Ableitungsregeln für Ableitungen elementarer Funktionen. Abgrenzungsregeln

Erste Ebene

Ableitung der Funktion. Umfassender Leitfaden (2019)

Stellen wir uns eine gerade Straße vor, die durch ein hügeliges Gebiet führt. Das heißt, es geht auf und ab, dreht sich aber nicht nach rechts oder links. Wenn die Achse horizontal entlang der Straße und vertikal ausgerichtet ist, ist die Straßenlinie dem Diagramm einer kontinuierlichen Funktion sehr ähnlich:

Die Achse ist eine bestimmte Höhe von Null, im Leben verwenden wir den Meeresspiegel als solches.

Wenn wir uns auf einer solchen Straße vorwärts bewegen, bewegen wir uns auch aufwärts oder abwärts. Wir können auch sagen: Wenn sich das Argument ändert (Bewegung entlang der Abszissenachse), ändert sich der Wert der Funktion (Bewegung entlang der Ordinatenachse). Lassen Sie uns nun darüber nachdenken, wie wir die "Steilheit" unserer Straße bestimmen können. Was könnte dieser Wert sein? Ganz einfach: Wie stark ändert sich die Höhe, wenn man sich um eine bestimmte Strecke vorwärts bewegt? In der Tat werden wir auf verschiedenen Abschnitten der Straße, wenn wir uns einen Kilometer vorwärts (entlang der Abszisse) bewegen, relativ zum Meeresspiegel (entlang der Ordinate) um eine unterschiedliche Anzahl von Metern ansteigen oder abfallen.

Wir bezeichnen Fortschritt vorwärts (lesen Sie „Delta x“).

Der griechische Buchstabe (Delta) wird in der Mathematik häufig als Präfix für „Veränderung“ verwendet. Das heißt - dies ist eine Größenänderung, - eine Änderung; Was ist es dann? Das ist richtig, eine Größenänderung.

Wichtig: Der Ausdruck ist eine einzelne Entität, eine Variable. Sie sollten niemals das „Delta“ vom „x“ oder einem anderen Buchstaben abreißen! Das heißt zum Beispiel.

Wir haben uns also horizontal vorwärts bewegt. Wenn wir die Linie der Straße mit dem Graphen einer Funktion vergleichen, wie bezeichnen wir dann den Anstieg? Sicherlich, . Das heißt, wenn wir uns vorwärts bewegen, steigen wir höher auf.

Es ist einfach, den Wert zu berechnen: Wenn wir uns am Anfang auf einer Höhe befanden und nach dem Umzug auf einer Höhe waren, dann. Wenn sich herausstellt, dass der Endpunkt niedriger als der Startpunkt ist, ist er negativ - das bedeutet, dass wir nicht aufsteigen, sondern absteigen.

Zurück zur „Steilheit“: Dies ist ein Wert, der angibt, wie stark (steil) die Höhe beim Vorwärtsbewegen pro Wegeinheit zunimmt:

Angenommen, auf einem Abschnitt des Weges steigt die Straße um Kilometer an, wenn sie um Kilometer vorrückt. Dann ist die Steilheit an dieser Stelle gleich. Und wenn die Straße beim Vorrücken um m um km sank? Dann ist die Steigung gleich.

Betrachten Sie nun die Spitze eines Hügels. Wenn Sie den Anfang des Abschnitts einen halben Kilometer nach oben und das Ende - einen halben Kilometer danach - nehmen, können Sie sehen, dass die Höhe fast gleich ist.

Das heißt, nach unserer Logik stellt sich heraus, dass die Steilheit hier fast gleich Null ist, was eindeutig nicht stimmt. Nur wenige Kilometer entfernt kann sich viel ändern. Kleinere Bereiche müssen für eine angemessenere und genauere Schätzung der Steilheit berücksichtigt werden. Wenn Sie zum Beispiel die Höhenänderung messen, wenn Sie sich einen Meter bewegen, wird das Ergebnis viel genauer sein. Aber selbst diese Genauigkeit reicht uns möglicherweise nicht aus – schließlich können wir, wenn mitten auf der Straße ein Mast steht, einfach durchrutschen. Welchen Abstand sollten wir dann wählen? Zentimeter? Millimeter? Weniger ist besser!

Im wirklichen Leben ist es mehr als genug, die Entfernung auf den nächsten Millimeter zu messen. Aber Mathematiker streben immer nach Perfektion. Daher war das Konzept unendlich klein, das heißt, der Modulo-Wert ist kleiner als jede Zahl, die wir nennen können. Sie sagen zum Beispiel: ein Billionstel! Wie viel weniger? Und Sie teilen diese Zahl durch - und es wird noch weniger. Usw. Wenn wir schreiben wollen, dass der Wert unendlich klein ist, schreiben wir so: (wir lesen „x strebt gegen Null“). Es ist sehr wichtig zu verstehen dass diese Zahl nicht gleich Null ist! Aber ganz nah dran. Dies bedeutet, dass es unterteilt werden kann.

Das Gegenteil von unendlich klein ist unendlich groß (). Sie sind ihm wahrscheinlich schon begegnet, als Sie an Ungleichungen gearbeitet haben: Diese Zahl hat einen größeren Modul als jede Zahl, die Sie sich vorstellen können. Wenn Sie auf die größtmögliche Zahl kommen, multiplizieren Sie sie einfach mit zwei und Sie erhalten noch mehr. Und Unendlichkeit ist noch mehr als das, was passiert. Tatsächlich sind unendlich groß und unendlich klein zueinander invers, also at, und umgekehrt: at.

Nun zurück zu unserer Straße. Die ideal berechnete Steigung ist die für ein unendlich kleines Segment des Weges berechnete Steigung, das heißt:

Ich stelle fest, dass bei einer unendlich kleinen Verschiebung auch die Höhenänderung unendlich klein sein wird. Aber ich möchte Sie daran erinnern, dass unendlich klein nicht gleich Null bedeutet. Wenn man infinitesimale Zahlen durcheinander dividiert, kann man zum Beispiel eine ganz gewöhnliche Zahl erhalten. Das heißt, ein kleiner Wert kann genau doppelt so groß sein wie ein anderer.

Warum das alles? Die Straße, die Steilheit ... Wir fahren keine Rallye, aber wir lernen Mathematik. Und in der Mathematik ist alles genau gleich, nur anders genannt.

Das Konzept eines Derivats

Die Ableitung einer Funktion ist das Verhältnis des Inkrements der Funktion zum Inkrement des Arguments bei einem infinitesimalen Inkrement des Arguments.

Zuwachs in der Mathematik heißt Veränderung. Wie stark sich das Argument () beim Bewegen entlang der Achse geändert hat, wird aufgerufen Argumenterhöhung und bezeichnet durch Wie viel sich die Funktion (Höhe) geändert hat, wenn man sich entlang der Achse um eine Strecke vorwärts bewegt, wird aufgerufen Funktionsinkrement und ist gekennzeichnet.

Die Ableitung einer Funktion ist also die Beziehung zum Wann. Die Ableitung bezeichnen wir mit demselben Buchstaben wie die Funktion, nur mit einem Strich von rechts oben: oder einfach. Schreiben wir also die Ableitungsformel mit diesen Notationen:

Wie in der Analogie mit der Straße ist hier die Ableitung positiv, wenn die Funktion zunimmt, und wenn sie abnimmt, ist sie negativ.

Aber ist die Ableitung gleich Null? Sicherlich. Wenn wir zum Beispiel auf einer flachen horizontalen Straße fahren, ist die Steilheit null. Tatsächlich ändert sich die Höhe überhaupt nicht. Also mit der Ableitung: Die Ableitung einer konstanten Funktion (Konstante) ist gleich Null:

da das Inkrement einer solchen Funktion für alle Null ist.

Nehmen wir das Beispiel auf dem Hügel. Es stellte sich heraus, dass es möglich war, die Enden des Segments auf gegenüberliegenden Seiten des Scheitelpunkts so anzuordnen, dass die Höhe an den Enden gleich ausfällt, dh das Segment parallel zur Achse ist:

Aber große Segmente sind ein Zeichen für eine ungenaue Messung. Wir werden unser Segment parallel zu sich selbst anheben, dann wird seine Länge abnehmen.

Am Ende, wenn wir der Spitze unendlich nahe sind, wird die Länge des Segments unendlich klein. Gleichzeitig blieb es jedoch parallel zur Achse, dh der Höhenunterschied an seinen Enden ist gleich Null (neigt nicht, ist aber gleich). Also die Ableitung

Das kann man so verstehen: Wenn wir ganz oben stehen, verändert eine kleine Verschiebung nach links oder rechts unsere Körpergröße nur unwesentlich.

Es gibt auch eine rein algebraische Erklärung: Links oben nimmt die Funktion zu, rechts fällt sie ab. Wie wir bereits früher herausgefunden haben, ist die Ableitung positiv, wenn die Funktion zunimmt, und wenn sie abnimmt, ist sie negativ. Aber es ändert sich sanft, ohne Sprünge (weil die Straße ihre Neigung nirgendwo stark ändert). Daher muss es zwischen negativen und positiven Werten geben. Es wird dort sein, wo die Funktion weder zunimmt noch abnimmt - am Scheitelpunkt.

Dasselbe gilt für das Tal (der Bereich, in dem die Funktion links abnimmt und rechts zunimmt):

Ein bisschen mehr über Inkremente.

Also ändern wir das Argument in einen Wert. Ab welchem ​​Wert wechseln wir? Was ist aus ihm (Argument) geworden? Wir können einen beliebigen Punkt wählen, und jetzt werden wir von ihm aus tanzen.

Betrachten Sie einen Punkt mit einer Koordinate. Der Wert der darin enthaltenen Funktion ist gleich. Dann machen wir das gleiche Inkrement: Erhöhen Sie die Koordinate um. Was ist jetzt das Argument? Sehr leicht: . Welchen Wert hat die Funktion jetzt? Wo das Argument hingehört, kommt die Funktion dorthin: . Was ist mit dem Funktionsinkrement? Nichts Neues: Um diesen Betrag hat sich die Funktion noch geändert:

Übe das Finden von Inkrementen:

  1. Finden Sie das Inkrement der Funktion an einem Punkt mit einem Inkrement des Arguments gleich.
  2. Dasselbe gilt für eine Funktion an einem Punkt.

Lösungen:

An verschiedenen Punkten wird bei gleichem Inkrement des Arguments das Inkrement der Funktion unterschiedlich sein. Dies bedeutet, dass die Ableitung an jedem Punkt ihre eigene hat (wir haben das ganz am Anfang besprochen - die Steilheit der Straße an verschiedenen Punkten ist unterschiedlich). Wenn wir also eine Ableitung schreiben, müssen wir angeben, an welcher Stelle:

Power-Funktion.

Eine Potenzfunktion wird eine Funktion genannt, bei der das Argument bis zu einem gewissen Grad (logisch, richtig?) ist.

Und - in jedem Fall: .

Der einfachste Fall ist, wenn der Exponent ist:

Lassen Sie uns seine Ableitung an einem Punkt finden. Denken Sie an die Definition eines Derivats:

Das Argument ändert sich also von zu. Was ist das Funktionsinkrement?

Zuwachs ist. Aber die Funktion ist an jedem Punkt gleich ihrem Argument. So:

Die Ableitung ist:

Die Ableitung von ist:

b) Betrachten Sie nun die quadratische Funktion (): .

Erinnern wir uns jetzt daran. Das bedeutet, dass der Wert des Inkrements vernachlässigt werden kann, da er unendlich klein und daher vor dem Hintergrund eines anderen Terms unbedeutend ist:

Also haben wir eine andere Regel:

c) Wir setzen die logische Reihe fort: .

Dieser Ausdruck kann auf verschiedene Arten vereinfacht werden: Öffnen Sie die erste Klammer mit der Formel für die abgekürzte Multiplikation des Würfels der Summe oder zerlegen Sie den gesamten Ausdruck in Faktoren mit der Formel für die Differenz von Würfeln. Versuchen Sie, es selbst auf eine der vorgeschlagenen Arten zu tun.

Also ich habe folgendes bekommen:

Und erinnern wir uns noch einmal daran. Das bedeutet, dass wir alle Terme vernachlässigen können, die Folgendes enthalten:

Wir bekommen: .

d) Ähnliche Regeln können für große Potenzen erhalten werden:

e) Es stellt sich heraus, dass diese Regel für eine Potenzfunktion mit einem beliebigen Exponenten, nicht einmal einer ganzen Zahl, verallgemeinert werden kann:

(2)

Sie können die Regel mit den Worten formulieren: „der Grad wird als Koeffizient vorgezogen und nimmt dann um ab“.

Wir werden diese Regel später (fast ganz am Ende) beweisen. Sehen wir uns nun einige Beispiele an. Finden Sie die Ableitung von Funktionen:

  1. (auf zwei Arten: durch die Formel und unter Verwendung der Definition der Ableitung - durch Zählen des Inkrements der Funktion);
  1. . Ob Sie es glauben oder nicht, das ist eine Potenzfunktion. Bei Fragen wie „Wie ist es? Und wo ist der Abschluss?“, Merkt euch das Thema „ “!
    Ja, ja, die Wurzel ist auch ein Grad, nur ein gebrochener:.
    Unsere Quadratwurzel ist also nur eine Potenz mit einem Exponenten:
    .
    Wir suchen die Ableitung mit der neu gelernten Formel:

    Wenn es an dieser Stelle wieder unklar wurde, wiederholen Sie das Thema "" !!! (etwa ein Abschluss mit negativem Kennzeichen)

  2. . Jetzt der Exponent:

    Und nun zur Definition (schon vergessen?):
    ;
    .
    Nun vernachlässigen wir wie üblich den Term, der enthält:
    .

  3. . Kombination früherer Fälle: .

trigonometrische Funktionen.

Hier verwenden wir eine Tatsache aus der höheren Mathematik:

Beim Ausdruck.

Den Beweis lernst du im ersten Jahr des Instituts (und um dorthin zu gelangen, musst du die Prüfung gut bestehen). Jetzt zeige ich es einfach grafisch:

Wir sehen, dass, wenn die Funktion nicht existiert, der Punkt auf dem Graphen punktiert ist. Aber je näher am Wert, desto näher an der Funktion, das ist das eigentliche „Streben“.

Zusätzlich können Sie diese Regel mit einem Taschenrechner überprüfen. Ja, ja, keine Scheu, nimm einen Taschenrechner, wir sind noch nicht bei der Prüfung.

Lass es uns versuchen: ;

Vergessen Sie nicht, den Taschenrechner in den Radian-Modus zu schalten!

usw. Wir sehen, je kleiner, desto näher der Wert des Verhältnisses.

a) Betrachten Sie eine Funktion. Wie üblich finden wir sein Inkrement:

Lassen Sie uns die Sinusdifferenz in ein Produkt umwandeln. Dazu verwenden wir die Formel (denken Sie an das Thema ""):.

Nun die Ableitung:

Nehmen wir eine Ersetzung vor: . Dann ist sie für unendlich klein auch unendlich klein: . Der Ausdruck für hat die Form:

Und jetzt merken wir uns das mit dem Ausdruck. Und was ist, wenn ein unendlich kleiner Wert in der Summe vernachlässigt werden kann (dh at).

Damit erhalten wir folgende Regel: die Ableitung des Sinus ist gleich dem Kosinus:

Dies sind grundlegende („Tabellen“)-Derivate. Hier sind sie in einer Liste:

Später werden wir noch ein paar weitere hinzufügen, aber das sind die wichtigsten, da sie am häufigsten verwendet werden.

Trainieren:

  1. Finden Sie die Ableitung einer Funktion an einem Punkt;
  2. Finde die Ableitung der Funktion.

Lösungen:

  1. Zuerst finden wir die Ableitung in allgemeiner Form und ersetzen dann stattdessen ihren Wert:
    ;
    .
  2. Hier haben wir etwas Ähnliches wie eine Potenzfunktion. Versuchen wir, sie zu sich zu bringen
    normale Ansicht:
    .
    Ok, jetzt können Sie die Formel verwenden:
    .
    .
  3. . Eeeeeee….. Was ist das????

Okay, Sie haben Recht, wir wissen immer noch nicht, wie wir solche Derivate finden können. Hier haben wir eine Kombination aus mehreren Arten von Funktionen. Um mit ihnen zu arbeiten, müssen Sie einige weitere Regeln lernen:

Exponent und natürlicher Logarithmus.

Es gibt eine solche Funktion in der Mathematik, deren Ableitung für jede gleich dem Wert der Funktion selbst für dieselbe ist. Sie wird „Exponent“ genannt und ist eine Exponentialfunktion

Die Basis dieser Funktion - eine Konstante - ist ein unendlicher Dezimalbruch, dh eine irrationale Zahl (z. B.). Sie wird „Euler-Zahl“ genannt, weshalb sie mit einem Buchstaben bezeichnet wird.

Die Regel lautet also:

Es ist sehr leicht zu merken.

Nun, wir werden nicht weit gehen, wir werden sofort die Umkehrfunktion betrachten. Was ist die Umkehrung der Exponentialfunktion? Logarithmus:

In unserem Fall ist die Basis eine Zahl:

Einen solchen Logarithmus (also einen Logarithmus mit Basis) nennt man einen „natürlichen“ und wir verwenden dafür eine spezielle Notation: wir schreiben stattdessen.

Was ist gleich? Natürlich, .

Die Ableitung des natürlichen Logarithmus ist ebenfalls sehr einfach:

Beispiele:

  1. Finde die Ableitung der Funktion.
  2. Was ist die Ableitung der Funktion?

Antworten: Der Exponent und der natürliche Logarithmus sind Funktionen, die in Bezug auf die Ableitung einzigartig einfach sind. Exponential- und Logarithmusfunktionen mit jeder anderen Basis haben eine andere Ableitung, die wir später analysieren werden, nachdem wir die Ableitungsregeln durchgegangen sind.

Abgrenzungsregeln

Welche Regeln? Schon wieder ein neuer Begriff?!...

Differenzierung ist der Prozess, die Ableitung zu finden.

Nur und alles. Was ist ein anderes Wort für diesen Vorgang? Nicht proizvodnovanie... Das Differential der Mathematik heißt das eigentliche Inkrement der Funktion bei. Dieser Begriff kommt vom lateinischen differentia – Unterschied. Hier.

Bei der Ableitung all dieser Regeln verwenden wir zwei Funktionen, zum Beispiel und. Wir benötigen auch Formeln für ihre Inkremente:

Es gibt insgesamt 5 Regeln.

Die Konstante wird aus dem Vorzeichen der Ableitung herausgenommen.

Wenn - eine konstante Zahl (Konstante), dann.

Offensichtlich funktioniert diese Regel auch für die Differenz: .

Beweisen wir es. Lassen Sie, oder einfacher.

Beispiele.

Finden Sie Ableitungen von Funktionen:

  1. am Punkt;
  2. am Punkt;
  3. am Punkt;
  4. am Punkt.

Lösungen:

  1. (Die Ableitung ist an allen Punkten gleich, da es sich um eine lineare Funktion handelt, erinnern Sie sich?);

Ableitung eines Produkts

Hier ist alles ähnlich: Wir führen eine neue Funktion ein und finden ihre Schrittweite:

Derivat:

Beispiele:

  1. Finden Sie Ableitungen von Funktionen und;
  2. Finden Sie die Ableitung einer Funktion an einem Punkt.

Lösungen:

Ableitung der Exponentialfunktion

Jetzt reicht Ihr Wissen aus, um zu lernen, wie man die Ableitung einer beliebigen Exponentialfunktion findet, und nicht nur den Exponenten (haben Sie schon vergessen, was das ist?).

Wo ist also eine Zahl.

Wir kennen bereits die Ableitung der Funktion, also versuchen wir, unsere Funktion auf eine neue Basis zu bringen:

Dazu verwenden wir eine einfache Regel: . Dann:

Nun, es hat funktioniert. Versuchen Sie nun, die Ableitung zu finden, und vergessen Sie nicht, dass diese Funktion komplex ist.

Passiert?

Hier, prüfen Sie selbst:

Es stellte sich heraus, dass die Formel der Ableitung des Exponenten sehr ähnlich war: So wie es war, erschien nur ein Faktor, der nur eine Zahl, aber keine Variable ist.

Beispiele:
Finden Sie Ableitungen von Funktionen:

Antworten:

Dies ist nur eine Zahl, die ohne Taschenrechner nicht berechnet, dh nicht in einfacherer Form geschrieben werden kann. Daher wird es in der Antwort in dieser Form belassen.

Ableitung einer logarithmischen Funktion

Hier ist es ähnlich: Sie kennen bereits die Ableitung des natürlichen Logarithmus:

Um also eine beliebige aus dem Logarithmus mit einer anderen Basis zu finden, zum Beispiel:

Wir müssen diesen Logarithmus zur Basis bringen. Wie verändert man die Basis eines Logarithmus? Ich hoffe, Sie erinnern sich an diese Formel:

Nur jetzt werden wir anstelle von schreiben:

Der Nenner war nur eine Konstante (eine konstante Zahl ohne Variable). Die Ableitung ist ganz einfach:

Ableitungen der Exponential- und Logarithmusfunktionen werden fast nie in der Prüfung gefunden, aber es wird nicht überflüssig sein, sie zu kennen.

Ableitung einer komplexen Funktion.

Was ist eine „komplexe Funktion“? Nein, das ist kein Logarithmus und kein Arkustangens. Diese Funktionen können schwer zu verstehen sein (obwohl Ihnen der Logarithmus schwierig erscheint, lesen Sie das Thema „Logarithmen“ und alles wird funktionieren), aber in mathematischer Hinsicht bedeutet das Wort „komplex“ nicht „schwierig“.

Stellen Sie sich ein kleines Förderband vor: Zwei Personen sitzen und führen einige Aktionen mit einigen Objekten aus. Zum Beispiel wickelt der erste einen Schokoriegel in eine Hülle und der zweite bindet ihn mit einem Band zusammen. Es stellt sich ein solches zusammengesetztes Objekt heraus: ein Schokoriegel, der mit einem Band umwickelt und gebunden ist. Um einen Schokoriegel zu essen, müssen Sie die entgegengesetzten Schritte in umgekehrter Reihenfolge ausführen.

Lassen Sie uns eine ähnliche mathematische Pipeline erstellen: Zuerst finden wir den Kosinus einer Zahl und dann quadrieren wir die resultierende Zahl. Sie geben uns also eine Zahl (Schokolade), ich finde ihren Kosinus (Wrapper) und dann quadrierst du, was ich bekommen habe (binde es mit einem Band). Was ist passiert? Funktion. Dies ist ein Beispiel für eine komplexe Funktion: Wenn wir, um ihren Wert zu finden, die erste Aktion direkt mit der Variablen ausführen und dann eine weitere zweite Aktion mit dem, was als Ergebnis der ersten passiert ist.

Wir können die gleichen Aktionen auch in umgekehrter Reihenfolge ausführen: Zuerst quadrieren Sie, und dann suche ich nach dem Kosinus der resultierenden Zahl:. Es ist leicht zu erraten, dass das Ergebnis fast immer anders sein wird. Ein wichtiges Merkmal komplexer Funktionen: Wenn sich die Reihenfolge der Aktionen ändert, ändert sich die Funktion.

Mit anderen Worten, Eine komplexe Funktion ist eine Funktion, deren Argument eine andere Funktion ist: .

Für das erste Beispiel, .

Zweites Beispiel: (gleich). .

Die letzte Aktion, die wir ausführen, wird aufgerufen "externe" Funktion, bzw. die zuerst durchgeführte Aktion "interne" Funktion(Dies sind informelle Namen, ich verwende sie nur, um das Material in einfacher Sprache zu erklären).

Versuchen Sie selbst festzustellen, welche Funktion extern und welche intern ist:

Antworten: Die Trennung von inneren und äußeren Funktionen ist sehr ähnlich wie beim Ändern von Variablen: zum Beispiel in der Funktion

  1. Welche Maßnahmen ergreifen wir zuerst? Zuerst berechnen wir den Sinus und erst dann erhöhen wir ihn auf einen Würfel. Es ist also eine interne Funktion, keine externe.
    Und die ursprüngliche Funktion ist ihre Zusammensetzung: .
  2. Intern: ; extern: .
    Untersuchung: .
  3. Intern: ; extern: .
    Untersuchung: .
  4. Intern: ; extern: .
    Untersuchung: .
  5. Intern: ; extern: .
    Untersuchung: .

Wir ändern Variablen und erhalten eine Funktion.

Nun, jetzt werden wir unsere Schokolade extrahieren - suchen Sie nach dem Derivat. Dabei wird immer umgekehrt vorgegangen: Zuerst suchen wir die Ableitung der äußeren Funktion, dann multiplizieren wir das Ergebnis mit der Ableitung der inneren Funktion. Für das ursprüngliche Beispiel sieht es so aus:

Ein anderes Beispiel:

Formulieren wir also endlich die offizielle Regel:

Algorithmus zum Finden der Ableitung einer komplexen Funktion:

Alles scheint einfach zu sein, oder?

Lassen Sie uns anhand von Beispielen überprüfen:

Lösungen:

1) Intern: ;

Extern: ;

2) Intern: ;

(Versuchen Sie jetzt nicht zu reduzieren! Nichts wird unter dem Kosinus herausgenommen, erinnern Sie sich?)

3) Intern: ;

Extern: ;

Es ist sofort klar, dass es sich hier um eine komplexe Funktion mit drei Ebenen handelt: Schließlich ist dies an sich schon eine komplexe Funktion, und wir extrahieren noch die Wurzel daraus, das heißt, wir führen die dritte Aktion aus (Schokolade in eine Hülle stecken und mit einem Band in einer Aktentasche). Aber kein Grund zur Angst: Jedenfalls werden wir diese Funktion in der gewohnten Reihenfolge „auspacken“: von hinten.

Das heißt, wir differenzieren zuerst die Wurzel, dann den Kosinus und erst dann den Ausdruck in Klammern. Und dann multiplizieren wir alles.

In solchen Fällen ist es zweckmäßig, die Aktionen zu nummerieren. Stellen wir uns vor, was wir wissen. In welcher Reihenfolge werden wir Aktionen ausführen, um den Wert dieses Ausdrucks zu berechnen? Schauen wir uns ein Beispiel an:

Je später die Aktion ausgeführt wird, desto "externer" wird die entsprechende Funktion. Die Reihenfolge der Aktionen - wie zuvor:

Hier ist die Verschachtelung im Allgemeinen 4-stufig. Lassen Sie uns die Vorgehensweise bestimmen.

1. Radikaler Ausdruck. .

2. Wurzel. .

3. Nebenhöhlen. .

4. Quadrat. .

5. Alles zusammen:

DERIVAT. KURZ ÜBER DAS WESENTLICHE

Ableitung der Funktion- das Verhältnis des Inkrements der Funktion zum Inkrement des Arguments bei einem infinitesimalen Inkrement des Arguments:

Basische Derivate:

Unterscheidungsregeln:

Die Konstante wird aus dem Vorzeichen der Ableitung herausgenommen:

Ableitung der Summe:

Derivatprodukt:

Ableitung des Quotienten:

Ableitung einer komplexen Funktion:

Algorithmus zum Finden der Ableitung einer komplexen Funktion:

  1. Wir definieren die "interne" Funktion, finden ihre Ableitung.
  2. Wir definieren die "externe" Funktion, finden ihre Ableitung.
  3. Wir multiplizieren die Ergebnisse des ersten und zweiten Punktes.

Wenn wir der Definition folgen, dann ist die Ableitung einer Funktion an einem Punkt die Grenze des Inkrementverhältnisses der Funktion Δ j zum Inkrement des Arguments Δ x:

Alles scheint klar zu sein. Aber versuchen Sie, nach dieser Formel zu berechnen, sagen wir, die Ableitung der Funktion f(x) = x 2 + (2x+ 3) · e x Sünde x. Wenn Sie per Definition alles tun, werden Sie nach ein paar Seiten Berechnungen einfach einschlafen. Daher gibt es einfachere und effektivere Wege.

Zunächst sei darauf hingewiesen, dass die sogenannten Elementarfunktionen von der ganzen Vielfalt der Funktionen unterschieden werden können. Dies sind relativ einfache Ausdrücke, deren Ableitungen längst berechnet und in die Tabelle eingetragen wurden. Solche Funktionen sind leicht zu merken, zusammen mit ihren Ableitungen.

Ableitungen elementarer Funktionen

Elementare Funktionen sind alle unten aufgeführten. Die Ableitungen dieser Funktionen müssen auswendig bekannt sein. Außerdem ist es nicht schwer, sie auswendig zu lernen - deshalb sind sie elementar.

Also die Ableitungen elementarer Funktionen:

Name Funktion Derivat
Konstante f(x) = C, CR 0 (ja, ja, null!)
Grad mit rationalem Exponenten f(x) = x n n · x n − 1
Sinus f(x) = Sünde x cos x
Kosinus f(x) = cos x − Sünde x(minus Sinus)
Tangente f(x) = tg x 1/cos 2 x
Kotangens f(x) = ctg x − 1/sin2 x
natürlicher Logarithmus f(x) = Protokoll x 1/x
Beliebiger Logarithmus f(x) = Protokoll a x 1/(x ln a)
Exponentialfunktion f(x) = e x e x(nichts hat sich geändert)

Multipliziert man eine Elementarfunktion mit einer beliebigen Konstanten, so lässt sich auch die Ableitung der neuen Funktion leicht berechnen:

(C · f)’ = C · f ’.

Im Allgemeinen können Konstanten aus dem Vorzeichen der Ableitung herausgenommen werden. Zum Beispiel:

(2x 3)' = 2 ( x 3)' = 2 3 x 2 = 6x 2 .

Natürlich lassen sich elementare Funktionen addieren, multiplizieren, dividieren und vieles mehr. So entstehen neue Funktionen, nicht mehr ganz elementar, aber auch nach bestimmten Regeln differenzierbar. Diese Regeln werden unten diskutiert.

Ableitung von Summe und Differenz

Lassen Sie die Funktionen f(x) und g(x), deren Ableitungen uns bekannt sind. Beispielsweise können Sie die oben besprochenen elementaren Funktionen verwenden. Dann können Sie die Ableitung der Summe und Differenz dieser Funktionen finden:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Die Ableitung der Summe (Differenz) zweier Funktionen ist also gleich der Summe (Differenz) der Ableitungen. Möglicherweise gibt es noch weitere Begriffe. Zum Beispiel, ( f + g + h)’ = f ’ + g ’ + h ’.

Genau genommen gibt es in der Algebra keinen Begriff der "Subtraktion". Es gibt ein Konzept des "negativen Elements". Daher der Unterschied fg kann als Summe umgeschrieben werden f+ (−1) g, und dann bleibt nur noch eine Formel übrig - die Ableitung der Summe.

f(x) = x 2 + sinx; g(x) = x 4 + 2x 2 − 3.

Funktion f(x) ist die Summe zweier elementarer Funktionen, also:

f ’(x) = (x 2+ Sünde x)’ = (x 2)' + (sünde x)’ = 2x+ cosx;

Ähnlich argumentieren wir für die Funktion g(x). Nur gibt es bereits drei Terme (aus algebraischer Sicht):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Antworten:
f ’(x) = 2x+ cosx;
g ’(x) = 4x · ( x 2 + 1).

Ableitung eines Produkts

Mathematik ist eine logische Wissenschaft, so viele Leute glauben, dass, wenn die Ableitung der Summe gleich der Summe der Ableitungen ist, die Ableitung des Produkts schlagen"\u003e gleich dem Produkt von Derivaten. Aber Feigen für Sie! Die Ableitung des Produkts wird mit einer völlig anderen Formel berechnet. Nämlich:

(f · g) ’ = f ’ · g + f · g

Die Formel ist einfach, wird aber oft vergessen. Und nicht nur Schüler, sondern auch Studenten. Das Ergebnis sind falsch gelöste Probleme.

Aufgabe. Finden Sie Ableitungen von Funktionen: f(x) = x 3 cosx; g(x) = (x 2 + 7x− 7) · e x .

Funktion f(x) ist ein Produkt zweier elementarer Funktionen, also ist alles einfach:

f ’(x) = (x 3 cos x)’ = (x 3)' cos x + x 3 (Kos x)’ = 3x 2 cos x + x 3 (−sünde x) = x 2 (3 cos xx Sünde x)

Funktion g(x) ist der erste Multiplikator etwas komplizierter, aber das allgemeine Schema ändert sich nicht. Offensichtlich der erste Multiplikator der Funktion g(x) ist ein Polynom, und seine Ableitung ist die Ableitung der Summe. Wir haben:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)' · e x + (x 2 + 7x− 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x(2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Antworten:
f ’(x) = x 2 (3 cos xx Sünde x);
g ’(x) = x(x+ 9) · e x .

Beachten Sie, dass im letzten Schritt die Ableitung faktorisiert wird. Formal ist dies nicht notwendig, aber die meisten Ableitungen werden nicht für sich allein berechnet, sondern um die Funktion zu untersuchen. Das bedeutet, dass weiterhin die Ableitung gleich Null gesetzt wird, ihre Vorzeichen ermittelt werden und so weiter. Für einen solchen Fall ist es besser, einen Ausdruck in Faktoren zerlegen zu lassen.

Wenn es zwei Funktionen gibt f(x) und g(x), und g(x) ≠ 0 auf der uns interessierenden Menge können wir eine neue Funktion definieren h(x) = f(x)/g(x). Für eine solche Funktion finden Sie auch die Ableitung:

Nicht schwach, oder? Woher kommt das Minus? Wieso den g 2? Aber so! Dies ist eine der komplexesten Formeln - Sie können es ohne eine Flasche nicht herausfinden. Daher ist es besser, es mit konkreten Beispielen zu studieren.

Aufgabe. Finden Sie Ableitungen von Funktionen:

Es gibt elementare Funktionen im Zähler und Nenner jedes Bruchs, also brauchen wir nur die Formel für die Ableitung des Quotienten:


Traditionell faktorisieren wir den Zähler in Faktoren - dies vereinfacht die Antwort erheblich:

Eine komplexe Funktion ist nicht unbedingt eine einen halben Kilometer lange Formel. Beispielsweise genügt es, die Funktion zu übernehmen f(x) = Sünde x und ersetzen Sie die Variable x, sagen wir, auf x 2+ln x. Es stellt sich heraus f(x) = Sünde ( x 2+ln x) ist eine komplexe Funktion. Sie hat auch ein Derivat, aber es wird nicht funktionieren, es nach den oben diskutierten Regeln zu finden.

Wie sein? In solchen Fällen hilft die Ersetzung einer Variablen und die Formel zur Ableitung einer komplexen Funktion:

f ’(x) = f ’(t) · t', Wenn x wird ersetzt durch t(x).

In der Regel ist die Situation beim Verständnis dieser Formel noch trauriger als bei der Ableitung des Quotienten. Daher ist es auch besser, es mit konkreten Beispielen zu erklären, mit einer detaillierten Beschreibung jedes Schritts.

Aufgabe. Finden Sie Ableitungen von Funktionen: f(x) = e 2x + 3 ; g(x) = Sünde ( x 2+ln x)

Beachten Sie, dass if in der Funktion f(x) anstelle von Ausdruck 2 x+ 3 wird einfach sein x, dann erhalten wir eine elementare Funktion f(x) = e x. Deshalb nehmen wir eine Substitution vor: sei 2 x + 3 = t, f(x) = f(t) = e t. Wir suchen die Ableitung einer komplexen Funktion nach der Formel:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Und jetzt - Achtung! Durchführen einer umgekehrten Substitution: t = 2x+ 3. Wir erhalten:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Schauen wir uns nun die Funktion an g(x). Muss natürlich ausgetauscht werden. x 2+ln x = t. Wir haben:

g ’(x) = g ’(t) · t' = (Sünde t)’ · t' = cos t · t

Umgekehrter Ersatz: t = x 2+ln x. Dann:

g ’(x) = cos ( x 2+ln x) · ( x 2+ln x)' = cos ( x 2+ln x) · (2 x + 1/x).

Das ist alles! Wie aus dem letzten Ausdruck ersichtlich ist, wurde das ganze Problem auf die Berechnung der Ableitung der Summe reduziert.

Antworten:
f ’(x) = 2 e 2x + 3 ;
g ’(x) = (2x + 1/x) weil ( x 2+ln x).

Sehr oft verwende ich in meinem Unterricht anstelle des Begriffs „Ableitung“ das Wort „Strich“. Beispielsweise ist der Strich der Summe gleich der Summe der Striche. Ist das übersichtlicher? Das ist gut.

Daher läuft die Berechnung der Ableitung darauf hinaus, genau diese Striche gemäß den oben diskutierten Regeln loszuwerden. Als letztes Beispiel kehren wir zur Potenz der Ableitung mit einem rationalen Exponenten zurück:

(x n)’ = n · x n − 1

Das wissen die wenigsten in der Rolle n kann durchaus eine Bruchzahl sein. Die Wurzel ist zum Beispiel x 0,5 . Aber was ist, wenn sich unter der Wurzel etwas kniffliges befindet? Auch hier wird sich eine komplexe Funktion herausstellen - sie geben solche Konstruktionen gerne in Tests und Prüfungen.

Aufgabe. Finden Sie die Ableitung einer Funktion:

Lassen Sie uns zuerst die Wurzel als Potenz mit einem rationalen Exponenten umschreiben:

f(x) = (x 2 + 8x − 7) 0,5 .

Jetzt nehmen wir eine Substitution vor: let x 2 + 8x − 7 = t. Wir finden die Ableitung durch die Formel:

f ’(x) = f ’(t) · t ’ = (t 0,5)' t' = 0,5 t−0,5 t ’.

Wir führen eine umgekehrte Substitution durch: t = x 2 + 8x− 7. Wir haben:

f ’(x) = 0,5 ( x 2 + 8x− 7) −0,5 ( x 2 + 8x− 7)' = 0,5 (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Abschließend zurück zu den Wurzeln:

Die Operation, eine Ableitung zu finden, wird Differentiation genannt.

Als Ergebnis der Lösung von Problemen, Ableitungen der einfachsten (und nicht sehr einfachen) Funktionen zu finden, indem die Ableitung als Grenze des Verhältnisses des Inkrements zum Inkrement des Arguments definiert wurde, erschien eine Ableitungstabelle und genau definierte Ableitungsregeln . Isaac Newton (1643-1727) und Gottfried Wilhelm Leibniz (1646-1716) waren die ersten, die sich mit dem Auffinden von Derivaten beschäftigten.

Um die Ableitung einer beliebigen Funktion zu finden, ist es daher heutzutage nicht erforderlich, die oben erwähnte Grenze des Verhältnisses des Inkrements der Funktion zum Inkrement des Arguments zu berechnen, sondern nur die Tabelle zu verwenden von Derivaten und die Regeln der Differenzierung. Der folgende Algorithmus eignet sich zum Auffinden der Ableitung.

Um die Ableitung zu finden, benötigen Sie einen Ausdruck unter dem Strichzeichen einfache Funktionen zerlegen und bestimmen Sie, welche Aktionen (Produkt, Summe, Quotient) diese Funktionen sind verwandt. Außerdem finden wir die Ableitungen elementarer Funktionen in der Ableitungstabelle und die Formeln für die Ableitungen des Produkts, der Summe und des Quotienten - in den Ableitungsregeln. Die Ableitungstabelle und Ableitungsregeln folgen nach den ersten beiden Beispielen.

Beispiel 1 Finden Sie die Ableitung einer Funktion

Entscheidung. Aus den Ableitungsregeln erfahren wir, dass die Ableitung der Summe der Funktionen die Summe der Ableitungen der Funktionen ist, d.h.

Aus der Ableitungstabelle erfahren wir, dass die Ableitung von "X" gleich eins ist und die Ableitung des Sinus Kosinus ist. Wir ersetzen diese Werte in der Summe der Ableitungen und finden die Ableitung, die für die Bedingung des Problems erforderlich ist:

Beispiel 2 Finden Sie die Ableitung einer Funktion

Entscheidung. Als Ableitung der Summe differenzieren, bei der der zweite Term mit konstantem Faktor aus dem Vorzeichen der Ableitung herausgenommen werden kann:

Wenn es noch Fragen gibt, woher etwas kommt, werden sie in der Regel nach der Lektüre der Ableitungstabelle und der einfachsten Ableitungsregeln klar. Wir gehen gleich zu ihnen.

Tabelle der Ableitungen einfacher Funktionen

1. Ableitung einer Konstanten (Zahl). Jede Zahl (1, 2, 5, 200 ...), die im Funktionsausdruck enthalten ist. Immer null. Es ist sehr wichtig, sich daran zu erinnern, da es sehr oft erforderlich ist
2. Ableitung der unabhängigen Variablen. Meistens "x". Immer gleich eins. Dies ist auch wichtig, sich daran zu erinnern
3. Ableitung des Grades. Beim Lösen von Problemen müssen Sie Nicht-Quadratwurzeln in eine Potenz umwandeln.
4. Ableitung einer Variablen hoch -1
5. Ableitung der Quadratwurzel
6. Sinusableitung
7. Cosinus-Ableitung
8. Tangensableitung
9. Ableitung des Kotangens
10. Ableitung des Arkussinus
11. Ableitung des Arkuskosinus
12. Ableitung des Arkustangens
13. Ableitung des inversen Tangens
14. Ableitung des natürlichen Logarithmus
15. Ableitung einer logarithmischen Funktion
16. Ableitung des Exponenten
17. Ableitung der Exponentialfunktion

Abgrenzungsregeln

1. Ableitung der Summe oder Differenz
2. Derivat eines Produkts
2a. Ableitung eines Ausdrucks multipliziert mit einem konstanten Faktor
3. Ableitung des Quotienten
4. Ableitung einer komplexen Funktion

Regel 1Wenn funktioniert

irgendwann differenzierbar sind, dann an der gleichen Stelle die Funktionen

und

jene. die Ableitung der algebraischen Summe der Funktionen ist gleich der algebraischen Summe der Ableitungen dieser Funktionen.

Folge. Wenn sich zwei differenzierbare Funktionen durch eine Konstante unterscheiden, dann sind ihre Ableitungen, d.h.

Regel 2Wenn funktioniert

an einer Stelle differenzierbar sind, dann ist auch ihr Produkt an derselben Stelle differenzierbar

und

jene. die Ableitung des Produkts zweier Funktionen ist gleich der Summe der Produkte jeder dieser Funktionen und der Ableitung der anderen.

Folge 1. Der konstante Faktor kann aus dem Vorzeichen der Ableitung herausgenommen werden:

Folge 2. Die Ableitung des Produkts mehrerer differenzierbarer Funktionen ist gleich der Summe der Produkte der Ableitung jedes der Faktoren und aller anderen.

Zum Beispiel für drei Multiplikatoren:

Regel 3Wenn funktioniert

irgendwann differenzierbar und , dann ist an dieser Stelle auch ihr Quotient differenzierbar.u/v und

jene. die Ableitung eines Quotienten zweier Funktionen ist gleich einem Bruch, dessen Zähler die Differenz zwischen den Produkten des Nenners und der Ableitung des Zählers und des Zählers und der Ableitung des Nenners ist, und der Nenner das Quadrat des ersteren Zählers ist .

Wo kann man auf anderen Seiten suchen

Bei der Bestimmung der Ableitung des Produkts und des Quotienten in realen Problemen ist es immer notwendig, mehrere Ableitungsregeln gleichzeitig anzuwenden, daher finden Sie weitere Beispiele zu diesen Ableitungen im Artikel."Die Ableitung eines Produkts und eines Quotienten".

Kommentar. Sie sollten eine Konstante (also eine Zahl) nicht als Term in der Summe und als konstanten Faktor verwechseln! Bei einem Term ist seine Ableitung gleich Null, bei einem konstanten Faktor wird er aus dem Vorzeichen der Ableitungen herausgenommen. Dies ist ein typischer Fehler, der in der Anfangsphase des Ableitungsstudiums auftritt, aber wenn der durchschnittliche Schüler mehrere Ein-Zwei-Komponenten-Beispiele löst, macht er diesen Fehler nicht mehr.

Und wenn Sie beim Differenzieren eines Produkts oder eines Quotienten einen Begriff haben u"v, indem u- eine Zahl, z. B. 2 oder 5, dh eine Konstante, dann ist die Ableitung dieser Zahl gleich Null und daher ist der gesamte Term gleich Null (ein solcher Fall wird in Beispiel 10 analysiert). .

Ein weiterer häufiger Fehler ist die mechanische Lösung der Ableitung einer komplexen Funktion als Ableitung einer einfachen Funktion. So Ableitung einer komplexen Funktion einem eigenen Artikel gewidmet. Aber zuerst werden wir lernen, Ableitungen einfacher Funktionen zu finden.

Auf Transformationen von Ausdrücken kann man dabei nicht verzichten. Dazu müssen Sie möglicherweise in neuen Windows-Handbüchern öffnen Aktionen mit Kräften und Wurzeln und Aktionen mit Brüchen .

Wenn Sie nach Lösungen für Ableitungen mit Potenzen und Wurzeln suchen, dh wenn die Funktion aussieht , dann folgen Sie der Lektion " Ableitung der Summe von Brüchen mit Potenzen und Wurzeln".

Wenn Sie eine Aufgabe wie z , dann befinden Sie sich in der Lektion "Ableitungen einfacher trigonometrischer Funktionen".

Schritt-für-Schritt-Beispiele - wie man die Ableitung findet

Beispiel 3 Finden Sie die Ableitung einer Funktion

Entscheidung. Wir bestimmen die Teile des Ausdrucks der Funktion: Der gesamte Ausdruck stellt das Produkt dar, und seine Faktoren sind Summen, von denen einer der Terme einen konstanten Faktor enthält. Wir wenden die Produktdifferenzierungsregel an: Die Ableitung des Produkts zweier Funktionen ist gleich der Summe der Produkte jeder dieser Funktionen und der Ableitung der anderen:

Als nächstes wenden wir die Differenzierungsregel der Summe an: Die Ableitung der algebraischen Summe von Funktionen ist gleich der algebraischen Summe der Ableitungen dieser Funktionen. In unserem Fall ist in jeder Summe der zweite Term mit einem Minuszeichen versehen. In jeder Summe sehen wir sowohl eine unabhängige Variable, deren Ableitung gleich eins ist, als auch eine Konstante (Zahl), deren Ableitung gleich Null ist. Also wird "x" zu eins und minus 5 - zu null. Im zweiten Ausdruck wird „x“ mit 2 multipliziert, also multiplizieren wir zwei mit derselben Einheit wie die Ableitung von „x“. Wir erhalten die folgenden Werte von Derivaten:

Wir setzen die gefundenen Ableitungen in die Summe der Produkte ein und erhalten die Ableitung der gesamten Funktion, die durch die Bedingung des Problems erforderlich ist:

Beispiel 4 Finden Sie die Ableitung einer Funktion

Entscheidung. Wir müssen die Ableitung des Quotienten finden. Wir wenden die Formel zum Ableiten eines Quotienten an: Die Ableitung eines Quotienten zweier Funktionen ist gleich einem Bruch, dessen Zähler die Differenz zwischen den Produkten des Nenners und der Ableitung des Zählers und des Zählers und der Ableitung des Nenners ist, und der Nenner ist das Quadrat des vorherigen Zählers. Wir bekommen:

Die Ableitung der Faktoren im Zähler haben wir bereits in Beispiel 2 gefunden. Vergessen wir auch nicht, dass das Produkt, das der zweite Faktor im Zähler ist, im aktuellen Beispiel mit einem Minuszeichen genommen wird:

Wenn Sie nach Lösungen für solche Probleme suchen, bei denen Sie die Ableitung einer Funktion finden müssen, bei der es einen kontinuierlichen Stapel von Wurzeln und Graden gibt, wie zum Beispiel dann willkommen im Unterricht "Die Ableitung der Summe von Brüchen mit Potenzen und Wurzeln" .

Wenn Sie mehr über die Ableitungen von Sinus, Kosinus, Tangens und anderen trigonometrischen Funktionen erfahren möchten, dh wann die Funktion aussieht , dann hast du Unterricht "Ableitungen einfacher trigonometrischer Funktionen" .

Beispiel 5 Finden Sie die Ableitung einer Funktion

Entscheidung. In dieser Funktion sehen wir ein Produkt, dessen einer der Faktoren die Quadratwurzel der unabhängigen Variablen ist, mit deren Ableitung wir uns in der Ableitungstabelle vertraut gemacht haben. Nach der Produktdifferenzierungsregel und dem Tabellenwert der Ableitung der Quadratwurzel erhalten wir:

Beispiel 6 Finden Sie die Ableitung einer Funktion

Entscheidung. In dieser Funktion sehen wir den Quotienten, dessen Dividende die Quadratwurzel der unabhängigen Variablen ist. Nach der Ableitungsregel des Quotienten, die wir in Beispiel 4 wiederholt und angewendet haben, und dem Tabellenwert der Ableitung der Quadratwurzel erhalten wir:

Um den Bruch im Zähler loszuwerden, multipliziere Zähler und Nenner mit .

Der Videokurs "Get an A" beinhaltet alle Themen, die für das erfolgreiche Bestehen der Prüfung in Mathematik mit 60-65 Punkten notwendig sind. Erledigen Sie alle Aufgaben 1-13 des Profils USE in Mathematik. Auch zum Bestehen der Basic USE in Mathematik geeignet. Wer die Prüfung mit 90-100 Punkten bestehen will, muss Teil 1 in 30 Minuten und ohne Fehler lösen!

Prüfungsvorbereitungskurs für die Klassen 10-11, sowie für Lehrkräfte. Alles, was Sie brauchen, um Teil 1 der Prüfung in Mathematik (die ersten 12 Aufgaben) und Aufgabe 13 (Trigonometrie) zu lösen. Und das sind mehr als 70 Punkte im Einheitlichen Staatsexamen, und darauf kann weder ein Hundertpunkte-Student noch ein Humanist verzichten.

Die ganze notwendige Theorie. Schnelle Lösungen, Fallen und Geheimnisse der Prüfung. Alle relevanten Aufgaben von Teil 1 der Bank of FIPI-Aufgaben wurden analysiert. Der Kurs entspricht vollständig den Anforderungen des USE-2018.

Der Kurs beinhaltet 5 große Themen zu je 2,5 Stunden. Jedes Thema ist von Grund auf neu, einfach und übersichtlich.

Hunderte von Prüfungsaufgaben. Textprobleme und Wahrscheinlichkeitstheorie. Einfache und leicht zu merkende Problemlösungsalgorithmen. Geometrie. Theorie, Referenzmaterial, Analyse aller Arten von USE-Aufgaben. Stereometrie. Schlaue Tricks zum Lösen, nützliche Spickzettel, Entwicklung des räumlichen Vorstellungsvermögens. Trigonometrie von Grund auf - zu Aufgabe 13. Verstehen statt pauken. Visuelle Erklärung komplexer Konzepte. Algebra. Wurzeln, Potenzen und Logarithmen, Funktion und Ableitung. Basis zur Lösung komplexer Probleme des 2. Teils der Prüfung.