Декартова система координат: основные понятия и примеры. Декартовы координаты точек плоскости

Уравнение окружности на координатной плоскости

Определение 1 . Числовой осью (числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

O x

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины .

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат , не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координаты абсциссу и ординату , которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA 1 и AA 2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A 1 на числовой оси Ox , ординатой точки A называют координату точки A 2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y ) или A = (x ; y ).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти (квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Утверждение 1 . Расстояние между двумя точками координатной плоскости

A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2)

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A 1 A 2 | 2 =
= ( x 2 - x 1) 2 + ( y 2 - y 1) 2 .
(1)

Следовательно,

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Рассмотрим на координатной плоскости Oxy (рис. 7) окружность радиуса R с центром в точке A 0 (x 0 ; y 0) .

Упорядоченная система двух или трёх пересекающихся перпендикулярных друг другу осей с общим началом отсчёта (началом координат) и общей единицей длины называется прямоугольной декартовой системой координат .

Общая декартова система координат (аффинная система координат ) может включать и не обязательно перпендикулярные оси. В честь французского математика Рене Декарта (1596-1662) названа именно такая система координат, в которой на всех осях отсчитывается общая единица длины и оси являются прямыми.

Прямоугольная декартова система координат на плоскости имеет две оси, а прямоугольная декартова система координат в пространстве - три оси. Каждая точка на плоскости или в пространстве определяется упорядоченным набором координат - чисел в соответствии единице длины системы координат.

Заметим, что, как следует из определения, существует декартова система координат и на прямой, то есть в одном измерении. Введение декартовых координат на прямой представляет собой один из способов, с помощью которого любой точке прямой ставится в соответствие вполне определённое вещественное число, то есть координата.

Метод координат, возникший в работах Рене Декарта, ознаменовал собой революционную перестройку всей математики. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так, неравенство z < 3 геометрически означает полупространство, лежащее ниже плоскости, параллельной координатной плоскости xOy и находящейся выше этой плоскости на 3 единицы.

С помощью декартовой системы координат принадлежность точки заданной кривой соответствует тому, что числа x и y удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (a ; b ) удовлетворяют уравнению (x - a )² + (y - b )² = R ² .

Прямоугольная декартова система координат на плоскости

Две перпендикулярные оси на плоскости с общим началом и одинаковой масштабной единицей образуют декартову прямоугольную систему координат на плоскости . Одна из этих осей называется осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат . Эти оси называются также координатными осями. Обозначим через M x и M y соответственно проекции произвольной точки М на оси Ox и Oy . Как получить проекции? Проведём через точку М Ox . Эта прямая пересекает ось Ox в точке M x . Проведём через точку М прямую, перпендикулярную оси Oy . Эта прямая пересекает ось Oy в точке M y . Это показано на рисунке ниже.

x и y точки М будем называть соответственно величины направленных отрезков OM x и OM y . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 и y = y 0 - 0 . Декартовы координаты x и y точки М абсциссой и ординатой . Тот факт, что точка М имеет координаты x и y , обозначается так: M (x , y ) .

Координатные оси разбивают плоскость на четыре квадранта , нумерация которых показана на рисунке ниже. На нём же указана расстановка знаков координат точек в зависимости от их расположения в том или ином квадранте.

Помимо декартовых прямоугольных координат на плоскости часто рассматривается также полярная система координат. О способе перехода от одной системы координат к другой - в уроке полярная система координат .

Прямоугольная декартова система координат в пространстве

Декартовы координаты в пространстве вводятся в полной аналогии с декартовыми координатами на плоскости.

Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом O и одинаковой масштабной единицей образуют декартову прямоугольную систему координат в пространстве .

Одну из указанных осей называют осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат , третью - осью Oz , или осью аппликат . Пусть M x , M y M z - проекции произвольной точки М пространства на оси Ox , Oy и Oz соответственно.

Проведём через точку М Ox Ox в точке M x . Проведём через точку М плоскость, перпендикулярную оси Oy . Эта плоскость пересекает ось Oy в точке M y . Проведём через точку М плоскость, перпендикулярную оси Oz . Эта плоскость пересекает ось Oz в точке M z .

Декартовыми прямоугольными координатами x , y и z точки М будем называть соответственно величины направленных отрезков OM x , OM y и OM z . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 , y = y 0 - 0 и z = z 0 - 0 .

Декартовы координаты x , y и z точки М называются соответственно её абсциссой , ординатой и аппликатой .

Попарно взятые координатные оси располагаются в координатных плоскостях xOy , yOz и zOx .

Задачи о точках в декартовой системе координат

Пример 1.

A (2; -3) ;

B (3; -1) ;

C (-5; 1) .

Найти координаты проекций этих точек на ось абсцисс.

Решение. Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, и ординату (координату на оси Oy , которую ось абсцисс пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось абсцисс:

A x (2; 0) ;

B x (3; 0) ;

C x (-5; 0) .

Пример 2. В декартовой системе координат на плоскости даны точки

A (-3; 2) ;

B (-5; 1) ;

C (3; -2) .

Найти координаты проекций этих точек на ось ординат.

Решение. Как следует из теоретической части этого урока, проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, и абсциссу (координату на оси Ox , которую ось ординат пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось ординат:

A y (0; 2) ;

B y (0; 1) ;

C y (0; -2) .

Пример 3. В декартовой системе координат на плоскости даны точки

A (2; 3) ;

B (-3; 2) ;

C (-1; -1) .

Ox .

Ox Ox Ox , будет иметь такую же абсциссу, что и данная точка, и ординату, равную по абсолютной величине ординате данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Ox :

A" (2; -3) ;

B" (-3; -2) ;

C" (-1; 1) .

Решить задачи на декартову систему координат самостоятельно, а затем посмотреть решения

Пример 4. Определить, в каких квадрантах (четвертях, рисунок с квадрантами - в конце параграфа "Прямоугольная декартова система координат на плоскости") может быть расположена точка M (x ; y ) , если

1) xy > 0 ;

2) xy < 0 ;

3) x y = 0 ;

4) x + y = 0 ;

5) x + y > 0 ;

6) x + y < 0 ;

7) x y > 0 ;

8) x y < 0 .

Пример 5. В декартовой системе координат на плоскости даны точки

A (-2; 5) ;

B (3; -5) ;

C (a ; b ) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Продолжаем решать задачи вместе

Пример 6. В декартовой системе координат на плоскости даны точки

A (-1; 2) ;

B (3; -1) ;

C (-2; -2) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Решение. Поворачиваем на 180 градусов вокруг оси Oy направленный отрезок, идущий от оси Oy до данной точки. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно оси Oy , будет иметь такую же ординату, что и данная точка, и абсциссу, равную по абсолютной величине абсциссе данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Oy :

A" (1; 2) ;

B" (-3; -1) ;

C" (2; -2) .

Пример 7. В декартовой системе координат на плоскости даны точки

A (3; 3) ;

B (2; -4) ;

C (-2; 1) .

Найти координаты точек, симметричных этим точкам относительно начала координат.

Решение. Поворачиваем на 180 градусов вокруг начала координат направленный отрезок, идущий от начала координат к данной точке. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно начала координат, будет иметь абсциссу и ординату, равные по абсолютной величине абсциссе и ординате данной точки, но противоположные им по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно начала координат:

A" (-3; -3) ;

B" (-2; 4) ;

C (2; -1) .

Пример 8.

A (4; 3; 5) ;

B (-3; 2; 1) ;

C (2; -3; 0) .

Найти координаты проекций этих точек:

1) на плоскость Oxy ;

2) на плоскость Oxz ;

3) на плоскость Oyz ;

4) на ось абсцисс;

5) на ось ординат;

6) на ось апликат.

1) Проекция точки на плоскость Oxy расположена на самой этой плоскости, а следовательно имеет абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxy :

A xy (4; 3; 0) ;

B xy (-3; 2; 0) ;

C xy (2; -3; 0) .

2) Проекция точки на плоскость Oxz расположена на самой этой плоскости, а следовательно имеет абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxz :

A xz (4; 0; 5) ;

B xz (-3; 0; 1) ;

C xz (2; 0; 0) .

3) Проекция точки на плоскость Oyz расположена на самой этой плоскости, а следовательно имеет ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную нулю. Итак получаем следующие координаты проекций данных точек на Oyz :

A yz (0; 3; 5) ;

B yz (0; 2; 1) ;

C yz (0; -3; 0) .

4) Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, а ордината и апликата проекции равны нулю (поскольку оси ординат и апликат пересекают ось абсцисс в точке 0). Получаем следующие координаты проекций данных точек на ось абсцисс:

A x (4; 0; 0) ;

B x (-3; 0; 0) ;

C x (2; 0; 0) .

5) Проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, а абсцисса и апликата проекции равны нулю (поскольку оси абсцисс и апликат пересекают ось ординат в точке 0). Получаем следующие координаты проекций данных точек на ось ординат:

A y (0; 3; 0) ;

B y (0; 2; 0) ;

C y (0; -3; 0) .

6) Проекция точки на ось апликат расположена на самой оси апликат, то есть оси Oz , а следовательно имеет апликату, равную апликате самой точки, а абсцисса и ордината проекции равны нулю (поскольку оси абсцисс и ординат пересекают ось апликат в точке 0). Получаем следующие координаты проекций данных точек на ось апликат:

A z (0; 0; 5) ;

B z (0; 0; 1) ;

C z (0; 0; 0) .

Пример 9. В декартовой системе координат в пространстве даны точки

A (2; 3; 1) ;

B (5; -3; 2) ;

C (-3; 2; -1) .

Найти координаты точек, симметричных этим точкам относительно:

1) плоскости Oxy ;

2) плоскости Oxz ;

3) плоскости Oyz ;

4) оси абсцисс;

5) оси ординат;

6) оси апликат;

7) начала координат.

1) "Продвигаем" точку по другую сторону оси Oxy Oxy , будет иметь абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную по величине апликате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxy :

A" (2; 3; -1) ;

B" (5; -3; -2) ;

C" (-3; 2; 1) .

2) "Продвигаем" точку по другую сторону оси Oxz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oxz , будет иметь абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную по величине ординате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxz :

A" (2; -3; 1) ;

B" (5; 3; 2) ;

C" (-3; -2; -1) .

3) "Продвигаем" точку по другую сторону оси Oyz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oyz , будет иметь ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную по величине абсциссе данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oyz :

A" (-2; 3; 1) ;

B" (-5; -3; 2) ;

C" (3; 2; -1) .

По аналогии с симметричными точками на плоскости и точками пространства, симметричными данным относительно плоскостей, замечаем, что в случае симметрии относительно некоторой оси декартовой системы координат в пространстве, координата на оси, относительно которой задана симметрия, сохранит свой знак, а координаты на двух других осях будут теми же по абсолютной величине, что и координаты данной точки, но противоположными по знаку.

4) Свой знак сохранит абсцисса, а ордината и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси абсцисс:

A" (2; -3; -1) ;

B" (5; 3; -2) ;

C" (-3; -2; 1) .

5) Свой знак сохранит ордината, а абсцисса и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси ординат:

A" (-2; 3; -1) ;

B" (-5; -3; -2) ;

C" (3; 2; 1) .

6) Свой знак сохранит апликата, а абсцисса и ордината поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси апликат:

A" (-2; -3; 1) ;

B" (-5; 3; 2) ;

C" (3; -2; -1) .

7) По аналогии с симметрии в случае с точками на плоскости, в случае симметрии относительно начала координат все координаты точки, симметричной данной, будут равными по абсолютной величине координатам данной точки, но противоположными им по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно начала координат.

Инструкция

Записывайте математические операции в текстовом виде и вводите их в поле поискового запроса на главной странице сайта Google, если -либо не можете использовать калькулятор, но имеете доступ в интернет. Этот поисковик имеет встроенный многофункциональный калькулятор, пользоваться которым намного проще, чем любым другим. Здесь нет интерфейса с кнопками - вводить все данные надо в текстовом виде в единственное поле. Например, если известны координаты крайних точек отрезка в трехмерной системе координат A(51,34 17,2 13,02) и A(-11,82 7,46 33,5), то координаты средней точки отрезка C((51,34-11,82)/2 (17,2+7,46)/2 (13,02+33,5)/2). Вводя в поле поискового запроса (51,34-11,82)/2, затем (17,2+7,46)/2 и (13,02+33,5)/2, можно с помощью Google получить координаты С(19,76 12,33 23,26).

Стандартное уравнение окружности позволяет узнать несколько важных сведений об этой фигуре, например, координаты ее центра, длину радиуса. В некоторых задачах, наоборот, по заданным параметрам требуется составить уравнение.

Инструкция

Определите, сведениями об окружности вы располагаете, исходя из данной вам задачи. Запомните, что конечной целью является необходимость определить координаты центра, а также диаметр. Все ваши действия должны быть направлены на достижение именно этого результата.

Используйте данные о наличии точек пересечения с координатными прямыми или другими прямыми. Обратите внимание, что, если окружность проходит через ось абсцисс, вторая будет иметь координату 0, а если через ось ординат – то первая. Эти координаты позволят вам найти координаты центра окружности, а также вычислить радиус.

Не забывайте об основных свойствах секущих и касательных. В частности, наиболее полезной оказывается теорема о том, что в точке касания радиус и касательная образуют прямой угол. Но обратите внимание на то, что вас могут попросить доказать все использованные в ходе теоремы.

Прорешайте наиболее стандартные типы , чтобы научиться сразу видеть, как использовать те или иные данные для уравнения окружности. Так, помимо уже указанных задач с прямо заданными координатами и теми, в условиях которых даны сведения о наличии точек пересечения, для составления уравнения окружности можно воспользоваться знаниями о центре окружности, длине хорды и , на которой эта хорда лежит.

Для решения постройте равнобедренный треугольник, основанием которого будет данная хорда, а равные стороны – радиусами. Составьте , из которой вы легко найдете необходимые данные. Для этого достаточно воспользоваться формулой для нахождения длины отрезка в плоскости.

Видео по теме

Под окружностью понимают фигуру, которая состоит из множества точек плоскости, равноудаленных от ее центра. Расстояние от центра до точек окружности называется радиусом.

Полярные координаты

Число называют полярным радиусом точки или первой полярной координатой . Расстояние не может быть отрицательным, поэтому полярный радиус любой точки . Первую полярную координату также обозначают греческой буквой («ро»), но я привык к латинскому варианту, и в дальнейшем буду использовать его.

Число называют полярным углом данной точки или второй полярной координатой . Полярный угол стандартно изменяется в пределах (так называемые главные значения угла ). Однако вполне допустимо использовать диапазон , а в некоторых случаях и вовсе возникает прямая необходимость рассмотреть все значения угла от нуля до «плюс бесконечности». Рекомендую, кстати, привыкнуть к радианной мере угла, поскольку оперировать градусами в высшей математике считается не комильфо.

Пару называют полярными координатами точки . Из легко найти и их конкретные значения. Тангенс острого угла прямоугольного треугольника – есть отношение противолежащего катета к прилежащему катету: , следовательно, сам угол: . По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов: , значит, полярный радиус:

Таким образом, .

Один пингвин хорошо, а стая – лучше :


Отрицательно ориентированные углы я на всякий случай отметил стрелками, вдруг кто-то из читателей ещё не знал об этой ориентации. При желании можно «прикрутить» к каждому из них 1 оборот ( рад. или 360 градусов) и получить, к слову, удобные табличные значения :

Но недостаток этих «традиционно» ориентированных углов состоит в том, что они слишком далеко (более чем, на 180 градусов) «закручены» против часовой стрелки. Предчувствую вопрос: «почему недостаток и зачем вообще нужны какие-то отрицательные углы?» В математике ценятся самые короткие и рациональные пути. Ну а уж с точки зрения физики направление вращения зачастую имеет принципиальное значение – каждый из нас пытался открыть дверь, дёргая ручку не в ту сторону =)

Порядок и техника построения точек в полярных координатах

Красивые картинки красивы, однако построение в полярной системе координат – занятие достаточно кропотливое. Трудностей не возникает с точками, у которых полярные углы составляют , в нашем примере это точки ; особых хлопот также не доставляют значения, кратные 45 градусам: . Но как правильно и грамотно построить, скажем, точку ?

Потребуется клетчатый листок бумаги, карандаш и следующие чертёжные инструменты: линейка, циркуль, транспортир . В крайнем случае, можно обойтись одной линейкой, а то… и вовсе без неё! Читайте дальше и вы получите ещё одно доказательство, что эта страна непобедима =)

Пример 1

Построить точку в полярной системе координат.

Прежде всего, необходимо выяснить градусную меру угла . Если угол малознаком или вас есть сомнения, то всегда лучше воспользоваться таблицей либо общей формулой перевода радианов в градусы. Итак, наш угол составляет (или ).

Начертим полярную систему координат (см. начало урока) и возьмём в руки транспортир. Обладателям круглого инструмента не составит труда отметить 240 градусов, но с большой вероятностью у вас на руках будет полукруглая версия девайса. Проблема полного отсутствия транспортира при наличии принтера и ножниц решается рукоделием .

Есть два пути: перевернуть листок и отметить 120 градусов, либо «прикрутить» пол оборота и рассмотреть противоположный угол . Выберем взрослый способ и сделаем отметку в 60 градусов:


То ли транспортир лилипутский, то ли клетка гигантская =) Впрочем, чтобы отмерить угол масштаб не важен.

Проводим карандашом тонкую прямую, проходящую через полюс и сделанную отметку:


С углом разобрались, на очереди полярный радиус. Берём циркуль и по линейке устанавливаем его раствор в 3 единицы, чаще всего, это, конечно же, сантиметры:

Теперь аккуратно устанавливаем иглу на полюс, и вращательным движением выполняем небольшую засечку (красный цвет). Искомая точка построена:


Можно обойтись без циркуля, приложив линейку непосредственно к построенной прямой и отмерив 3 сантиметра. Но, как мы увидим позже, в задачах на построение в полярной системе координат типична ситуация, когда нужно отметить две или бОльшее количество точек с одним и тем же полярным радиусом, поэтому эффективнее закалять металл. В частности, на нашем чертеже, развернув ногу циркуля на 180 градусов, легко сделать вторую засечку и построить симметричную относительно полюса точку . На ней давайте и отработаем материал следующего параграфа:

Взаимосвязь прямоугольной и полярной системы координат

Очевидным образом присоединим к полярной системе координат «обычную» координатную сетку и изобразим на чертеже точку :

Такое присоединение всегда полезно держать в голове, когда выполняете чертёж в полярных координатах. Хотя, волей-неволей оно напрашивается и без лишнего намёка.

Установим взаимосвязь полярных и декартовых координат на примере конкретной точки . Рассмотрим прямоугольный треугольник , в котором гипотенуза равна полярному радиусу: , а катеты – «иксовой» и «игрековой» координатам точки в декартовой системе координат: .

Синус острого угла – есть отношение противолежащего катета к гипотенузе:

Косинус острого угла – есть отношение прилежащего катета к гипотенузе:

Заодно повторили определения синуса, косинуса (и чуть ранее тангенса) из программы 9 класса общеобразовательной школы.

Пожалуйста, занесите в свой справочник рабочие формулы , выражающие декартовы координаты точки через её полярные координаты – с ними нам придётся столкнуться ещё неоднократно, и в следующий раз прямо сейчас =)

Найдём координаты точки в прямоугольной системе координат:

Таким образом:

Полученные формулы открывают ещё одну лазейку в задаче построения, когда можно обойтись вообще без транспортира: сначала находим декартовы координаты точки (понятно, на черновике), затем мысленно находим нужное место на чертеже и отмечаем данную точку. На заключительном этапе проводим тонкую прямую, которая проходит через построенную точку и полюс. В результате получается, что угол якобы был отмерян транспортиром.

Забавно, что совсем отчаянные студенты, могут обойтись даже без линейки, используя вместо неё ровный край учебника, тетради или зачётной книжки – ведь о метрике позаботились производители тетрадей, 1 клетка = 5 миллиметров.

Напомнило мне всё это известный анекдот, в котором находчивые лётчики прокладывали курс по пачке Беломора =) Хотя, шутки шутками, а анекдот не так далёк от реальности, помнится, на одном из внутренних рейсов по РФ в лайнере отказали все навигационные приборы, и экипаж успешно посадил борт при помощи обычного стакана с водой, который показывал угол наклона самолёта относительно земли. А лётная полоса – вот она, из лобового стекла виднА.

Используя процитированную в начале урока теорему Пифагора, легко получить и обратные формулы: , следовательно:

Сам угол «фи» стандартно выражается через арктангенс – абсолютно так же как и аргумент комплексного числа со всеми его заморочками.

Вторую группу формул также целесообразно поместить в свой справочный багаж.

После подробного разбора полётов с отдельно взятыми точками перейдём к закономерному продолжению темы:

Уравнение линии в полярных координатах

По существу, уравнение линии в полярной системе координат представляет собой функцию полярного радиуса от полярного угла (аргумента) . При этом полярный угол учитывается в радианах (!) и непрерывно принимает значения от до (иногда следует рассмотреть до бесконечности, или же в ряде задач для удобства от до ) . Каждому значению угла «фи», которое входит в область определения функции, соответствует единственное значение полярного радиуса.

Полярную функцию можно сравнить со своеобразным радаром – когда луч света, исходящий из полюса, вращается против часовой стрелки и «обнаруживает» (прорисовывает) линию.

Дежурным примером полярной кривой является Архимедова спираль . На следующем рисунке изображен её первый виток – когда полярный радиус вслед за полярным углом принимает значения от 0 до :

Далее, пересекая полярную ось в точке , спираль продолжит раскручиваться, бесконечно далеко удаляясь от полюса. Но подобные случаи на практике встречаются довольно редко; более типичная ситуация, когда на всех последующих оборотах мы «пройдёмся по той же самой линии», которая получена в диапазоне .

В первом же примере мы сталкиваемся и с понятием области определения полярной функции: поскольку полярный радиус неотрицателен , то отрицательные углы здесь рассматривать нельзя.

! Примечание : в ряде случаев принято использовать обобщённые полярные координаты , где радиус может быть отрицательным, и такой подход мы вкратце изучим чуть позже

Кроме спирали Архимеда, есть множество других известных кривых, но искусством, как говорится, сыт не будешь, поэтому я подобрал примеры, которые очень часто встречаются в реальных практических заданиях.

Сначала простейшие уравнения и простейшие линии:

Уравнение вида задаёт исходящий из полюса луч . Действительно, вдумайтесь, если значение угла всегда (каким бы ни было «эр») постоянно, то какая это линия?

Примечание : в обобщённой полярной системе координат данное уравнение задаёт прямую, проходящую через полюс

Уравнение вида определяет… догадайтесь с первого раза – если для любого угла «фи» радиус остаётся постоянным? Фактически это определение окружности с центром в полюсе радиуса .

Например, . Для наглядности найдём уравнение данной линии в прямоугольной системе координат. Используя полученную в предыдущем параграфе формулу , проведём замену:

Возведём обе части в квадрат:

уравнение окружности с центром в начале координат радиуса 2, что и требовалось проверить.

Со времён создания и релиза статьи о линейной зависимости и линейной независимости векторов я получил несколько писем от посетителей сайта, которые задавали вопрос в духе: «вот есть простая и удобная прямоугольная система координат, зачём нужен ещё какой-то косоугольный аффинный случай?». Ответ прост: математика стремится объять всё и вся! Кроме того, в той или иной ситуации немаловажно удобство – как видите, с окружностью значительно выгоднее работать именно в полярных координатах по причине предельной простоты уравнения .

А иногда математическая модель предвосхищает научные открытия. Так, в своё время ректор Казанского университета Н.И. Лобачевский строго доказал , через произвольную точку плоскости можно провести бесконечно много прямых , параллельных данной. В результате он был ошельмован всем научным миром, но… опровергнуть данный факт никто не смог. Только спустя доброе столетие астрономы выяснили, что свет в космосе распространяется по кривым траекториям, где и начинает работать неевклидова геометрия Лобачевского, формально разработанная им задолго до этого открытия. Предполагается, что это свойство самого пространства, кривизна которого нам незаметна ввиду малых (по астрономическим меркам) расстояний.

Рассмотрим более содержательные задачи на построение:

Пример 2

Построить линию

Решение : в первую очередь найдём область определения . Так как полярный радиус неотрицателен, то должно выполняться неравенство . Можно вспомнить школьные правила решения тригонометрических неравенств, но в простых случаях как этот, я советую более быстрый и наглядный метод решения:

Представьте график косинуса. Если он ещё не успел отложиться в памяти, то найдите его на странице Графики элементарных функций . О чём нам сообщает неравенство ? Оно сообщает нам о том, что график косинуса должен располагаться не ниже оси абсцисс. А это происходит на отрезке . И, соответственно, интервал не подходит.

Таким образом, область определения нашей функции: , то есть график расположен справа от полюса (по терминологии декартовой системы – в правой полуплоскости).

В полярных координатах часто бывает смутное представление о том, какую линию определяет то или иное уравнение, поэтому чтобы её построить, необходимо найти принадлежащие ей точки – и чем больше, тем лучше. Обычно ограничиваются десятком-другим (а то и меньшим количеством). Проще всего, конечно же, взять табличные значения угла . Для бОльшей ясности к отрицательным значениям я буду «прикручивать» один оборот:

В силу чётности косинуса соответствующие положительные значения можно заново не считать:

Изобразим полярную систему координат и отложим найденные точки, при этом одинаковые значения «эр» удобно откладывать за один раз, делая парные засечки циркулем по рассмотренной выше технологии:

В принципе, линия отчётливо прорисовывается, но чтобы стопроцентно подтвердить догадку, давайте найдём её уравнение в декартовой системе координат. Можно применить недавно выведенные формулы , но я расскажу вам о более хитром приёме. Обе части уравнения искусственно домножаем на «эр»: и используем более компактные формулы перехода :

Выделяя полный квадрат, приводим уравнение линии к узнаваемому виду:

уравнение окружности с центром в точке , радиуса 2.

Коль скоро по условию требовалось просто выполнить построение и всё, плавно соединяем найденные точки линией:

Готово. Ничего страшного, если получится немного неровно, вы же не обязаны были знать, что это окружность;-)

Почему мы не рассмотрели значения угла вне промежутка ? Ответ прост: нет смысла. Ввиду периодичности функции нас ждёт бесконечный бег по построенной окружности.

Несложно провести нехитрый анализ и прийти к выводу, что уравнение вида задаёт окружность диаметра с центром в точке . Образно говоря, все такие окружности «сидят» на полярной оси и обязательно проходят через полюс. Если же , то весёлая компания перекочует налево – на продолжение полярной оси (подумайте, почему).

Похожая задача для самостоятельного решения:

Пример 3

Построить линию и найти её уравнение в прямоугольной системе координат.

Систематизируем порядок решения задачи:

В первую очередь находим область определения функции, для этого удобно посмотреть на синусоиду , чтобы сразу же понять, где синус неотрицателен.

На втором шаге рассчитываем полярные координаты точек, используя табличные значения углов ; проанализируйте, нельзя ли сократить количество вычислений?

На третьем шаге откладываем точки в полярной системе координат и аккуратно соединяем их линией.

И, наконец, находим уравнение линии в декартовой системе координат.

Примерный образец решения в конце урока.

Общий алгоритм и технику построения в полярных координатах мы детализируем
и существенно ускорим во второй части лекции, но перед этим познакомимся ещё с одной распространённой линией:

Полярная роза

Совершенно верно, речь пойдёт о цветке с лепестками:

Пример 4

Построить линии, заданные уравнениями в полярных координатах

Существует два подхода к построению полярной розы. Сначала пойдём по накатанной колее, считая, что полярный радиус не может быть отрицательным:

Решение :

а) Найдём область определения функции:

Такое тригонометрическое неравенство тоже нетрудно решить графически: из материалов статьи Геометрические преобразования графиков известно, что если аргумент функции удвоить, то её график сожмётся к оси ординат в 2 раза. Пожалуйста, найдите график функции в первом же примере указанного урока. Где данная синусоида находится выше оси абсцисс? На интервалах . Следовательно, неравенству удовлетворяют соответствующие отрезки, и область определения нашей функции: .

Вообще говоря, решение рассматриваемых неравенств представляет собой объединение бесконечного количества отрезков, но, повторюсь, нас интересует только один период.

Возможно, некоторым читателям более лёгким покажется аналитический способ нахождения области определения, условно назову его «нарезка круглого пирога». Резать будем на равные части и, прежде всего, найдём границы первого куска. Рассуждаем следующим образом: синус неотрицателен , когда его аргумент находится в пределах от 0 до рад. включительно. В нашем примере: . Разделив все части двойного неравенства на 2, получаем искомый промежуток:

Теперь начинаем последовательно «нарезать равные куски по 90 градусов» против часовой стрелки:

– найденный отрезок , понятно, входит в область определения;

– следующий интервал – не входит;

– следующий отрезок – входит;

– и, наконец, интервал – не входит.

Прямо, как по ромашке – «любит, не любит, любит, не любит» =) С тем отличием, что тут не гадание. Да, прямо какая-то любовь по-китайски получается….

Итак, и линия представляет собой розу с двумя одинаковыми лепестками. Чертёж вполне допустимо выполнить схематически, однако крайне желательно правильно найти и отметить вершины лепестков . Вершинам соответствуют середины отрезков области определения , которые в данном примере имеют очевидные угловые координаты . При этом длины лепестков составляют:

Вот закономерный результат заботливого садовника:

Следует отметить, что длину лепестка легко сразу усмотреть из уравнения – так как синус ограничен: , то максимальное значение «эр» заведомо не превзойдёт двух.

б) Построим линию, заданную уравнением . Очевидно, что длина лепестка этой розы тоже равна двум, но, прежде всего, нас интересует область определения. Применим аналитический метод «нарезки»: синус неотрицателен, когда его аргумент находится в пределах от нуля до «пи» включительно, в данном случае: . Делим все части неравенства на 3 и получаем первый промежуток:

Далее начинаем «нарезку пирога кускам» по рад. (60 градусов):
– отрезок войдёт в область определения;
– интервал – не войдёт;
– отрезок – войдёт;
– интервал – не войдёт;
– отрезок – войдёт;
– интервал – не войдёт.

Процесс успешно завершён на отметке 360 градусов.

Таким образом, область определения: .

Проводимые действия полностью либо частично несложно осуществлять и мысленно.

Построение. Если в предыдущем пункте всё благополучно обошлось прямыми углами и углами в 45 градусов, то здесь придётся немного повозиться. Найдём вершины лепестков . Их длина была видна с самого начала задания, осталось вычислить угловые координаты, которые равны серединам отрезков области определения:

Обратите внимание, что между вершинами лепестков должны обязательно получиться равные промежутки, в данном случае 120 градусов.

Чертёж желательно разметить на 60-градусные секторы (отграничены зелёными линиями) и провести направления вершин лепестков (серые линии). Сами вершины удобно наметить с помощью циркуля – единожды отмерять расстояние в 2 единицы и нанести три засечки на прочерченных направлениях в 30, 150 и 270 градусов:

Готово. Понимаю, что занятие хлопотное, но если хотите всё оформить по уму, то придётся потратить время.

Сформулируем общую формулу : уравнение вида , – натуральное число), задаёт полярную -лепестковую розу, длина лепестка которой равна .

Например, уравнение задаёт четырёхлистник с длиной лепестка в 5 единиц, уравнение – 5-лепестковую розу с длиной лепестка в 3 ед. и т.д.

Прямоугольная система координат на плоскости образуется двумя взаимно перпендикулярными осями координат X’X и Y’Y. Оси координат пересекаются в точке O, которая называется началом координат , на каждой оси выбрано положительное направление.Положительное направление осей (в правосторонней системе координат) выбирают так, чтобы при повороте оси X’X против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси Y’Y. Четыре угла (I, II, III, IV), образованные осями координат X’X и Y’Y, называются координатными углами (см. Рис. 1).

Положение точки A на плоскости определяется двумя координатами x и y. Координата x равна длине отрезка OB, координата y - длине отрезка OC в выбранных единицах измерения. Отрезки OB и OC определяются линиями, проведёнными из точки A параллельно осям Y’Y и X’X соответственно. Координата x называется абсциссой точки A, координата y - ординатой точки A. Записывают так: A(x, y).

Если точка A лежит в координатном угле I, то точка A имеет положительные абсциссу и ординату. Если точка A лежит в координатном угле II, то точка A имеет отрицательную абсциссу и положительную ординату. Если точка A лежит в координатном угле III, то точка A имеет отрицательные абсциссу и ординату. Если точка A лежит в координатном угле IV, то точка A имеет положительную абсциссу и отрицательную ординату.

Прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX, OY и OZ. Оси координат пересекаются в точке O, которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения одинаковы для всех осей. OX - ось абсцисс, OY - ось ординат, OZ - ось апликат. Положительное направление осей выбирают так, чтобы при повороте оси OX против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси OY, если этот поворот наблюдать со стороны положительного направления оси OZ. Такая система координат называется правой. Если большой палец правой руки принять за направление X, указательный за направление Y, а средний за направление Z, то образуется правая система координат. Аналогичными пальцами левой руки образуется левая система координат. Правую и левую системы координат невозможно совместить так, чтобы совпали соответствующие оси (см. Рис. 2).

Положение точки A в пространстве определяется тремя координатами x, y и z. Координата x равна длине отрезка OB, координата y - длине отрезка OC, координата z - длине отрезка OD в выбранных единицах измерения. Отрезки OB, OC и OD определяются плоскостями, проведёнными из точки A параллельно плоскостям YOZ, XOZ и XOY соответственно. Координата x называется абсциссой точки A, координата y - ординатой точки A, координата z - аппликатой точки A. Записывают так: A(a, b, c).

Орты

Прямоугольная система координат (любой размерности) также описывается набором ортов , сонаправленных с осями координат. Количество ортов равно размерности системы координат и все они перпендикулярны друг другу.

В трёхмерном случае такие орты обычно обозначаются i j k или e x e y e z . При этом в случае правой системы координат действительны следующие формулы с векторным произведением векторов :

  • [i j ]=k ;
  • [j k ]=i ;
  • [k i ]=j .

История

Впервые прямоугольную систему координат ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году . Поэтому прямоугольную систему координат называют также - Декартова система координат . Координатный метод описания геометрических объектов положил начало аналитической геометрии. Вклад в развитие координатного метода внес также Пьер Ферма , однако его работы были впервые опубликованы уже после его смерти. Декарт и Ферма применяли координатный метод только на плоскости.

Координатный метод для трёхмерного пространства впервые применил Леонард Эйлер уже в XVIII веке.

См. также

Ссылки

Wikimedia Foundation . 2010 .

  • Декартова система координат
  • Декартова степень

Смотреть что такое "Декартовы координаты" в других словарях:

    ДЕКАРТОВЫ КООРДИНАТЫ - (декартова система координат) система координат на плоскости или в пространстве, обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям прямоугольные декартовы координаты. Названы по имени Р. Декарта … Большой Энциклопедический словарь

    декартовы координаты - Система координат, состоящая из двух перпендикулярных осей. Положение точки в такой системе формируется с помощью двух чисел, определяющих расстояние от центра координат по каждой из осей. Тематики информационные… … Справочник технического переводчика

    декартовы координаты - (декартова система координат), система координат на плоскости или в пространстве, обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям прямоугольные декартовы координаты. Названы по имени Р. Декарта … Энциклопедический словарь

    декартовы координаты - Dekarto koordinatės statusas T sritis Standartizacija ir metrologija apibrėžtis Tiesinė plokštumos arba erdvės koordinačių sistema. Joje ašių masteliai paprastai būna lygūs. atitikmenys: angl. Cartesian coordinates vok. kartesische Koordinaten, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    декартовы координаты - Dekarto koordinatės statusas T sritis fizika atitikmenys: angl. Cartesian coordinates; grid coordinates vok. kartesische Koordinaten, f rus. декартовы координаты, f pranc. coordonnées cartésiennes, f … Fizikos terminų žodynas

    ДЕКАРТОВЫ КООРДИНАТЫ - способ определения положения точек на плоскости их расстояниями до двух фиксированных перпендикулярных прямых осей. Это понятие усматривается уже у Архимеда и Аппология Пергского более двух тысяч лет назад и даже у древних египтян. Впервые эта… … Математическая энциклопедия

    ДЕКАРТОВЫ КООРДИНАТЫ - декартова система координат [по имени франц. философа и математика Р. Декарта (R. Descartes; 1596 1650)], система координат на плоскости или в пространстве, обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям прямоугольные Д … Большой энциклопедический политехнический словарь

    ДЕКАРТОВЫ КООРДИНАТЫ - (декартова система координат), система координат на плоскости или в пространстве, обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям прямоугольные Д. к. Названы по имени Р. Декарта … Естествознание. Энциклопедический словарь

    ДЕКАРТОВЫ КООРДИНАТЫ - Система расположения любой точки нашли кости относительно двух осей, перекрещивающихся под прямым углом. Разработанная Рене Декартом, эта система стала основой для стандартных методов графического представления данных. Горизонтальная линия… … Толковый словарь по психологии

    Координаты - Координаты. На плоскости (слева) и в пространстве (справа). КООРДИНАТЫ (от латинского co совместно и ordinatus упорядоченный), числа, которые определяют положение точки на прямой, плоскости, поверхности, в пространстве. Координаты суть расстояния … Иллюстрированный энциклопедический словарь