात करना है। हम एक भागफल को अलग करने के लिए सूत्र लागू करते हैं: दो कार्यों के भागफल का व्युत्पन्न एक अंश के बराबर होता है जिसका अंश हर के उत्पादों और अंश और अंश के व्युत्पन्न और हर के व्युत्पन्न के बीच का अंतर होता है, और भाजक पूर्व अंश का वर्ग है। हम पाते हैं:

हम पहले ही उदाहरण 2 में अंश में कारकों का व्युत्पन्न पा चुके हैं। आइए यह भी न भूलें कि उत्पाद, जो अंश में दूसरा कारक है, को वर्तमान उदाहरण में ऋण चिह्न के साथ लिया गया है:

यदि आप ऐसी समस्याओं के समाधान की तलाश में हैं जिनमें आपको किसी फ़ंक्शन के व्युत्पन्न को खोजने की आवश्यकता है, जहां जड़ों और डिग्री का निरंतर ढेर होता है, जैसे कि, उदाहरण के लिए, फिर कक्षा में स्वागत है "शक्तियों और जड़ों के साथ अंशों के योग का व्युत्पन्न" .

यदि आपको ज्या, कोसाइन, स्पर्शरेखा और अन्य त्रिकोणमितीय फलनों के व्युत्पन्नों के बारे में अधिक जानने की आवश्यकता है, अर्थात, जब फ़ंक्शन ऐसा दिखता है , तो आपके पास एक सबक है "सरल त्रिकोणमितीय कार्यों के डेरिवेटिव" .

उदाहरण 5किसी फ़ंक्शन के व्युत्पन्न का पता लगाएं

फेसला। इस फ़ंक्शन में, हम एक उत्पाद देखते हैं, जिनमें से एक कारक स्वतंत्र चर का वर्गमूल है, जिसके व्युत्पन्न के साथ हमने खुद को डेरिवेटिव की तालिका में परिचित किया है। उत्पाद विभेदन नियम और वर्गमूल के व्युत्पन्न के सारणीबद्ध मान के अनुसार, हम प्राप्त करते हैं:

उदाहरण 6किसी फ़ंक्शन के व्युत्पन्न का पता लगाएं

फेसला। इस फलन में, हम भागफल देखते हैं, जिसका लाभांश स्वतंत्र चर का वर्गमूल होता है। भागफल के विभेदन के नियम के अनुसार, जिसे हमने उदाहरण 4 में दोहराया और लागू किया, और वर्गमूल के व्युत्पन्न का सारणीबद्ध मान, हम प्राप्त करते हैं:

अंश में भिन्न से छुटकारा पाने के लिए अंश और हर को से गुणा करें।

वीडियो कोर्स "गेट ए ए" में गणित में परीक्षा में 60-65 अंकों के सफल उत्तीर्ण होने के लिए आवश्यक सभी विषय शामिल हैं। पूरी तरह से सभी कार्य 1-13 प्रोफ़ाइल के गणित में उपयोग करें। गणित में बेसिक USE पास करने के लिए भी उपयुक्त है। यदि आप 90-100 अंकों के साथ परीक्षा उत्तीर्ण करना चाहते हैं, तो आपको भाग 1 को 30 मिनट में और बिना किसी गलती के हल करना होगा!

कक्षा 10-11 के साथ-साथ शिक्षकों के लिए परीक्षा के लिए तैयारी पाठ्यक्रम। गणित में परीक्षा के भाग 1 (पहली 12 समस्याएं) और समस्या 13 (त्रिकोणमिति) को हल करने के लिए आपको जो कुछ भी चाहिए। और यह एकीकृत राज्य परीक्षा पर 70 से अधिक अंक है, और न तो सौ अंकों का छात्र और न ही कोई मानवतावादी उनके बिना कर सकता है।

सभी आवश्यक सिद्धांत। परीक्षा के त्वरित समाधान, जाल और रहस्य। बैंक ऑफ FIPI के भाग 1 के सभी प्रासंगिक कार्यों का विश्लेषण किया गया है। पाठ्यक्रम पूरी तरह से USE-2018 की आवश्यकताओं का अनुपालन करता है।

पाठ्यक्रम में 5 बड़े विषय हैं, प्रत्येक में 2.5 घंटे। प्रत्येक विषय खरोंच से, सरल और स्पष्ट रूप से दिया गया है।

सैकड़ों परीक्षा कार्य। पाठ समस्याएं और संभाव्यता सिद्धांत। सरल और याद रखने में आसान समस्या समाधान एल्गोरिदम। ज्यामिति। सिद्धांत, संदर्भ सामग्री, सभी प्रकार के USE कार्यों का विश्लेषण। स्टीरियोमेट्री। हल करने के लिए चालाक तरकीबें, उपयोगी चीट शीट, स्थानिक कल्पना का विकास। खरोंच से त्रिकोणमिति - कार्य करने के लिए 13. रटना के बजाय समझना। जटिल अवधारणाओं की दृश्य व्याख्या। बीजगणित। जड़ें, शक्तियां और लघुगणक, कार्य और व्युत्पन्न। परीक्षा के दूसरे भाग की जटिल समस्याओं को हल करने का आधार।