Nájdite oblasť postavy online. Ako vypočítať plochu rovinného útvaru pomocou dvojitého integrálu

V tomto článku sa dozviete, ako nájsť oblasť obrázku ohraničenú čiarami pomocou integrálnych výpočtov. Prvýkrát sa s formulovaním takéhoto problému stretávame na strednej škole, keď je práve ukončené štúdium určitých integrálov a je čas začať s geometrickým výkladom získaných poznatkov v praxi.

Čo je teda potrebné na úspešné vyriešenie problému nájdenia oblasti obrázku pomocou integrálov:

  • Schopnosť správne kresliť kresby;
  • Schopnosť riešiť určitý integrál pomocou známeho Newtonovho-Leibnizovho vzorca;
  • Možnosť „vidieť“ výnosnejšie riešenie – t.j. pochopiť, ako bude v tomto alebo tom prípade pohodlnejšie vykonať integráciu? Pozdĺž osi x (OX) alebo osi y (OY)?
  • Kde bez správnych výpočtov?) To zahŕňa pochopenie toho, ako vyriešiť tento iný typ integrálov a správne numerické výpočty.

Algoritmus na riešenie problému výpočtu plochy obrazca ohraničeného čiarami:

1. Vytvárame výkres. Je vhodné to urobiť na kus papiera v klietke vo veľkom meradle. Ceruzkou nad každým grafom podpisujeme názov tejto funkcie. Podpis grafov sa vykonáva výlučne pre pohodlie ďalších výpočtov. Po prijatí grafu požadovaného čísla bude vo väčšine prípadov okamžite jasné, ktoré integračné limity sa použijú. Úlohu teda riešime graficky. Stáva sa však, že hodnoty limitov sú zlomkové alebo iracionálne. Preto môžete vykonať ďalšie výpočty, prejdite na druhý krok.

2. Ak integračné limity nie sú explicitne stanovené, nájdeme priesečníky grafov medzi sebou a uvidíme, či sa naše grafické riešenie zhoduje s analytickým.

3. Ďalej musíte analyzovať výkres. V závislosti od toho, ako sú umiestnené grafy funkcií, existujú rôzne prístupy k nájdeniu oblasti obrázku. Zvážte rôzne príklady hľadania oblasti obrazca pomocou integrálov.

3.1. Najklasickejšia a najjednoduchšia verzia problému je, keď potrebujete nájsť oblasť krivočiareho lichobežníka. Čo je to krivočiary lichobežník? Toto je plochý obrazec ohraničený osou x (y=0), rovný x = a, x = b a ľubovoľná krivka súvislá na intervale od a predtým b. Toto číslo zároveň nie je záporné a nenachádza sa nižšie ako os x. V tomto prípade sa plocha krivočiareho lichobežníka numericky rovná určitému integrálu vypočítanému pomocou vzorca Newton-Leibniz:

Príklad 1 y = x2 - 3x + 3, x = 1, x = 3, y = 0.

Aké čiary definujú postavu? Máme parabolu y = x2 - 3x + 3, ktorá sa nachádza nad osou OH, je nezáporné, pretože všetky body tejto paraboly sú kladné. Ďalej, dané rovné čiary x = 1 a x = 3 ktoré prebiehajú rovnobežne s osou OU, sú ohraničujúce čiary obrázku vľavo a vpravo. Dobre y = 0, ona je os x, ktorá obmedzuje postavu zdola. Výsledný obrázok je vytieňovaný, ako je vidieť na obrázku vľavo. V takom prípade môžete problém okamžite začať riešiť. Pred nami je jednoduchý príklad krivočiareho lichobežníka, ktorý potom riešime pomocou Newtonovho-Leibnizovho vzorca.

3.2. V predchádzajúcom odseku 3.1 bol analyzovaný prípad, keď je krivočiary lichobežník umiestnený nad osou x. Teraz zvážte prípad, keď sú podmienky problému rovnaké, okrem toho, že funkcia leží pod osou x. K štandardnému Newton-Leibnizovmu vzorcu sa pridáva mínus. Ako vyriešiť takýto problém, zvážime ďalej.

Príklad 2 . Vypočítajte plochu obrázku ohraničenú čiarami y=x2+6x+2, x=-4, x=-1, y=0.

V tomto príklade máme parabolu y=x2+6x+2, ktorý vychádza pod osou OH, rovný x=-4, x=-1, y=0. Tu y = 0 obmedzuje požadovanú hodnotu zhora. Priamy x = -4 a x = -1 toto sú hranice, v rámci ktorých sa bude počítať určitý integrál. Princíp riešenia problému nájdenia oblasti obrázku sa takmer úplne zhoduje s príkladom číslo 1. Jediný rozdiel je v tom, že daná funkcia nie je kladná a všetko je tiež spojité na intervale [-4; -1] . Čo neznamená pozitívne? Ako je zrejmé z obrázku, obrazec, ktorý leží v danom x, má výlučne „záporné“ súradnice, čo musíme vidieť a zapamätať si pri riešení úlohy. Hľadáme oblasť postavy pomocou vzorca Newton-Leibniz, iba so znamienkom mínus na začiatku.

Článok nie je dokončený.

V tomto článku sa dozviete, ako nájsť oblasť obrázku ohraničenú čiarami pomocou integrálnych výpočtov. Prvýkrát sa s formulovaním takéhoto problému stretávame na strednej škole, keď je práve ukončené štúdium určitých integrálov a je čas začať s geometrickým výkladom získaných poznatkov v praxi.

Čo je teda potrebné na úspešné vyriešenie problému nájdenia oblasti obrázku pomocou integrálov:

  • Schopnosť správne kresliť kresby;
  • Schopnosť riešiť určitý integrál pomocou známeho Newtonovho-Leibnizovho vzorca;
  • Možnosť „vidieť“ výnosnejšie riešenie – t.j. pochopiť, ako bude v tomto alebo tom prípade pohodlnejšie vykonať integráciu? Pozdĺž osi x (OX) alebo osi y (OY)?
  • Kde bez správnych výpočtov?) To zahŕňa pochopenie toho, ako vyriešiť tento iný typ integrálov a správne numerické výpočty.

Algoritmus na riešenie problému výpočtu plochy obrazca ohraničeného čiarami:

1. Vytvárame výkres. Je vhodné to urobiť na kus papiera v klietke vo veľkom meradle. Ceruzkou nad každým grafom podpisujeme názov tejto funkcie. Podpis grafov sa vykonáva výlučne pre pohodlie ďalších výpočtov. Po prijatí grafu požadovaného čísla bude vo väčšine prípadov okamžite jasné, ktoré integračné limity sa použijú. Úlohu teda riešime graficky. Stáva sa však, že hodnoty limitov sú zlomkové alebo iracionálne. Preto môžete vykonať ďalšie výpočty, prejdite na druhý krok.

2. Ak integračné limity nie sú explicitne stanovené, nájdeme priesečníky grafov medzi sebou a uvidíme, či sa naše grafické riešenie zhoduje s analytickým.

3. Ďalej musíte analyzovať výkres. V závislosti od toho, ako sú umiestnené grafy funkcií, existujú rôzne prístupy k nájdeniu oblasti obrázku. Zvážte rôzne príklady hľadania oblasti obrazca pomocou integrálov.

3.1. Najklasickejšia a najjednoduchšia verzia problému je, keď potrebujete nájsť oblasť krivočiareho lichobežníka. Čo je to krivočiary lichobežník? Toto je plochý obrazec ohraničený osou x (y=0), rovný x = a, x = b a ľubovoľná krivka súvislá na intervale od a predtým b. Toto číslo zároveň nie je záporné a nenachádza sa nižšie ako os x. V tomto prípade sa plocha krivočiareho lichobežníka numericky rovná určitému integrálu vypočítanému pomocou vzorca Newton-Leibniz:

Príklad 1 y = x2 - 3x + 3, x = 1, x = 3, y = 0.

Aké čiary definujú postavu? Máme parabolu y = x2 - 3x + 3, ktorá sa nachádza nad osou OH, je nezáporné, pretože všetky body tejto paraboly sú kladné. Ďalej, dané rovné čiary x = 1 a x = 3 ktoré prebiehajú rovnobežne s osou OU, sú ohraničujúce čiary obrázku vľavo a vpravo. Dobre y = 0, ona je os x, ktorá obmedzuje postavu zdola. Výsledný obrázok je vytieňovaný, ako je vidieť na obrázku vľavo. V takom prípade môžete problém okamžite začať riešiť. Pred nami je jednoduchý príklad krivočiareho lichobežníka, ktorý potom riešime pomocou Newtonovho-Leibnizovho vzorca.

3.2. V predchádzajúcom odseku 3.1 bol analyzovaný prípad, keď je krivočiary lichobežník umiestnený nad osou x. Teraz zvážte prípad, keď sú podmienky problému rovnaké, okrem toho, že funkcia leží pod osou x. K štandardnému Newton-Leibnizovmu vzorcu sa pridáva mínus. Ako vyriešiť takýto problém, zvážime ďalej.

Príklad 2 . Vypočítajte plochu obrázku ohraničenú čiarami y=x2+6x+2, x=-4, x=-1, y=0.

V tomto príklade máme parabolu y=x2+6x+2, ktorý vychádza pod osou OH, rovný x=-4, x=-1, y=0. Tu y = 0 obmedzuje požadovanú hodnotu zhora. Priamy x = -4 a x = -1 toto sú hranice, v rámci ktorých sa bude počítať určitý integrál. Princíp riešenia problému nájdenia oblasti obrázku sa takmer úplne zhoduje s príkladom číslo 1. Jediný rozdiel je v tom, že daná funkcia nie je kladná a všetko je tiež spojité na intervale [-4; -1] . Čo neznamená pozitívne? Ako je zrejmé z obrázku, obrazec, ktorý leží v danom x, má výlučne „záporné“ súradnice, čo musíme vidieť a zapamätať si pri riešení úlohy. Hľadáme oblasť postavy pomocou vzorca Newton-Leibniz, iba so znamienkom mínus na začiatku.

Článok nie je dokončený.

Úloha číslo 3. Vytvorte nákres a vypočítajte plochu figúry ohraničenú čiarami

Aplikácia integrálu na riešenie aplikovaných problémov

Výpočet plochy

Určitý integrál spojitej nezápornej funkcie f(x) sa numericky rovná oblasť krivočiareho lichobežníka ohraničeného krivkou y \u003d f (x), osou O x a priamkami x \u003d a a x \u003d b. V súlade s tým je vzorec oblasti napísaný takto:

Zvážte niekoľko príkladov výpočtu plôch rovinných útvarov.

Číslo úlohy 1. Vypočítajte plochu ohraničenú čiarami y \u003d x 2 +1, y \u003d 0, x \u003d 0, x \u003d 2.

Riešenie. Zostavme postavu, ktorej plochu budeme musieť vypočítať.

y \u003d x 2 + 1 je parabola, ktorej vetvy smerujú nahor a parabola je posunutá nahor o jednu jednotku vzhľadom na os O y (obrázok 1).

Obrázok 1. Graf funkcie y = x 2 + 1

Úloha číslo 2. Vypočítajte plochu ohraničenú čiarami y \u003d x 2 - 1, y \u003d 0 v rozsahu od 0 do 1.


Riešenie. Grafom tejto funkcie je parabola vetvy, ktorá smeruje nahor, pričom parabola je voči osi O y posunutá nadol o jednu jednotku (obrázok 2).

Obrázok 2. Graf funkcie y \u003d x 2 - 1


Úloha číslo 3. Vytvorte nákres a vypočítajte plochu figúry ohraničenú čiarami

y = 8 + 2x - x 2 a y = 2x - 4.

Riešenie. Prvá z týchto dvoch čiar je parabola s vetvami smerujúcimi nadol, pretože koeficient na x 2 je záporný, a druhá čiara je priamka pretínajúca obe súradnicové osi.

Na zostrojenie paraboly nájdime súradnice jej vrcholu: y'=2 – 2x; 2 – 2x = 0, x = 1 – vrchol x os; y(1) = 8 + 2∙1 – 1 2 = 9 je jeho ordináta, N(1;9) je jeho vrchol.

Teraz nájdeme priesečníky paraboly a priamky riešením sústavy rovníc:

Vyrovnanie pravých strán rovnice, ktorej ľavé strany sú rovnaké.

Získame 8 + 2x - x 2 \u003d 2x - 4 alebo x 2 - 12 \u003d 0, odkiaľ .

Body sú teda priesečníky paraboly a priamky (obrázok 1).


Obrázok 3 Grafy funkcií y = 8 + 2x – x 2 a y = 2x – 4

Zostrojme priamku y = 2x - 4. Prechádza bodmi (0;-4), (2; 0) na súradnicových osiach.

Na zostavenie paraboly môžete mať aj jej priesečníky s osou 0x, teda korene rovnice 8 + 2x - x 2 = 0 alebo x 2 - 2x - 8 = 0. Podľa Vietovej vety je ľahko nájsť jeho korene: x 1 = 2, x 2 = štyri.

Obrázok 3 zobrazuje obrazec (parabolický segment M1N M2) ohraničený týmito čiarami.

Druhou časťou problému je nájsť oblasť tohto obrázku. Jeho obsah možno nájsť pomocou určitého integrálu pomocou vzorca .

Vzhľadom na túto podmienku dostaneme integrál:

2 Výpočet objemu rotačného telesa

Objem tela získaný z rotácie krivky y \u003d f (x) okolo osi O x sa vypočíta podľa vzorca:

Pri otáčaní okolo osi Oy vzorec vyzerá takto:

Úloha číslo 4. Určte objem tela získaného rotáciou krivočiareho lichobežníka ohraničeného priamkami x \u003d 0 x \u003d 3 a krivkou y \u003d okolo osi O x.

Riešenie. Zostavme výkres (obrázok 4).

Obrázok 4. Graf funkcie y =

Požadovaný objem sa rovná


Úloha číslo 5. Vypočítajte objem telesa získaný rotáciou krivočiareho lichobežníka ohraničeného krivkou y = x 2 a priamkami y = 0 a y = 4 okolo osi O y .

Riešenie. Máme:

Kontrolné otázky

a)

Riešenie.

Prvým a najdôležitejším momentom rozhodnutia je konštrukcia výkresu.

Urobme si kresbu:

Rovnica y=0 nastavuje os x;

- x = -2 a x=1 - rovný, rovnobežný s osou OU;

- y \u003d x 2 +2 - parabola, ktorej vetvy smerujú nahor, s vrcholom v bode (0;2).

Komentujte. Na zostrojenie paraboly stačí nájsť body jej priesečníka so súradnicovými osami, t.j. uvedenie x=0 nájsť priesečník s osou OU a vyriešením príslušnej kvadratickej rovnice nájdite priesečník s osou Oh .

Vrchol paraboly možno nájsť pomocou vzorcov:

Môžete kresliť čiary a bod po bode.

Na intervale [-2;1] graf funkcie y=x2+2 Nachádza cez os Vôl , preto:

odpoveď: S \u003d 9 štvorcových jednotiek

Po dokončení úlohy je vždy užitočné pozrieť sa na výkres a zistiť, či je odpoveď skutočná. V tomto prípade "od oka" počítame počet buniek na výkrese - dobre, asi 9 bude napísaných, zdá sa, že je to pravda. Je úplne jasné, že ak by sme mali povedzme odpoveď: 20 štvorcových jednotiek, tak sa, samozrejme, niekde stala chyba – 20 buniek sa jednoznačne nezmestí do daného čísla, nanajvýš tucet. Ak bola odpoveď záporná, úloha bola tiež vyriešená nesprávne.

Čo robiť, ak sa nachádza krivočiary lichobežník pod nápravou Oh?

b) Vypočítajte plochu obrázku ohraničenú čiarami y=-e x , x=1 a súradnicové osi.

Riešenie.

Urobme si kresbu.

Ak krivočiary lichobežník úplne pod nápravou Oh , potom jeho oblasť možno nájsť podľa vzorca:

odpoveď: S=(e-1) sq. unit" 1,72 sq. unit

Pozor! Nezamieňajte si tieto dva typy úloh:

1) Ak ste požiadaní, aby ste vyriešili len určitý integrál bez akéhokoľvek geometrického významu, potom môže byť záporný.

2) Ak ste požiadaní, aby ste našli plochu obrazca pomocou určitého integrálu, potom je plocha vždy kladná! Preto sa v práve uvažovanom vzorci objavuje mínus.

V praxi sa najčastejšie postava nachádza v hornej aj dolnej polrovine.

s) Nájdite plochu rovinnej postavy ohraničenú čiarami y \u003d 2x-x 2, y \u003d -x.

Riešenie.

Najprv musíte urobiť kresbu. Všeobecne povedané, pri konštrukcii výkresu v plošných úlohách nás najviac zaujímajú priesečníky čiar. Nájdite priesečníky paraboly a priamy Dá sa to urobiť dvoma spôsobmi. Prvý spôsob je analytický.

Riešime rovnicu:

Čiže spodná hranica integrácie a=0 , horná hranica integrácie b = 3 .

Dané priamky postavíme: 1. Parabola - vrchol v bode (1;1); priesečník osí oh - body (0;0) a (0;2). 2. Priamka - os 2. a 4. súradnicového uhla. A teraz Pozor! Ak je v intervale [ a;b] nejaká nepretržitá funkcia f(x) väčšia alebo rovná nejakej spojitej funkcii g(x), potom oblasť zodpovedajúceho obrázku možno nájsť podľa vzorca: .


A nezáleží na tom, kde sa obrázok nachádza - nad osou alebo pod osou, ale je dôležité, ktorý graf je VYŠŠIE (v porovnaní s iným grafom) a ktorý je POD. V uvažovanom príklade je zrejmé, že na segmente sa parabola nachádza nad priamkou, a preto je potrebné odpočítať od

Je možné konštruovať čiary bod po bode, pričom hranice integrácie sa zisťujú akoby „sami od seba“. Analytická metóda hľadania limitov sa však stále niekedy musí použiť, ak je napríklad graf dostatočne veľký alebo závitová konštrukcia neodhalila limity integrácie (môžu byť zlomkové alebo iracionálne).

Požadovaný údaj je ohraničený parabolou zhora a priamkou zdola.

Na segmente , podľa zodpovedajúceho vzorca:

odpoveď: S \u003d 4,5 štvorcových jednotiek

Úloha 1(o výpočte plochy krivočiareho lichobežníka).

V karteziánskom pravouhlom súradnicovom systéme xOy je uvedený údaj (pozri obrázok) ohraničený osou x, priamkami x \u003d a, x \u003d b (krivkový lichobežník. Je potrebné vypočítať plochu \ krivočiary lichobežník.
Riešenie. Geometria nám dáva recepty na výpočet plôch mnohouholníkov a niektorých častí kruhu (sektor, segment). Pomocou geometrických úvah budeme schopní nájsť len približnú hodnotu požadovanej plochy, pričom argumentujeme nasledovne.

Rozdeľme segment [a; b] (základňa krivočiareho lichobežníka) na n rovnakých dielov; toto rozdelenie je realizovateľné pomocou bodov x 1 , x 2 , ... x k , ... x n-1 . Nakreslite čiary cez tieto body rovnobežné s osou y. Potom sa daný krivočiary lichobežník rozdelí na n častí, na n úzkych stĺpikov. Plocha celého lichobežníka sa rovná súčtu plôch stĺpcov.

Uvažujme samostatne k-tý stĺpec, t.j. krivočiary lichobežník, ktorého základňou je segment. Nahradíme ho obdĺžnikom s rovnakou základňou a výškou rovnou f(x k) (pozri obrázok). Oblasť obdĺžnika je \(f(x_k) \cdot \Delta x_k \), kde \(\Delta x_k \) je dĺžka segmentu; je prirodzené považovať zostavený produkt za približnú hodnotu plochy k-tého stĺpca.

Ak teraz urobíme to isté so všetkými ostatnými stĺpcami, dospejeme k nasledovnému výsledku: plocha S daného krivočiareho lichobežníka sa približne rovná ploche Sn stupňovitého útvaru zloženého z n obdĺžnikov (pozri obrázok):
\(S_n = f(x_0)\Delta x_0 + \bodky + f(x_k)\Delta x_k + \bodky + f(x_(n-1))\Delta x_(n-1) \)
V záujme jednotnosti zápisu tu uvažujeme, že a \u003d x 0, b \u003d x n; \(\Delta x_0 \) - dĺžka segmentu , \(\Delta x_1 \) - dĺžka segmentu atď.; zatiaľ čo, ako sme sa zhodli vyššie, \(\Delta x_0 = \bodky = \Delta x_(n-1) \)

Takže, \(S \približne S_n \), a táto približná rovnosť je tým presnejšia, čím je n väčšie.
Podľa definície sa predpokladá, že požadovaná oblasť krivočiareho lichobežníka sa rovná limitu sekvencie (S n):
$$ S = \lim_(n \to \infty) S_n $$

Úloha 2(o posunutí bodu)
Hmotný bod sa pohybuje po priamke. Závislosť rýchlosti od času vyjadruje vzorec v = v(t). Nájdite posunutie bodu za časový interval [a; b].
Riešenie. Ak by bol pohyb rovnomerný, potom by sa úloha riešila veľmi jednoducho: s = vt, t.j. s = v(b-a). Pre nerovnomerný pohyb treba použiť tie isté myšlienky, na ktorých bolo založené riešenie predchádzajúceho problému.
1) Rozdeľte časový interval [a; b] na n rovnakých častí.
2) Uvažujme časový interval a predpokladajme, že počas tohto časového intervalu bola rýchlosť konštantná, ako napríklad v čase t k . Takže predpokladáme, že v = v(t k).
3) Nájdite približnú hodnotu posunutia bodu za časový interval , túto približnú hodnotu označíme s k
\(s_k = v(t_k) \Delta t_k \)
4) Nájdite približnú hodnotu posunutia s:
\(s \približne S_n \) kde
\(S_n = s_0 + \bodky + s_(n-1) = v(t_0)\Delta t_0 + \bodky + v(t_(n-1)) \Delta t_(n-1) \)
5) Požadované posunutie sa rovná limitu postupnosti (S n):
$$ s = \lim_(n \to \infty) S_n $$

Poďme si to zhrnúť. Riešenia rôznych úloh boli zredukované na rovnaký matematický model. Mnohé problémy z rôznych oblastí vedy a techniky vedú v procese riešenia k rovnakému modelu. Takže tento matematický model by sa mal špeciálne študovať.

Pojem určitého integrálu

Uveďme matematický popis modelu, ktorý bol skonštruovaný v troch uvažovaných úlohách pre funkciu y = f(x), ktorá je spojitá (ale nie nevyhnutne nezáporná, ako sa predpokladalo v uvažovaných úlohách) na segmente [ a; b]:
1) rozdeliť segment [a; b] na n rovnakých častí;
2) súčet $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \bodky + f(x_(n-1))\Delta x_(n-1) $$
3) vypočítajte $$ \lim_(n \to \infty) S_n $$

V priebehu matematickej analýzy sa dokázalo, že táto limita existuje v prípade spojitej (alebo po častiach spojitej) funkcie. Volá sa určitý integrál funkcie y = f(x) cez segment [a; b] a sú označené takto:
\(\int\limits_a^b f(x) dx \)
Čísla a a b sa nazývajú hranice integrácie (dolné a horné).

Vráťme sa k vyššie uvedeným úlohám. Definícia oblasti uvedená v probléme 1 môže byť teraz prepísaná takto:
\(S = \int\limits_a^b f(x) dx \)
tu S je oblasť krivočiareho lichobežníka znázorneného na obrázku vyššie. To je čo geometrický význam určitého integrálu.

Definíciu posunu s bodu, ktorý sa pohybuje v priamom smere rýchlosťou v = v(t) v časovom intervale od t = a do t = b, uvedenú v úlohe 2, možno prepísať takto:

Newtonov - Leibnizov vzorec

Na začiatok si odpovedzme na otázku: aký je vzťah medzi určitým integrálom a primitívom?

Odpoveď možno nájsť v úlohe 2. Na jednej strane, posunutie s bodu, ktorý sa pohybuje po priamke rýchlosťou v = v(t) za časový interval od t = a do t = b, sa vypočíta ako vzorec
\(S = \int\limits_a^b v(t) dt \)

Na druhej strane súradnica pohybujúceho sa bodu je primitívom pre rýchlosť - označme ju s(t); preto posunutie s je vyjadrené vzorcom s = s(b) - s(a). V dôsledku toho dostaneme:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
kde s(t) je primitívna derivácia pre v(t).

Nasledujúca veta bola dokázaná v priebehu matematickej analýzy.
Veta. Ak je funkcia y = f(x) spojitá na segmente [a; b], potom vzorec
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
kde F(x) je primitívna derivácia pre f(x).

Tento vzorec sa zvyčajne nazýva Newtonov-Leibnizov vzorec na počesť anglického fyzika Isaaca Newtona (1643-1727) a nemeckého filozofa Gottfrieda Leibniza (1646-1716), ktorí ho dostali nezávisle od seba a takmer súčasne.

V praxi namiesto písania F(b) - F(a) používajú zápis \(\left. F(x)\right|_a^b \) (niekedy je tzv. dvojitá substitúcia) a podľa toho prepíšte Newtonov-Leibnizov vzorec do tohto tvaru:
\(S = \int\limits_a^b f(x) dx = \vľavo. F(x)\vpravo|_a^b \)

Pri výpočte určitého integrálu najprv nájdite primitívnu deriváciu a potom vykonajte dvojitú substitúciu.

Na základe Newtonovho-Leibnizovho vzorca možno získať dve vlastnosti určitého integrálu.

Nehnuteľnosť 1. Integrál súčtu funkcií sa rovná súčtu integrálov:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

Nehnuteľnosť 2. Konštantný faktor možno vyňať z integrálneho znamienka:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

Výpočet plôch rovinných útvarov pomocou určitého integrálu

Pomocou integrálu môžete vypočítať plochu nielen krivočiarych lichobežníkov, ale aj rovinných útvarov zložitejšieho typu, ako je ten, ktorý je znázornený na obrázku. Obrazec P je ohraničený priamkami x = a, x = b a grafmi spojitých funkcií y = f(x), y = g(x) a na úsečke [a; b] platí nerovnosť \(g(x) \leq f(x) \). Na výpočet plochy S takéhoto obrázku budeme postupovať takto:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

Takže plocha S obrázku ohraničená priamkami x = a, x = b a grafmi funkcií y = f(x), y = g(x), spojité na segmente a také, že pre ľubovoľné x od segment [a; b] nerovnosť \(g(x) \leq f(x) \) je splnená, vypočíta sa podľa vzorca
\(S = \int\limits_a^b (f(x)-g(x))dx \)

Tabuľka neurčitých integrálov (antiderivátov) niektorých funkcií

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n+1))(n+1 ) +C \;\; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch )x+C $$