Биосфера как глобальная экосистема. Развитие биосферы в ноосферу

В науке термины «экосистема» и «биосфера» часто рассматриваются в общем контексте, однако обозначают они разные объекты. В чем заключается их специфика?

Что представляет собой экосистема?

Экосистема - это природная среда, которая состоит из:

  • сообществ населяющих ее организмов;
  • среды обитания соответствующих организмов;
  • системы различных коммуникаций, благодаря которым осуществляется обмен веществами, а также энергией между данными организмами.

Экосистема бывает весьма небольшой по масштабам. Например, она может быть представлена обычным прудом в лесу. В нем, таким образом, обитают сообщества организмов - водорослей, рыб, улиток, бактерий, присутствует среда их обитания - вода, а также системы различных коммуникаций веществ и энергии (например, солнечный свет, проникающий в воду и способствующий фотосинтезу растений, которые произрастают в воде).

Есть примеры более масштабных экосистем. Например - лиственный лес, который занимает значительные площади в центральной части России. В соответствующей экосистеме в большом многообразии будут присутствовать живые организмы, несколько сред обитания - наземная, воздушная, водная (если говорить о тех участках леса, в которых есть водоемы), большое количество коммуникаций - представленные ресурсами солнечного света, почвы, химических компонентов атмосферы.

Все экосистемы Земли объединены в биосферу. Рассмотрим ее особенности.

Что представляет собой биосфера?

Под биосферой принято понимать оболочку Земли, которая населена живыми организмами, а также находится под их непосредственным воздействием. Включает в себя, как мы отметили выше, все экосистемы планеты.

Биосфера распространяется на гидросферу - водную оболочку Земли, верхние слои литосферы - земной коры, а также нижние участки атмосферы. Сейчас биосферу населяет несколько миллионов видов живых организмов. В соответствии с современными научными представлениями, человек также относится к ним. Считается, что влияние людей на биосферу, степень их воздействия на нее существенно выше, чем у других организмов.

В среде ученых также распространен следующий подход: к биосфере следует относить участки космических объектов за пределами Земли, которые могут быть заселены живыми организмами. Несмотря на то что обнаружение данных участков может быть крайне затруднено, некоторые исследования показывают наличие на них потенциала для жизнедеятельности различных организмов.

Сравнение

Главное отличие экосистемы от биосферы заключается в том, что первый термин соответствует локальному сообществу живых организмов. Например, осуществляющих жизнедеятельность в пруду, лесу. Биосфера - понятие, соответствующее глобальному сообществу живых организмов, фактически заселяющих все имеющиеся на Земле экосистемы.

Кроме того, некоторые ученые расширяют границы биосферы до участков космических объектов за пределами Земли, на которых могут обитать живые организмы. Наличие экосистем на них не доказано, более того, неизвестно, какими могут быть особенности коммуникаций живых организмов в них, а также характеристики среды их обитания. Возможно, что они будут совершенно иными, чем те, что наблюдаются на Земле.

Определив, в чем разница между экосистемой и биосферой, отразим выводы в небольшой таблице.

Биосфера (от греч. bios - жизнь, sphaira - шар) - область системного взаимодействия живого и косного вещества планеты. Она представляет собой глобальную экосистему - совокупность всех биогеоценозов (экосистем) нашей планеты.

Заслуга создания целостности учения о биосфере принадлежит В. И. Вернадскому. Используя этот термины, он создал науку «биосфера», ввел понятие «живое вещество» - совокупность всех живых организмов, а также отвел живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая деятельность организмов не только в настоящее время, но и в прошлом. Поэтому биосфера - это все пространство, где существует или когда-либо существовала жизнь, т. е. где встречаются живые организмы или продукты их жизнедеятельности.

Жизнь в биосфере зависит от потока энергии и круговорота веществ между биотическим и абиотическим компонентами. Круговороты веществ называются биогеохимическими циклами. Существование этих циклов обеспечивается энергией Солнца. Наглядное представление о путях прохождения энергии дают пищевые цепи. Каждое их звено – это определенный трофический уровень. Первый трофический уровень занимают автотрофы , или продуценты. Организмы второго трофического уровня называются первичными консументами , третьего – вторичными консументами и т.д. Продуценты – это растения, цианобактерии (сине-зеленые «водоросли») и некоторые другие типы бактерий. Консументы зависят прямо (травоядные) или косвенно (хищники) от величины чистой первичной продукции как источника энергии и веществ. Прохождение энергии через живое вещество представляет собой путь от света к продуцентам, далее к консументам, а от тех и других – к теплу. Этот путь – поток, а не круговорот, поскольку в виде тепла энергия рассеивается в окружающей среде и не может снова использоваться для фотосинтеза. Таким образом, энергетический поток через живое вещество – это процесс потери накопленной организмами энергии. Поддержание динамического равновесия между биотическим и абиотическим компонентами биосферы является необходимым условием существования всех форм жизни. Воздействие человека на биосферу, сопровождающееся ухудшением качества воды, сведением лесов или выбросом в атмосферу загрязняющих веществ, может создать угрозу жизни на Земле Свойства биосферы .

Биосфере, как и составляющим ее другим экосистемам, более низкого ранга, присуща система свойств, которые обеспечивают ее функционирование, саморегулирование, устойчивость и другие параметры. Свойства:

1.Биосфера - централизованная система . Центральным звеном ее выступают живые организмы (живое вещество).

2.Биосфера - открытая система . Ее существование немыслимо без поступления энергии извне. Она испытывает воздействие космических сил, прежде всего солнечной активности.

3. Биосфера - саморегулирующаяся система , для которой, характерна организованность. В настоящее время это свойство называют гомеостазом, понимая под ним способность возвращаться в исходное состояние, гасить возникающие возмущения включением ряда механизмов.

4. Биосфера - система , характеризующаяся большим разнообразием . Это и разные среды жизни (водная, наземно-воздушная, почвенная, организменная); и разнообразие природных зон, различающихся по климатическим, гидрологическим, почвенным, биотическим и другим свойствам; и наличие регионов, различающихся по химическому составу; и, самое главное, объединение в рамках биосферы большого количества элементарных экосистем со свойственным им видовым разнообразием.

5. Важное свойство биосферы - наличие в ней механизмов , обеспечивающих круговорот веществ и связанную с ним неисчерпаемость отдельных химических элементов и их соединений. Только благодаря круговоротам и наличию неисчерпаемого источника солнечной энергии обеспечивается непрерывность процессов в биосфере и ее потенциальное бессмертие.

структура биосферы .

Биосфера включает в себя:

аэробиосферу - нижнюю часть атмосферы;

гидробиосферу - всю гидросферу;

литобиосферу - верхние горизонты литосферы (твердой земной оболочки).

Термин "биосфера" (от греч. bios
- жизнь, sphaira - пленка) был
предложен австралийским ученым
Э.Зюссом (1831 - 1914), который
понимал под биосферой
совокупность живых организмов
Земли.
Сточки зрения экологии,
биосфера - это часть оболочек
планеты в границах распространения
живых организмов и продуктов их
жизнедеятельности.
Функционально биосфера
является планетарной экосистемой.


УЧЕНИЯ О БИОСФЕРЕ
Более 70 лет назад академик
В.И.Вернадский разработал
учение о биосфере - оболочке
Земли, населенной и
преобразуемой живыми
организмами.
Он выявил геологическую роль
живых организмов как
фактор преобразования
минеральных оболочек
планеты
3

В.И. Вернадский – основоположник учения о биосфере

В.И. ВЕРНАДСКИЙ – ОСНОВОПОЛОЖНИК
УЧЕНИЯ О БИОСФЕРЕ
Биосферу В. И. Вернадский
определяет как наружную
область Земного шара,
граничащую с Космосом,
сосредоточившую в себе
жизнь в различных формах ее
проявления (латентном и
активном), пронизывающую
всю гидросферу, верхние
слои литосферы и нижние
слои атмосферы, в которой
происходит аккумуляция,
трансформация световой
энергии и совершается
геохимическая работа.
4

Возникновение и развитие биосферы (гипотеза)

ВОЗНИКНОВЕНИЕ И РАЗВИТИЕ
БИОСФЕРЫ (ГИПОТЕЗА)
Исторические этапы эволюции биосферы:
1. Возникновение и развитие жизни в воде.
2. Формирование новой среды жизни – организмовхозяев.
3. Заселение организмами суши со
сформировавшимися новыми средами жизни:
наземно-воздушной и почвенной.
4. Появление человека – биосоциального существа.
5. Переход биосферы под влиянием человека в
ноосферу
5

Какие же физико-химические условия наиболее благоприятны для существования жизни?

КАКИЕ ЖЕ ФИЗИКО-ХИМИЧЕСКИЕ УСЛОВИЯ НАИБОЛЕЕ
БЛАГОПРИЯТНЫ ДЛЯ СУЩЕСТВОВАНИЯ ЖИЗНИ?
В 1926 г. В.И. Вернадский
Достаточное количество СО2 и О2.
Достаточное
количество
воды
(причем
обязательно – в жидком состоянии).
Температурный режим, исключающий как
слишком высокие температуры (вызывающие
свертывание белков), так и слишком низкие
(прекращающие работу ферментов).
Наличие «прожиточного минимума» элементов
минерального питания.
Определенная соленость водной среды.
Современная жизнь распространена в верхней
части земной коры (литосфере), нижних слоях
атмосферы Земли (тропосфере) и в водной оболочке
Земли (гидросфере).

Границы существования живых организмов в литосфере, атмосфере, гидросфере

ГРАНИЦЫ СУЩЕСТВОВАНИЯ ЖИВЫХ ОРГАНИЗМОВ В
ЛИТОСФЕРЕ, АТМОСФЕРЕ, ГИДРОСФЕРЕ
В литосфере жизнь ограничивает температура горных пород и
подземных вод, которая постепенно возрастает с глубиной и на уровне
1,5–15 км превышает +100°С. Самая большая глубина, на которой в
породах земной коры были обнаружены бактерии, составляет 4 км. В
нефтяных месторождениях на глубине 2–2,5 км бактерии
регистрируются в значительном количестве.
В океане жизнь распространена до более значительных глубин и
встречается даже на дне океанических впадин глубиной 10–11 км.
Верхняя граница жизни в атмосфере определяется нарастанием с
высотой ультрафиолетовой радиации.
Озоновый слой поглощает большую часть ультрафиолетового
излучения Солнца на высоте 22–25 км. Все живое, поднимающееся
выше защитного слоя озона, погибает. Споры бактерий и грибов
обнаруживают до высоты 20–22 км, но основная часть аэропланктона
сосредоточена
в
слое
до
1–1,5 км. В горах граница распространения наземной жизни проходит
на высоте около 6 км над уровнем моря.

Границы биосферы.

Биосфера располагается на пересечении
верхней части литосферы, нижней
части атмосферы и занимает всю
гидросферу.
Верхняя граница (атмосфера): 15÷20 км.
Нижняя граница (литосфера): 3,5÷7,5 км.
Нижняя граница (гидросфера): 10÷11 км.
Атмосфера (от греч. ατμός - пар и
σφαῖρα - сфера) - газовая оболочка
небесного тела, удерживаемая около
него гравитацией.
Литосфера (от греч. λίθος - камень и
σφαίρα - сфера) - твёрдая оболочка
Земли.
Гидросфера (от греч. Yδωρ - вода и
σφαῖρα - шар) - совокупность всех
водных запасов Земли.

Основные характеристики геосфер Земли

10

Границы биосферы

ГРАНИЦЫ БИОСФЕРЫ
Верхняя граница биосферы
определяется озоновым
экраном, представляющим
собой тонкий слой (2-4 мм)
газа озона (03). Роль
озонового слоя в биосфере
велика: он задерживает
губительные для живого
ультрафиолетовые лучи
солнечного света. Этот слой
расположен на высотах 16 20 км.
Нижняя граница биосферы
неровная. К примеру, в
литосфере живые организмы
или продукты их
жизнедеятельности можно
встретить на глубине 3,5-7,5
км, а в Мировом океане 11
организмы - на глубине 10 11 км.

Границы биосферы
Энергия солнечного света в
процессе фотосинтеза
преобразуется в энергию
химических связей
образованного
органического вещества
растений, которое во время
дыхания частично
используется самими
растениями.
Другая часть образованной
органики является
строительным материалом и
источником энергии для
многочисленных
гетеротрофов. При
разрушении неживой
органики остатки энергии
теряются в виде теплового
излучения.

Типы веществ в биосфере

ТИПЫ ВЕЩЕСТВ В БИОСФЕРЕ
Биосфера
Косное
вещество
сформирова
лось без
участия
живых
организмов:
вода,
гранит,
базальт
и т.д.
Живое
вещество –
совокупность
всех живых
организмов
на Земле
Биогенное
вещество –
создано в
процессе
жизнедеяте
льности
организмов
Кислород,
каменный
уголь,
известняк
Биокосное
веществоСовместный
результат
деятельности
организмов
и
небиологиче
ских
процессов:13
почва

Вещество,
находящееся в радиоактивном
распаде.
Рассеянные атомы.
Вещество космического происхождения
14

Основные особенности живого вещества

ОСНОВНЫЕ ОСОБЕННОСТИ ЖИВОГО
ВЕЩЕСТВА
Содержит огромное количество
свободной энергии.
Высокая скорость протекания
химических реакций.
Состоит из ассиметричных
молекул.
Обладает концентрационной
способностью.
Специфическая форма движения
Газовая функция
15

планете

ФУНКЦИИ ЖИВОГО ВЕЩЕСТВА НА НАШЕЙ
ПЛАНЕТЕ
Энергетическая функция
Газовая функция
Концентрационная функция

функция
Деструктивная функция
Средообразующая функция
Транспортная функция

ФУНКЦИИ ЖИВОГО ВЕЩЕСТВА НА НАШЕЙ
ПЛАНЕТЕ
Энергетическая функция заключается в осуществлении связи
биосферно-планетарных
явлений
с
космическим
излучением,
преимущественно с солнечной радиацией. В основе этой функции лежит
фотосинтетическая деятельность зеленых растений, в процессе которой
происходит
аккумуляция
(накопление)
солнечной
энергии
и
ее
перераспределение между отдельными компонентами биосферы. За счет
накопленной солнечной энергии протекают все жизненные явления на Земле.
Газовая функция обусловливает миграцию газов и их превращения,
обеспечивает газовый состав биосферы. Преобладающая масса газов на
Земле имеет биогенное происхождение. В процессе функционирования
живого вещества создаются основные газы: азот, кислород, углекислый газ,
сероводород, метан и др.
Концентрационная функция проявляется в извлечении и накоплении
живыми организмами биогенных элементов окружающей среды. В составе
живого вещества преобладают атомы легких элементов: водорода, углерода,
азота, кислорода, натрия, магния, алюминия, кремния, серы, хлора, калия,
кальция. Концентрация этих элементов в теле живых организмов в сотни и
тысячи раз выше, чем во внешней среде. Этим объясняется неоднородность
химического состава биосферы и ее существенное отличие от состава
неживого вещества планеты.

Функции живого вещества на нашей планете

ФУНКЦИИ ЖИВОГО ВЕЩЕСТВА НА НАШЕЙ
ПЛАНЕТЕ
Окислительно-восстановительная
функция
заключается
в
химическом превращении главным образом тех веществ, которые содержат
атомы с переменной степенью окисления (соединения железа, марганца и др.)
При этом на поверхности Земли преобладают биогенные процессы окисления
и восстановления.
Деструктивная функция обусловливает процессы, связанные с
разложением организмов после их смерти, вследствие которой происходит
минерализация органического вещества, т. е. превращение живого вещества в
косное. В результате образуются также биогенное и биокосное вещество
биосферы.
Средообразующая функция заключается в преобразовании физикохимических параметров среды в результате процессов жизнедеятельности. В.
И. Вернадский писал: «Организм имеет дело со средой, к которой он не только
приспособлен, но которая приспособлена к нему».
Транспортная функция – это осуществление переноса вещества против
силы тяжести и в горизонтальном направлении. Живое вещество –
единственный (помимо поверхностного натяжения) фактор, обусловливающий
обратное перемещение вещества – снизу вверх, из океана – на континенты,
реализующий тем самым «восходящую» ветвь биогеохимических циклов.

Функции биосферы

1.
Биотический круговорот химических веществ, который
осуществляется при участии живых организмов – это
постоянный круговорот веществ меж грунтом, гидросферой,
атмосферой и живыми организмами

Функции биосферы
2. Газовая функция. Фотосинтез, дыхание, деятельность
азотфиксирующих и денитрифицирующих бактерий создали
атмосферу Земли, содержащую 21% кислорода, 0,03%
углекислого газа, около 80% азота. Метан, сероводород -
эти газы также биогенного происхождения.

Функции биосферы

Концентрационная функция живого вещества
проявляется в захвате и накоплении живыми организмами
биогенных химических элементов - углерода, кислорода,
водорода, азота, калия, натрия и др.

Функции биосферы

Окислительно-восстановительная функция
связана с химическими превращениями веществ.
Эти реакции лежат в основе метаболизма, в
основе реакций пластического и энергетического
обменов.
Энергетическая функция, связанная с
превращением солнечной энергии в энергию
химических связей образованного органического
вещества.

Закон биогенной миграции атомов В.И. Вернадского

ЗАКОН БИОГЕННОЙ МИГРАЦИИ АТОМОВ
В.И. ВЕРНАДСКОГО
Биогенная миграция вещества – одна из форм всеобщей
миграции элементов в природе. Под биогенной геохимической
миграцией следует понимать миграцию органического и косного
вещества, участвующего в росте и развитии живых организмов и
производимого
последними
в
результате
сложных
биохимических и биогеохимических процессов. В.И. Вернадский
сформулировал закон биогенной миграции атомов в следующем
виде:
Миграция
химических
элементов
в
биосфере
осуществляется или при непосредственном участии живого
вещества (биогенная миграция), или же протекает в среде,
геохимические особенности которой (О2, СО2, Н2 и т.д.)
обусловлены живым веществом (тем, которое населяет
биосферу в настоящее время, и тем, которое действовало на
Земле в течение всей геологической истории).

Основные свойства биосферы

ОСНОВНЫЕ СВОЙСТВА БИОСФЕРЫ
- Централизованная
система.
- Открытая система.
- Саморегулирующаяся система.
- Характеризуется большим
разнообразием.
- Наличие механизмов,
обеспечивающих круговорот
веществ.
24

Границы биосферы совпадают с границами
распространения живых организмов в оболочках
Земли, что определяется наличием условий
существования жизни (благоприятный температурный
режим, уровень радиации, достаточное количество
воды, минеральных веществ, кислорода, углекислого
газа).
Биосфера охватывает всю поверхность суши, а также
океаны, моря и ту часть недр Земли, где находятся
породы, созданные в процессе жизнедеятельности
живых организмов. Иначе говоря, биосфера - это
часть литосферы, атмосферы, гидросферы,
заселенная живым веществом.
Для существования живых организмов необходимы
следующие условия: достаточное количество воды,
минеральных веществ, оптимальный температурный
26
режим, уровень радиации и др.

Таким образом, биосфера представляет собой грандиозную равновесную систему с непрерывным круговоротом вещества и энергии, в котором акти

ТАКИМ ОБРАЗОМ, БИОСФЕРА ПРЕДСТАВЛЯЕТ СОБОЙ
ГРАНДИОЗНУЮ РАВНОВЕСНУЮ СИСТЕМУ С
НЕПРЕРЫВНЫМ КРУГОВОРОТОМ ВЕЩЕСТВА И ЭНЕРГИИ, В
КОТОРОМ АКТИВНУЮ РОЛЬ ИГРАЮТ МИКРООРГАНИЗМЫ.
Главенствующим источником энергии является
Солнце. Эта энергия расходуется на физические и
химические процессы, происходящие в атмосфере,
гидросфере, литосфере, на перемещение воздушных
масс, испарение воды, растворение веществ,
выделение и поглощение газов. Накопителями
энергии являются органические вещества.
Общее количество солнечной энергии, поступающей в
атмосферу, составляет в среднем 700 Ккад/см2 в
сутки, а около 55 Ккал/см2 в год достигает
27
поверхности Земли и используется организмами.

Энергетическая функция живого вещества

ЭНЕРГЕТИЧЕСКАЯ ФУНКЦИЯ ЖИВОГО
ВЕЩЕСТВА
заключается в
накоплении и
преобразовании
растениями энергии
Солнца (бактериихемоавтотрофы
преобразуют энергию
химических связей) и
передаче ее по пищевым
цепям: от продуцентов - к
консументам и, далее, - к
редуцентам. При этом
энергия постепенно
рассеивается, но часть ее
вместе с остатками
организмов переходит в
ископаемое состояние,
"консервируется" в земной
28
коре, образуя запасы
нефти, угля и др.

Биомасса биосферы
Биомасса различных участков поверхности Земли зависит
от климатических условий - температуры, количества
выпадаемых осадков. Суровые климатические условия
тундры - низкие температуры, вечная мерзлота, короткое
холодное лето сформировали своеобразные растительные
сообщества с небольшой биомассой и небольшим числом
видов – около 500. Растительность тундры представлена
лишайниками, мхами, стелющимися карликовыми
формами деревьев, травянистой растительностью,
выдерживающей такие экстремальные условия.

На планете Земля все вещества находятся в биохимическом круговороте.

НА ПЛАНЕТЕ ЗЕМЛЯ ВСЕ ВЕЩЕСТВА НАХОДЯТСЯ
В БИОХИМИЧЕСКОМ КРУГОВОРОТЕ.
Известны два основных
круговорота: большой
(геологический) и малый
(биотический).
30

При большом круговороте

ПРИ БОЛЬШОМ КРУГОВОРОТЕ
горные породы разрушаются, выветриваются,
сносятся водными потоками в Мировой океан,
где образуют мощные морские отложения
пластов.
Часть соединений растворяется в воде или
используется биоценозом.
Тектонические процессы в течение долгого
времени приводят к возврату на сушу морских
напластовываний, и процесс начинается вновь.
Большой круговорот длится миллионы лет.
31

Малый круговорот происходит

МАЛЫЙ КРУГОВОРОТ ПРОИСХОДИТ
на уровне биогеоценоза и является составной частью
большого круговорота. При этом питательные
вещества воздуха, воды, почвы аккумулируются в
растениях и расходуются на создание их массы и
жизненные процессы.
Продукты распада органического вещества под
воздействием бактерий вновь разлагаются до
минеральных компонентов, доступных растениям,
и вовлекаются ими в поток вещества.
Возврат химических веществ из неорганической
среды через живые организмы и растения обратно
в неорганическую среду с использованием
солнечной энергии и химических реакций
называют биохимическим циклам.
32

В круговороте веществ участвуют три группы организмов:

В КРУГОВОРОТЕ ВЕЩЕСТВ УЧАСТВУЮТ
ТРИ ГРУППЫ ОРГАНИЗМОВ:
Продуценты
консументы
редуценты
33

КРУГОВОРОТ АЗОТА В БИОСФЕРЕ
34

35

Круговорот углерода в биосфере

КРУГОВОРОТ УГЛЕРОДА В БИОСФЕРЕ
36

5. Круговорот воды в биосфере

5. КРУГОВОРОТ ВОДЫ В БИОСФЕРЕ
Круговорот воды происходит путем испарения
ее с поверхности водоемов в атмосферу, а затем
пар переносится возами массами и выпадает в
виде осадков.
Средняя продолжительность общего цикла
обмена углерода, азота, воды в биологическом
круговороте - 300-400
Указанная скорость способствует освобождению
минеральных соединений, связанных в
биомассе.
39

Круговорот веществ в природе согласуется с
местом, временем и скоростью процессов по
уровням популяции до биосферы. Эта
согласованность называется экологическим
равновесием.
Оно характеризуется подвижностью и
динамичностью.
На сегодняшний день нет такой экосистемы,
которая не подвергалась бы влиянию человека.
40

6. Антропогенный обмен веществ

6. АНТРОПОГЕННЫЙ
ОБМЕН
ВЕЩЕСТВ
В результате производственной деятельности
возник новый процесс обмена вещества и
энергии между природой и обществом,
который получил название социальный обмен
вещества и энергии, или антропогенный.
Антропогенный обмен существенно
изменяет общепланетарный круговорот
веществ, резко ускоряя его, отличается
своей незамкнутостью.
41

До появления человека равновесие биосферы определяли пять энергетических факторов:

ДО ПОЯВЛЕНИЯ ЧЕЛОВЕКА РАВНОВЕСИЕ БИОСФЕРЫ
ОПРЕДЕЛЯЛИ ПЯТЬ ЭНЕРГЕТИЧЕСКИХ ФАКТОРОВ:
солнечная радиация,
сила гравитации,
технические силы,
химическая энергия,
биогенная энергия.
Они развивались 3,5 млрд лет и сформировали
природную среду.
42

Антропогенное загрязнение бывает
пылевое,
газовое,
химическое,
ароматическое,
тепловое,
радиоактивное.
Источником загрязнения является хозяйственная
деятельность человека (промышленность,
транспорт, коммунальное и сельское хозяйство).
43

Фонды природного круговорота

ФОНДЫ ПРИРОДНОГО КРУГОВОРОТА
Процессы, происходящие в различных оболочках Земли, находятся
в состоянии динамического равновесия, и изменение хода какого-либо из
них влечет за собой бесконечные цепочки подчас необратимых явлений.
В каждом природном круговороте целесообразно различать две части, или
два «фонда»:
резервный фонд – большая масса медленно движущихся веществ, в
основном неорганической природы;
подвижный, или обменный, фонд – меньший, но более активный, для
которого характерен быстрый обмен между организмами и окружающей
средой.
Обменный фонд образуется за счет веществ, которые возвращаются
в круговорот либо за счет первичной экскреции (от лат. excretum –
выделенное) животными, либо при разложении детрита микроорганизмами.

Развитие биосферы в ноосферу

РАЗВИТИЕ БИОСФЕРЫ В НООСФЕРУ
Ноосфера – от греческого слова «ноос»
(разум).
Понятие введено в 1927 г. учёными Леруа и
Тейером де Шарденом.
Ноосфе́ра (греч. νόος - «разум» и
σφαῖρα - «шар») - сфера
взаимодействия общества и природы, в
границах которой разумная человеческая
деятельность становится определяющим
фактором развития (эта сфера
обозначается также терминами
«антропосфера», «биотехносфера»)
46

Признаки ноосферы

ПРИЗНАКИ НООСФЕРЫ
1.
2.
3.
4.
5.
6.
7.
Рост разработок полезных ископаемых.
Массовое потребление продуктов
фотосинтеза прошлых геологических
эпох.
Рассеивание энергии Земли.
Появление и накопление новых
веществ.
Развитие ядерных технологий.
Возникновение космонавтики. Выход за
пределы биосферы.
Ноосфера – сфера Солнечной системы. 47

Ноосфера

«Биосфера не раз переходила в новое
эволюционное состояние… Это переживаем мы
и сейчас, за последние 10-20 тысяч лет, когда
человек, выработав в социальной среде
научную мысль, создаёт в биосфере новую
геологическую силу, в ней не бывалую.
Биосфера перешла или, вернее, переходит в
новое эволюционное состояние - в
ноосферу - перерабатывается научной мыслью
социального человека»
В.И. Вернадский

Экологические законы Б. Коммонера.

Все связано со всем
Природа знает лучше
За все надо платить
Все надо куда-то девать

Природа знает лучше.

Человек
должен
сохранять
регуляторные механизмы
Экологическое равновесие
биосферы
естественные

За все надо платить.

Международное
сообщество
финансирует
научные проекты, позволяющие сохранять
биологическое разнообразие и климат

Все надо куда-то девать.

Международное сообщество приняло специальные
законы о запрете на вывоз ядовитых и
радиоактивных отходов и их захоронение в бедных
странах.
Мировой океан не место для
отходов.
Каждая страна должна производить захоронения отходов на
собственной территории.

Все связано со всем.

Человек
Природа
Планета Земля

ДАВАЙТЕ БЕРЕЖНО ОТНОСИТЬСЯ К ПРИРОДЕ,
ИНАЧЕ НАСТУПИТ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

биосфера баланс экологический

1. Природные системы, составляющие биосферу

1. Экосистема, или экологическая система -- биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии. Экосистема -- сложная (по определению сложных систем Л. Берталанфи) самоорганизующаяся, саморегулирующаяся и саморазвивающаяся система. Основной характеристикой экосистемы является наличие относительно замкнутых, стабильных в пространстве и времени потоков вещества и энергии между биотической и абиотической частями экосистемы. Из этого следует, что не всякая биологическая система может назваться экосистемой, например, Таковыми не являются аквариум или трухлявый пень. Данные биологические системы (естественные или искусственные) не являются в достаточной степени самодостаточными и саморегулируемыми (аквариум), если перестать регулировать условия и поддерживать характеристики на одном уровне, достаточно быстро она разрушится. Такие сообщества не формируют самостоятельных замкнутых циклов вещества и энергии (пень), а являются лишь частью большей системы. Такие системы следует называть сообществами более низкого ранга, или же микрокосмами. Иногда для них употребляют понятие -- фация (например, в геоэкологии), но оно не способно в полной мере описать такие системы, особенно искусственного происхождения. В общем случае в разных науках понятию «фация» соответствуют различные определения: от систем субэкосистемного уровня (в ботанике, ландшафтоведении) до понятий, не связанных с экосистемой (в геологии), либо понятие, объединяющее однородные экосистемы (Сочава В.Б.), или почти тождественное (Берг Л.С., Раменский Л.Г.) определению экосистемы.

Экосистема является открытой системой и характеризуется входными и выходными потоками вещества и энергии. Основа существования практически любой экосистемы -- поток энергии солнечного света, который является следствием термоядерной реакции, -- в прямом (фотосинтез) или косвенном (разложение органического вещества) виде, за исключением глубоководных экосистем: «чёрных» и «белых» курильщиков, источником энергии в которых является внутреннее тепло земли и энергия химических реакций.

Пример экосистемы -- пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живую компоненту системы, биоценоз. Для пруда как экосистемы характерны донные отложения определенного состава, химический состав (ионный состав, концентрация растворенных газов) и физические параметры (прозрачность воды, тренд годичных изменений температуры), а также определённые показатели биологической продуктивности, трофический статус водоёма и специфические условия данного водоёма. Другой пример экологической системы -- лиственный лес в средней полосе России с определённым составом лесной подстилки, характерной для этого типа лесов почвой и устойчивым растительным сообществом, и, как следствие, со строго определёнными показателями микроклимата (температуры, влажности, освещённости) и соответствующим таким условиям среды комплексом животных организмов. Немаловажным аспектом, позволяющим определять типы и границы экосистем, является трофическая структура сообщества и соотношение производителей биомассы, её потребителей и разрушающих биомассу организмов, а также показатели продуктивности и обмена вещества и энергии.

Понятие «геосистема» в советскую науку ввёл академик Сочава. Поскольку практически все географические науки в той или иной степени занимаются вопросами взаимодействия компонентов природной среды, существует довольно много понятий, близких к понятию геосистемы.

Геосистема -- относительно целостное территориальное образование, формирующееся в тесной взаимосвязи и взаимодействии природы, населения и хозяйства, целостность которого определяется прямыми, обратными и преобразованными связями, развивающимися между подсистемами геосистемы. Каждая система обладает определенной структурой, которая формируется из элементов, отношений между ними и их связей с внешней средой. Элемент -- это основная единица системы, выполняющая определенную функцию. В зависимости от масштаба («уровня разрешения»), элемент на определенном уровне представляет собой неделимую единицу. При увеличении уровня разрешения исходный элемент утрачивает свою автономность и становится источником элементов новой системы (подсистемы). Такой подход наиболее важен в географии, оперирующей территориальными системами разных масштабов.

2. Разнообразие типов систем как условия сохранения экологического равновесия

Наиболее важными критериями состояния природной среды сегодня стали системные показатели. Они подразделяются на ландшафтные и экологические. Ландшафтные критерии вытекают из методологии ландшафтного планирования, в рамках которого разработаны представления о емкости ландшафта, структурной сложности и показателях его нарушенности. Среди экосистемных критериев выделяются показатели нарушенности сукцессионного процесса -- закономерного изменения видового разнообразия, спектра жизненных форм, биомассы, продуктивности, накопления отмершей органики, биогенного круговорота в целом. «Неблагополучное состояние» характеризуется существенным отклонением экосистемных параметров от нормального развития. «Экологическое бедствие» (экологический кризис) характеризуется необратимым ретроградным развитием экосистемы. Понятие «устойчивость экологическая» подразумевает способность экосистемы сохранять свою структуру и функциональные особенности при воздействии внешних факторов. Нередко «устойчивость экологическая» рассматривается как синоним экологической стабильности. Устойчивость экосистем не может быть сохранена и обеспечена, если будет нарушен закон внутреннего динамического равновесия. Под угрозой будет не только качество природной среды, но и существование всего комплекса природных компонентов в необозримом будущем.

Закон внутреннего динамического равновесия действует как регулятор нагрузок на окружающую среду при условии, что не нарушены «баланс компонентный» и «баланс крупных территорий». Именно эти «балансы» являются нормами рационального природопользования, это они должны лежать в основе разработки мероприятий по охране окружающей среды в строительстве и реставрации.

Суть этого закона состоит в том, что природная система обладает внутренней энергией, веществом, информацией и динамическим качеством, связанными между собой настолько, что любое изменение одного из этих показателей вызывает в других или в том же, но в другом месте или в другое время, сопутствующие функционально-количественные перемены, сохраняющие сумму вещественно-энергетических, информационных и динамических показателей всей природной системы. Это и обеспечивает системе такие свойства как сохранение равновесия, замыкание цикла в системе и ее «самовосстановление», «самоочищение». Естественное равновесие -- одно из самых характерных свойств живых систем. Оно может не нарушаться при антропогенном влиянии и переходить в равновесие экологическое. «Равновесие экологическое» -- это баланс естественных или измененных человеком средообразующих компонентов и природных процессов, приводящий к длительному (условно-бесконечному) существованию данной экосистемы. Различают компонентное экологическое равновесие, основанное на балансе экологических компонентов внутри одной экосистемы, и ее территориальное экологическое равновесие. Последнее возникает при некотором соотношении интенсивно (агроценозы, урбокомплексы и пр.) или экстенсивно (выпасы, естественные леса и пр.) эксплуатируемых и неэксплуатируемых (заповедники) участков, обеспечивающем отсутствие сдвигов в экологическом балансе крупных территорий в целом. Обычно этот тип равновесия учитывается при расчете «экологической емкости территории».

3. Структура и свойства гео- и экосистем

Структура и свойства геосистем.

Каждый элемент системы и система в целом характеризуется определенными свойствами. Адекватное познание системы зависит от цели конкретного исследования и определения на этой основе множества наиболее существенных свойств. Исчерпывающе описать систему только через свойства невозможно, в связи с чем важной задачей любого системного исследования является определение ограниченного, конечного множества свойств. Это же относится к отношениям между элементами системы.

Геосистемы обладают огромным количеством свойств. Главными из них являются:

а) целостность (наличие единой цели и функции);

б) эмерджентность (несводимость свойств системы к сумме свойств отдельных элементов);

в) структурность (обусловленность поведения системы ее структурными особенностями);

г) автономность (способность создавать и поддерживать высокую степень внутренней упорядоченности, то есть состояние с низкой энтропией);

д) взаимосвязанность системы и среды (система формирует и проявляет свои свойства только в процессе взаимодействия с внешней средой);

е) иерархичность (соподчиненность элементов системы);

ж) управляемость (наличие внешней или внутренней системы управления);

з) устойчивость (стремление к сохранению своей структуры, внутренних и внешних связей);

и) множественность описаний (в силу сложности систем и неограниченного количества свойств их познание требует построения множества моделей в зависимости от цели исследования);

к) территориальность (размещение в пространстве -- это главное свойство систем, рассматриваемое географией);

л) динамичность (развитие систем во времени); сложность (качественные и количественные различия ее элементов и атрибутов).

Структура и свойства экосистем.

В экосистеме можно выделить два компонента -- биотический и абиотический. Биотический делится на автотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза или продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества -- консументы и редуценты) компоненты, формирующие трофическую структуру экосистемы.

Единственным источником энергии для существования экосистемы и поддержания в ней различных процессов являются продуценты, усваивающие энергию солнца, (тепла, химических связей) с эффективностью 0,1 -- 1 %, редко 3 -- 4,5 % от первоначального количества. Автотрофы представляют первый трофический уровень экосистемы. Последующие трофические уровни экосистемы формируются за счёт консументов (2-ой, 3-й, 4-й и последующие уровни) и замыкаются редуцентами, которые переводят неживое органическое вещество в минеральную форму (абиотический компонент), которая может быть усвоена автотрофным элементом.

С точки зрения структуры в экосистеме выделяют:

Климатический режим, определяющий температуру, влажность, режим освещения и прочие физические характеристики среды;

Неорганические вещества, включающиеся в круговорот;

Органические соединения, которые связывают биотическую и абиотическую части в круговороте вещества и энергии;

Продуценты -- организмы, создающие первичную продукцию;

Макроконсументы, или фаготрофы, -- гетеротрофы, поедающие другие организмы или крупные частицы органического вещества;

Микроконсументы (сапротрофы) -- гетеротрофы, в основном грибы и бактерии, которые разрушают мёртвое органическое вещество, минерализуя его, тем самым возвращая в круговорот.

Последние три компонента формируют биомассу экосистемы.

С точки зрения функционирования экосистемы выделяют следующие функциональные блоки организмов (помимо автотрофов):

Биофаги -- организмы, поедающие других живых организмов,

Сапрофаги -- организмы, поедающие мёртвое органическое вещество.

Данное разделение показывает временно-функциональную связь в экосистеме, фокусируясь на разделении во времени образования органического вещества и перераспределении его внутри экосистемы (биофаги) и переработки сапрофагами. Между отмиранием органического вещества и повторным включением его составляющих в круговорот вещества в экосистеме может пройти существенный промежуток времени, например, в случае соснового бревна, 100 и более лет.

Все эти компоненты взаимосвязаны в пространстве и времени и образуют единую структурно-функциональную систему.

4. Признаки нарушения баланса в биосфере

На всем протяжении истории человечества воздействие общества на природу развивалось не как простой линейный процесс. Напряженная, а в ряде случаев критическая экологическая ситуация сложившаяся во второй половине нынешнего века, - это сигнал о наступлении новой фазы во взаимодействии общества и природной среды. Литосфера (твердая оболочка Земли), и особенно ее верхняя часть, стала объектом наиболее чувствительных антропогенных нагрузок. Это результат вторжения человека в область земных недр; производимых им изменений рельефа местности и природных ландшафтов; как вынужденных, так и неоправданных изъятий из сельскохозяйственного оборота земель; разрушения и загрязнения почвенного покрова, опустынивания и других процессов.

Велики потери почвенных ресурсов. Общая площадь утраченных для мирового сельского хозяйства обрабатываемых земель достигла за всю историю человечества 20 000000 квадратных километров, что больше площади всей пашни, используемой в настоящее время (около 15 000 000 квадратных километров). Различные формы почвенной деградации, связанной с антропогенными факторами, представляют собой наиболее крупный источник потерь. От 30% до 80% орошаемых земель в мире страдают от засоления, выщелачивания, заболачивания. На 35% обрабатываемых земель эрозионные процессы превышают почвообразовательный процесс. Каждые 10 лет мировые потери верхнего слоя почвы составляют 7%.Крупной мировой проблемой стал процесс опустынивания, то есть наступления пустынь на культурные агробиоценозы. Опустынивание - результат неправильного ведения хозяйства (уничтожение древесной растительности, пере эксплуатация земель и т.д.). Опустынивание наблюдается в 100 странах мира. Ежегодно из-за этого теряется 6 000 000 гектаров сельхоз. угодий. При сохранении нынешних темпов за 30 лет это явление охватит территорию равную по площади Саудовской Аравии. Объем потерь продукции в масштабе всего мира оценивается в 26 000 000 000 $ в год. Напрашивается вывод о переходе человечества в большей части мира к новой, расточительной системе земледелия, при которой выпадающие из сельхоз. оборота земли обратно не возвращаются либо в силу их полной деградации и утери восстановительных свойств, либо из-за иных форм их нерационального использования.

Площадь потенциально пригодных для нового использования земель не велика - примерно 12 000 000 квадратных километров. Расположены они очень неравномерно: главным образом в Латинской Америке, Африке, СССР. В Северной Америке, в Западной Европе, на Ближнем и Дальнем Востоке, в Океании потенциал расширения исчерпан. В ближайшие 50 лет этот ресурс будет служить вместо увеличения площади обрабатываемых земель всего лишь восполнению земель, выпавших из сельхоз. оборота. Если учесть реальную возможность удвоения на грядущие 50 лет общей численности населения мира, то становится понятной острота проблемы обеспечения человечества продовольствием.

Сравнительно новым явлением, приобретающем все более глобальный характер, становится загрязнение литосферы (в частности, почв, подземных вод), а также интенсивное использование подземной среды (захоронение отходов, складирование нефти, газа, проведение ядерных испытаний, строительство подземных сооружений и т.д.). Это вызывает разного рода неблагоприятные последствия. Эксплуатация минеральных богатств литосферы достигла гигантских масштабов. На каждого жителя планеты добывается примерно 20 тонн минерального сырья в год. Извлечение ежегодно 80 миллиардов тонн рудных и не рудных материалов из недров сопровождается многочисленными формами нарушения и даже коренного изменения рельефа земной поверхности и ландшафта. За 150 лет горные работы привели к образованию отвалов объемом 100 кубических километров и карьеров объемом 40-50 кубических километров. Один из ценнейших ресурсов литосферы - подземные воды. Большая часть запасов пресной воды на Земле, не считая ледников, приходится на подземные воды. Объем сравнительно легкодоступных подземных вод (до глубины 800 метров) оценивается в 300 000 кубических километров.

В 1980 году человечество использовало для своих нужд 2,6 - 3 тысяч кубических километров пресной воды. В последнее время интерес к подземным водам возрос: они являются наиболее экономичным водным ресурсом (они не нуждаются в дорогостоящих средствах доставки), а также позволяют осваивать территории, где запасы поверхностных вод крайне ограничены. Вместе с тем существует опасность качественного истощения подземных вод в связи с расширяющейся практикой подземного захоронения (включая весьма глубокие горизонты) загрязняющих отходов производства, в том числе наиболее токсичных и радиоактивных.

Атмосфера претерпевает антропогенные изменения коренного характера: модифицируются ее свойства и газовый состав, возрастает опасность разрушения ионосферы и стратосферного озона; повышается ее запыленность; нижние слои атмосферы насыщаются вредными для живых организмов газами и веществами промышленного происхождения. Нарушение газового состава атмосферы происходит в следствии того, что выбросы техногенных газов и веществ, достигающие многих миллиардов тонн в год, сопоставимы с их поступлением из природных источников, либо даже превосходят их. Двуокись углерода (углекислый газ) - один из главных компонентов газового состава атмосферы, который играет важную роль не только в жизнедеятельности человека, растений и животных, но и в выполнении атмосферной функции предохранения подстилающей поверхности от перегрева и от переохлаждения.

Хозяйственная деятельность нарушила естественный баланс выделения и ассимиляции CO 2 в природе, в результате чего его концентрация в атмосфере увеличивается. За 26 лет с 1959 года по 1985 год содержание углекислого газа увеличилось на 9%. Некоторые важные элементы кругооборота CO 2 еще не до конца познаны наукой. Не ясны количественные связи концентрации его в атмосфере с мерой его способности задерживать обратное излучение в космос тепла, получаемого от Солнца. Тем не менее рост концентрации CO 2 свидетельствует о глубоком нарушении глобального равновесия в биосфере, что в сочетании с другими нарушениями может иметь очень серьезные последствия. Расширяются масштабы нарушения баланса кислорода в атмосфере.

В ходе эволюции биосферы в ее газовой оболочке сформировалась и накопилась огромная масса свободного кислорода (1,18 * 1015 тонн), которая длительное время оставалась постоянной (продуцируемой растениями ежегодный приход кислорода в атмосферу расходуется на естественные окислительные процессы). Современное человечество грубо вторгается в этот кругооборот, потребляя ежегодно за счет сжигания минерального и органического топлива 20 000 000 000 тонн атмосферного кислорода. Такая форма "проедания" не возобновляемого ресурса природы несет в себе источник опасных в будущем экологических конфликтов.

При ежегодном росте добычи горючих ископаемых в 5% содержание свободного кислорода через 160 лет снизится на 25% - 30% и достигнет критической для человечества величины. Многие техногенные вещества, попадающие в воздушную среду городов являются опасными загрязнителями. Они наносят ущерб здоровью людей, живой природе, материальным ценностям. Некоторые из них в силу длительного существования в атмосфере переносятся на большие расстояния, из -за чего проблема загрязнения превращается из локальной в международную. В основном это касается загрязнений окислами серы и азота. Быстрое накопление этих загрязнителей в атмосфере северного полушария (годовой прирост 5%) породило такое явление, как кислые и подкисленные осадки. Они подавляют биологическую продуктивность почв и водоемов, особенно тех из них, которые обладают собственной высокой кислотностью. В последние десятилетия внимание привлекла к себе проблема стратосферного озона, выполняющего роль экрана для всех живых существ от избыточного ультрафиолетового излучения Солнца. Озону угрожает опасность в результате попадания в верхние слои окислов азота (в следствии полетов сверхзвуковых реактивных самолетов), а также производства фторхлоуглеродов (фреонов).

Исследование этой проблемы методом моделирования приводит к выводу о сокращении озона в стратосфере на 10%. Инструментальные измерения констатируют лишь периодические разнонаправленные флуктуации и не позволяют сделать вывод о его истощении. Тем не менее, тот факт, что человечество способно подорвать этот важный ресурс жизнеобеспечения, обнаружение над Антарктидой периодически появляющейся "озоновой дыры" - все это говорит о серьезности проблемы.

Чрезвычайно крупное явление, затрагивающее глобальные характеристики атмосферы представляет напыление как следствие антропогенных факторов. Поступление антропогенных взвешенных в воздухе частиц (аэрозолей) достигает ежегодно 1 - 2,6 миллиарда тонн и равно количеству аэрозолей природного происхождения. Запыленность атмосферы за 50 лет увеличилась на 70%. Снижая прозрачность атмосферы аэрозоли ограничивают поступление солнечного тепла. Существует гипотеза о влиянии запыления на климатические изменения в северном полушарии, в частности на похолодание, начавшееся с 40-х годов и на участившиеся климатические аномалии в обще планетарном масштабе.

Запыленность верхних слоев атмосферы чревато нанесением непоправимого урона ионосфере, которая выполняет роль незаменимого ресурса, используемого для дальней радиосвязи. Биота Земли (биологическая оболочка, в которой концентрируется все живое вещество и все формы жизни) испытывает негативные экологические последствия, приводящие к нарушению биохимических циклов, энергетических и термодинамических процессов в биосфере. Сверх того, биота подвергается специфическим стрессам, которые носят глобальный характер. Это в первую очередь процесс видового обеднения животного и растительного мира, нарастания обезлесения планеты.

Несмотря на все усилия, истребление животных и растительности, разрушение естественных ландшафтов приняли катастрофические размеры. Из-за экологической безграмотности и беспечности человека, а порой и варварства в отношениях с живым миром темп вымирания диких животных достиг максимума - один вид в год. Для сравнения с 1600го года по 1950-ый год этот темп составлял 1 вид в 10 лет, а до появления человека на Земле - всего лишь один вид на 100 лет. При этом нет полного представления об исчезновении низших животных - насекомых, моллюсков и других, роль которых в поддержании биологического равновесия в природе очень высока.

Еще более тревожна картина уничтожения растительности. В середине 70-х годов происходило уничтожение одного вида и подвида растений (преимущественно в тропиках) ежедневно. К концу 80-х годов этот показатель прогнозируется равным одному виду в час. А ведь в экологическом отношении исчезновение растений увлекает за собой "в могилу" от 10 до 30 видов насекомых, высших животных и других растений.

По оценкам Международного союза охраны природы (МСОП) на середину 80-х годов примерно 10% цветущих растений (от 20 до 30 тысяч видов и подвидов) относились к числу редких и находились в опасности. В целом же по флоре и фауне, вместе взятым, в соответствии с оценками Всемирного Фонда дикой природы к двухтысячному году "глобальное разнообразие " в природе понизится по меньшей мере на 1/6, что соответствует исчезновению из естественной истории планеты 500 000 видов и подвидов животных и растений.

Обеднение генетического потенциала биоты Земли происходит также в области окультуренных растений и животных. Но здесь причина не в разрушении мест их обитания или чрезмерном потреблении человеком, как это имеет место в отношении дикой флоры и фауны, а в сознательном сокращении сортового и породного разнообразия культурных биологических видов. Особое место в проблематике глобальной экологии занимает сведение лесов на планете, в первую очередь тропических лесов. Ежегодно уничтожается более 11 миллионов гектаров леса. Это чревато при сохранении нынешних темпов их сведения обезлесиванием в ближайшие 30 лет территории равной Индии. Зона лесов в силу стечения исторических, социально экономических и мирохозяйственных обстоятельств превращается в объект массированного экологического разрушения, грозящего не только нарушением природных равновесий на соответствующих территориях, но и общим понижением уровня организации биосферы в целом.

Пагубные последствия сведения тропических лесов определяются помимо прочего тем, что они представляют собой колыбель и кладовую большей части генофонда земной биоты (порядка 40% - 50%), в том числе 100 000 видов высших растений из 250 000 видов. Масштабы сведения тропических лесов огромны, и темп их исчезновения и деградации все больше ускоряется. В настоящее время он составляет 2% в год. Из 16 000 000 квадратных километров Земли, покрытой в первой половине 20-го века тропическими лесами, на конец 70-х годов осталось лишь 9,3 миллиона квадратных километров (сокращение на 42%). Сведены 2/3 лесов в Азии, 1/2 в Африке, до 1/3 в Латинской Америке. Полному сведению, коренному изменению и деградации ежегодно подвергаются 245 000 квадратных километров тропических лесов.

При таких темпах к 2000-му году массив тропических лесов может сократиться на 25%, а последнее дерево может быть срублено через 85 лет. Однако, судя по нарастающему объему экспорта древесины из тропических лесов в Северную Америку, Западную Европу и Японию, освоения занятых этими лесами территорий под пашню и пастбища (в том числе и в больших размерах транснациональными монополиями), а также использование древесины в энергетических целях (от 30% до 95% от общего потребления энергии в развивающихся странах), сроки их уничтожения могут значительно сократиться. Чисто экологические и социально - экономические негативные последствия процесса многочисленны: колоссальные потери влаги, деградация почв и опустынивание, изменение локальных климатических условий, разрушение огромных, неподдающихся оценке природно-экономических ресурсов и так далее.

Обезлесивание тропиков изменит структуру поверхности Земли, увеличит ее отражательную способность (альбедо). А это уже чревато наряду с изменением глобальных баланса газа, воды и энергии последствиями, которые могут привести к дестабилизации климата планеты.

Гидросфера (водная оболочка Земли) подвергается тяжелейшим испытаниям в результате хозяйственного вторжения в водные системы. Реки, озера и моря превращаются в места сброса различных отходов и загрязняющих веществ. Качественное изменение гидросферы (химического состава и свойств водной среды) становится в наше время главным фактором и количественного истощения пресной воды на Земле, а также уничтожения обширного класса биоты - речной, озерной, морской.

В последние два десятилетия проблема ресурсов пресной воды на Земле претерпела резкое изменение: в странах, богатых источниками воды стали появляться признаки водного дефицита. С учетом же стран, традиционно испытывающих в силу природно-географических условий нехватку этого жизненно важного ресурса, налицо картина напряженности водного баланса в обще планетарном масштабе. Взрывной характер этого "обезвоживания" организма Земли объясняется в первую очередь лавинообразным ростом антропогенного загрязнения водоемов и водостоков. Годовой водозабор в мире составлял в начале 80-х годов 4600 кубических километров, или около 12% полного речного стока. Безвозвратный же расход достигал 3400 кубических километров. При таком объеме потребления, казалось бы, нет оснований для беспокойства.

Однако возвратные воды направляются в природу настолько загрязненными, что для их обезвреживания (разбавления) требуется в несколько раз больший объем чистой воды. Наступление водного кризиса не является фатальной неизбежность, поскольку человечество располагает возможностями переломить тенденцию расточительного и антиэкологического водопотребления. Это потребует коренного пересмотра концепции использования в хозяйстве пресных вод, выработки принципиально новой стратегии, перестройки технических, организационных и экономических основ водопользования. Более 70% поверхности Земли занята морями и океанами, что породило миф о том, что они могут бесконечно служить источником обезвреживания и приемником всех видов отходов человеческой деятельности. Суровая реальность развенчала эту опасную иллюзию. Мировой океан при всей своей необъятности уязвим, как любая другая природная система.

Загрязнения, поступающие в мировой океан поколебали в первую очередь естественное равновесие морской среды в прибрежной зоне кон­тинентального шельфа, где сосредоточено 99% всех морских биологических ресурсов, добываемых человеком. Антропогенные загрязнения этой зоны послужили причиной того, что ее биологическая продуктивность понизилась на 20%, а мировой рыбный промысел не досчитался 15 - 20 миллионов тонн улова.

По данным ООН, ежегодно в мировой океан попадает 50 000 тонн пестицидов, 5000 тонн ртути, 10 000 000 тонн нефти и множество других загрязнителей. Количество ежегодно попадающих из антропогенных источников со стоком рек в воды морей и океанов железа, марганца, меди, цинка, свинца, олова, мышьяка, нефти превышает бьем этих веществ поступающих в результате геологических процессов. Дно мирового океана, в том числе и глубоководные впадины, все шире используются для захоронения особо опасных токсических веществ (включая "морально устаревшие" боевые отравляющие вещества), а также радиоактивных материалов. Так, с 1946 по 1970 год США захоронили у Атлантического побережья страны около 90 000 контейнеров с отходами общей радиоактивностью примерно 100 000 кюри, а европейские страны сбросили в океан отходов общей радиоак­тивностью 500 000 кюри. В результате раз герметизации контейнеров наблюдаются случаи опасного заражения вод и природной среды в местах этих захоронений.

Начало космической эры породило проблему сохранения целостности еще одной земной оболочки - космосферы (околоземного космического пространства). Проникновение человека в космос не просто героическая эпопея, это еще и целенаправленная долговременная политика овладения новыми ресурсами природы и естественной средой. Слагаемыми ресурсного потенциала космоса, уже используемого человечеством, либо гипотетического, являются географическое положение, невесомость, вакуум, другие физические свойства этой среды, сильная солнечная радиация, космические излучения, а также и территория, специфические природные условия и минеральные ресурсы небесных тел.

Размещено на Allbest.ru

...

Подобные документы

    Биологическое разнообразие планеты, функциональные блоки биосферы как самой большой экосистемы; цианеи, растения, бактерии, животные. Основные циклы и кругообороты веществ в биосфере. Глобальные нарушения в результате хозяйственной деятельности человека.

    реферат , добавлен 10.01.2010

    Антропогенные экологические факторы как факторы, связанные с влиянием человека на окружающую природную среду. Преобладающие загрязнители водных экосистем по отраслям промышленности. Особенности антропогенных систем и антропогенные воздействия на биосферу.

    реферат , добавлен 06.03.2009

    Трофическая структура экосистем и ее составляющие: продуценты, консументы, детритофаги, редуценты. Разложение живого вещества. Правило Линдемана и особенности его применения. Особо охраняемые природные территории, общие сведения об их правовом статусе.

    контрольная работа , добавлен 16.01.2011

    Экосистема ­- основная функционирующая единица в экологии. Примеры природных экосистем, основные понятия и классификация, условия существования и видовое разнообразие. Описание круговорота, осуществляемого в экосистемах, специфика динамических изменений.

    лекция , добавлен 02.12.2010

    Классификация природных экосистем. Лимитирующие факторы водной среды. Система "хищник-жертва". Виды сукцессии. Трофические цепи и сети. Типы экологических пирамид. Функции живого вещества в биосфере. Воздействие человека на круговорот азота и углерода.

    презентация , добавлен 26.04.2014

    Понятие биосферы, ее компоненты. Схема распределения живых организмов в биосфере. Загрязнение экосистем сточными водами. Преобладающие загрязняющие вещества водных экосистем по отраслям промышленности. Принципы государственной экологической экспертизы.

    контрольная работа , добавлен 06.08.2013

    Понятие биосферы в учении Вернадского. Особенность цепей питания. Круговорот веществ в природе. Устойчивость экосистем и характерные закономерности сукцессии. Направление антропогенных воздействий на биосферу. Современные представления об охране природы.

    реферат , добавлен 25.01.2010

    Закон внутреннего динамического равновесия экосистем и его следствия. Виды антропогенных воздействий на природу. Обратная связь взаимодействия человек – биосфера. Закон ограниченности природных ресурсов. Правила "жесткого" и "мягкого" управления природой.

    контрольная работа , добавлен 05.05.2009

    Состав и свойства биосферы. Функции и свойства живого вещества в биосфере. Динамика экосистем, сукцессии, их виды. Причины возникновения парникового эффекта, подъем Мирового океана как его последствие. Способы очистки выбросов от токсичных примесей.

    контрольная работа , добавлен 18.05.2011

    Предмет и задачи природопользования. Геохимические и медико-географические особенности природных зон. Типы отношений в биоценозах. Основные уровни организации живых и биокостных систем. Особенности и типы экосистем. Учение В.И. Вернадского о биосфере.

Любая живая система есть частный вид наиболее сложных систем, построенных на основе белковых соединений. Поэтому системный подход в экологии очень популярен.

В экологии существуют два подхода к пониманию сути явлений:

Популяционный подход - концентрирует внимание на популяциях живых существ, то есть на группах особей одного вида, большое число поколений которого населяет определенное пространство в ограниченных пределах (считается, что именно популяция является основной элементарной единицей, изучаемой традиционной экологией);

Экосистемный подход - базируется на понятии экосистемы - совокупности организмов и неживых компонентов, взаимодействующих совместно и связанных потоками вещества и энергии.

Понятие экосистема введено английским ботаником А. Тенсли в 1935 г.

Географ и писатель Г.К. Ефремов дал образное определение экосистемы как “любого природного образования – от кочки до оболочки (географической)”.

Экосистемный подход тяготеет к целостному описанию природы, популяционный - к множественному.

Все экосистемы можно разделить по рангам:

1) микроэкосистемы (лужа, гниющий пень, разлагающийся труп и т.п.);

2) мезоэкосистемы (лес, озеро, река, небольшой остров и т.п.);

3) макроэкосистемы (море, океан, континент, большой остров и т.п.);

4) глобальная экосистема (биосфера).

Кроме приведенной классификации экосистем в экологии традиционно рассматривается еще понятие биогеоценоза, которое близко по смыслу к понятию экосистемы. Биогеоценоз - это частный случай крупной экосистемы, охватывающей как правило значительную территорию, предполагающий обязательное наличие в качестве основного звена растительности, то есть фитоценоза , обеспечивающего данную экосистему поступлением первичной энергии (информации). Ввиду подобной энергетической автономности биогеоценоз теоретически бессмертен, в отличие, например, от гниющего поваленного дерева, экосистема которого гибнет после того, как будет израсходована вся энергия, накопленная деревом за время жизни, а само дерево превратится в компоненты гумуса (плодородного слоя почвы).

В составе любой экосистемы обычно выделяют два блока: биоценоз и экотоп. Биоценоз состоит из взаимосвязанных организмов разных видов, которые входят в него не отдельными особями, а популяциями. Частный случай биоценоза - сообщество, оно может объединять только часть видов биоценоза (например, растительное сообщество). Под экотопом понимают среду обитания данного биоценоза. Это может быть территория данного биогеоценоза, характеризующаяся определенным составом слагающих ее геологических пород. Поваленное дерево, дающее жизнь разного рода деструкторам (насекомым, грибам, микробам и прочим организмам, разрушающим органику вплоть до минерального состояния) также является экотопом существующей на его базе экосистемы.


Таким образом, биогеоценоз = экотоп (гидрологические факторы (гидротоп), климатологические факторы ((климатоп), почвенные факторы (эдафотоп)) + биоценоз (растения (фитоценоз), животные (зооценоз), микроорганизмы (микробиоценоз)) (данная модель предложена В.Н. Сукачевым в 1942 г.).

1.4.1. Особенности экосистем

1. Тесная взаимосвязь и взаимозависимость всех звеньев как биотических (живых), так и абиотических (неживых). Корректировки связей приводят к возвращению в исходное состояние или к гибели.

2. Сильные положительные и отрицательные обратные связи.

Пример положительной обратной связи - заболачивание территории после вырубки леса. Это ведет к уплотнению почвы, следовательно, к накоплению воды и росту растений-влагонакопителей, что приводит к обеднению ее кислородом, а значит, к замедлению разложения растительных остатков, накоплению торфа и дальнейшему усилению заболачивания.

Пример отрицательной (стабилизирующей) обратной связи - взаимоотношение между хищником и жертвой, например между рысями и зайцами: рост количества зайцев способствует росту численности рысей, но чрезмерное количество рысей сокращает поголовье зайцев, после чего численность рыси также сокращается. В естественных условиях данная система достаточно быстро стабилизируется.

3. Явно выраженная эмерджентность.

Например, редкий древостой еще не составляет леса, так как не создает определенной среды: почвенной, гидрологической, метеорологической и т.д.

Эмерджентность повышает устойчивость экосистемы и ее способность к саморегулированию. Деятельность человека приводит к нарушению прямых и обратных связей в экосистемах.

Например, умеренное загрязнение водоемов органикой приводит к интенсификации размножения микроорганизмов, что приводит к самоочищению водоема. Неумеренное загрязнение, называемое эвтрофикацией, ведет к чрезмерному размножению организмов, активно разлагающих органическое вещество, что рано или поздно приводит к обеднению данного водоема кислородом, а значит, к угнетению и гибели этих организмов, разрушению связей, изменению системы и переходу ее на новый вид связей, обычно это заболачивание.

Обычно экосистемы для повышения устойчивости нуждаются в случайных стрессовых воздействиях типа бурь, пожаров и т.п. Но хронические стрессы малой интенсивности, характерные для антропогенного воздействия на природу, не дают явных реакций, поэтому их последствия оценить очень трудно, но они могут оказаться гибельными для экосистемы.

ª Вопросы для самопроверки

1. В чем отличие популяционного от экосистемного подхода в экологии?

2. Как подразделяются экосистемы? Приведите пример экосистемы каждого типа.

3. Дайте определение биогеоценоза.

4. Чем биогеоценоз отличается от экосистемы?

5. Что такое биоценоз, экотоп? Перечислите составляющие их элементы.

6. Приведите пример искусственной экосистемы

1.4.2. Уровни биологической организации

Обычно выделяют 6 главных уровней организации живой материи, образующих формальную иерархию: молекулярный ® клеточный ® организменный ® популяционный ® экосистемный ® биосферный, четких границ между этими уровнями нет, как нет четких границ между экосистемами разного ранга (эффект “матрешки” – одна экосистема является частью другой, большего размера), выделение различных экосистем достаточно произвольно.