Решение задач с комплексными числами.

Для решения задач с комплексными числами необходимо разобраться с основными определениями. Главная задача данной обзорной статьи - объяснить, что же такое комплексные числа, и предъявить методы решения основных задач с комплексными числами. Итак, комплексным числом будем называть число вида z = a + bi , где a, b — вещественные числа, которые называют действительной и мнимой частью комплексного числа соответственно и обозначают a = Re(z), b=Im(z) .
i называется мнимой единицей. i 2 = -1 . В частности, любое вещественное число можно считать комплексным: a = a + 0i , где a — вещественное. Если же a = 0 и b ≠ 0 , то число принято называть чисто мнимым.

Теперь введем операции над комплексными числами.
Рассмотрим два комплексных числа z 1 = a 1 + b 1 i и z 2 = a 2 + b 2 i .

Рассмотрим z = a + bi .

Множество комплексных чисел расширяет множество вещественных чисел, которое в свою очередь расширяет множество рациональных чисел и т.д. Эту цепочку вложений можно рассмотреть на рисунке: N – натуральные числа, Z - целые, Q – рациональные, R – вещественные, C – комплексные.


Представление комплексных чисел

Алгебраическая форма записи.

Рассмотрим комплексное число z = a + bi , такая форма записи комплексного числа называется алгебраической . Эту форму записи мы уже подробно разобрали в предыдущем разделе. Довольно часто используют следующий наглядный рисунок


Тригонометрическая форма.

Из рисунка видно, что число z = a + bi можно записать иначе. Очевидно, что a = rcos(φ) , b = rsin(φ) , r=|z| , следовательно z = rcos(φ) + rsin(φ)i , φ ∈ (-π; π) называется аргументом комплексного числа. Такое представление комплексного числа называется тригонометрической формой . Тригонометрическая форма записи порой очень удобна. Например, ее удобно использовать для возведения комплексного числа в целую степень, а именно, если z = rcos(φ) + rsin(φ)i , то z n = r n cos(nφ) + r n sin(nφ)i , эта формула называется формулой Муавра .

Показательная форма.

Рассмотрим z = rcos(φ) + rsin(φ)i — комплексное число в тригонометрической форме, запишем в другом виде z = r(cos(φ) + sin(φ)i) = re iφ , последнее равенство следует из формулы Эйлера, таким образом мы получили новую форму записи комплексного числа: z = re iφ , которая называется показательной . Такая форма записи так же очень удобна для возведения комплексного числа в степень: z n = r n e inφ , здесь n не обязательно целое, а может быть произвольным вещественным числом. Такая форма записи довольно часто используется для решения задач.

Основная теорема высшей алгебры

Представим, что у нас есть квадратное уравнение x 2 + x + 1 = 0 . Очевидно, что дискриминант этого уравнения отрицателен и вещественных корней оно не имеет, но оказывается, что это уравнение имеет два различных комплексных корня. Так вот, основная теорема высшей алгебры утверждает, что любой многочлен степени n имеет хотя бы один комплексный корень. Из этого следует, что любой многочлен степени n имеет ровно n комплексных корней с учетом их кратности. Эта теорема является очень важным результатом в математике и широко применяется. Простым следствием из этой теоремы является такой результат: существует ровно n различных корней степени n из единицы.

Основные типы задач

В этом разделе будут рассмотрены основные типы простых задач на комплексные числа. Условно задачи на комплексные числа можно разбить на следующие категории.

  • Выполнение простейших арифметических операций над комплексными числами.
  • Нахождение корней многочленов в комплексных числах.
  • Возведение комплексных чисел в степень.
  • Извлечение корней из комплексных чисел.
  • Применение комплексных чисел для решения прочих задач.

Теперь рассмотрим общие методики решения этих задач.

Выполнение простейших арифметических операций с комплексными числами происходит по правилам описанным в первом разделе, если же комплексные числа представлены в тригонометрической или показательной формах, то в этом случае можно перевести их в алгебраическую форму и производить операции по известным правилам.

Нахождение корней многочленов как правило сводится к нахождению корней квадратного уравнения. Предположим, что у нас есть квадратное уравнение, если его дискриминант неотрицателен, то его корни будут вещественными и находятся по известной формуле. Если же дискриминант отрицателен, то есть D = -1∙a 2 , где a — некоторое число, то можно представить дискриминант в виде D = (ia) 2 , следовательно √D = i|a| , а дальше можно воспользоваться уже известной формулой для корней квадратного уравнения.

Пример . Вернемся к упомянутому выше квадратному уравнению x 2 + x + 1 = 0 .
Дискриминант — D = 1 — 4 ∙ 1 = -3 = -1(√3) 2 = (i√3) 2 .
Теперь с легкостью найдем корни:

Возведение комплексных чисел в степень можно выполнять несколькими способами. Если требуется возвести комплексное число в алгебраической форме в небольшую степень (2 или 3), то можно сделать это непосредственным перемножением, но если степень больше (в задачах она часто бывает гораздо больше), то нужно записать это число в тригонометрической или показательной формах и воспользоваться уже известными методами.

Пример . Рассмотрим z = 1 + i и возведем в десятую степень.
Запишем z в показательной форме: z = √2 e iπ/4 .
Тогда z 10 = (√2 e iπ/4) 10 = 32 e 10iπ/4 .
Вернемся к алгебраической форме: z 10 = -32i .

Извлечение корней из комплексных чисел является обратной операцией по отношению к операции возведения в степень, поэтому производится аналогичным образом. Для извлечения корней довольно часто используется показательная форма записи числа.

Пример . Найдем все корни степени 3 из единицы. Для этого найдем все корни уравнения z 3 = 1 , корни будем искать в показательной форме.
Подставим в уравнение: r 3 e 3iφ = 1 или r 3 e 3iφ = e 0 .
Отсюда: r = 1 , 3φ = 0 + 2πk , следовательно φ = 2πk/3 .
Различные корни получаются при φ = 0, 2π/3, 4π/3 .
Следовательно 1 , e i2π/3 , e i4π/3 — корни.
Или в алгебраической форме:

Последний тип задач включается в себя огромное множество задач и нет общих методов их решения. Приведем простой пример такой задачи:

Найти сумму sin(x) + sin(2x) + sin(2x) + … + sin(nx) .

Хоть в формулировке этой задачи и не идет речь о комплексных числах, но с их помощью ее можно легко решить. Для ее решения используются следующие представления:


Если теперь подставить это представление в сумму, то задача сводится к суммированию обычной геометрической прогрессии.

Заключение

Комплексные числа широко применяются в математике, в этой обзорной статье были рассмотрены основные операции над комплексным числами, описаны несколько типов стандартных задач и кратко описаны общие методы их решения, для более подробного изучения возможностей комплексных чисел рекомендуется использовать специализированную литературу.

Литература

Комплексные числа. Комплексным числом называется число вида z=a+biabRi2=−1

Замечание.
Действительное число a - это действительная часть числа z и обозначается a=Rez
Действительное число b - это мнимая часть числа z и обозначается b=Imz
Действительные числа представляют собой полноценный набор чисел и действий над ними, которого, кажется, должно хватить для решения любых заданий курса математики. Но как решить такое уравнение в действительных числах x2+1=0? Существует ещё одно расширение чисел - комплексные числа. В комплексных числах можно брать корни из отрицательных чисел.
Алгебраическая форма комплексного числа. Алгебраическая форма комплексного числа имеет видz=a+bi(aRbRi2=−1)

Замечание. Если a=ReZ=0b=Imz=0, то число z называется мнимым. Если a=ReZ=0b=Imz=0, то число z называется чисто мнимым

Геометрической интерпретацией действительных чисел является действительная прямая. Кроме того, на действительной прямой "нет места для новых точек", то есть любой точке на действительной оси отвечает действительное число. Следовательно, комплексные числа на этой прямой расположить уже нельзя, однако можно попытаться рассмотреть наряду с действительной осью, на которой мы будем откладывать действительную часть комплексного числа, ещё одну ось, ей перпендикулярную; будем называть её мнимой осью. Тогда любому комплексному числу z = a + ib можно поставить в соответствие точку координатной плоскости. На оси абсцисс будем откладывать действительную часть комплексного числа, а на оси ординат - мнимую часть. Таким образом устанавливается взаимнооднозначное соответствие между всеми комплексными числами и всеми точками плоскости. Если такое соответствие построено, то координатная плоскость называется комплексной плоскостью. Интерпритацией комплексного числа z = a + b i является вектор OA с координатами(a,b) с началом в точке O(0,0) и концом в точке A(a,b)

Сопряженные числа. Числа z=a+bi и z=a−bi называются сопряженными комплексными числами

Свойство. Сумма и произведение двух сопряженных комплексных чисел являются действительными числами:z+z=2azz=a2+b2

Противоположные числа. Числа z=a+bi и −z=−a−bi называются противоположными комплексными числами.

Свойство. Сумма двух противоположных комплексных чисел равна нулю:
z+(−z)=0

Равные числа. Два комплексных числа называются равными, если равны их действительные и мнимые части.

Действия с комплексными числами, заданными в алгебраической форме:

Свойство сложения: Сумма двух комплексных чисел z1=a+bi и z2=c+di будет комплексное число вида z=z1+z2=a+bi+c+di=a+c+(b+d)i
Пример: 5+3i+3−i=8+2i

Свойство вычитания: Разность двух комплексных чисел z1=a+bi и z2=c+di будет комплексное число вида z=z1−z2=a+bi−c+di=a−c+(b−d)i

Пример: . 5+3i−3−i=2+4i

Свойство умножения: Произведение двух комплексных чисел z1=a+bi и z2=c+di будет комплексное число вида z=z1z2=a+bic+di=ac−bd+(ad+bc)i

Пример: 3+2i4−i=12−3i+8i−2i2=14+5i

Свойство деления: Частное двух комплексных чисел z1=a+bi и z2=c+di будет комплексное число видаz=z2z1=c+dia+bi=c2+d2ac+bd+c2+d2bc−adi

Пример: . 1+i2+i=1+i1−i2+i1−i=1−i22−2i+i−i2=23−21i

Действия с комплексными числами, заданных в тригонометрической форме
Запись комплексного числа z = a + bi в виде z=rcos+isin называется тригонометрической формой комплексного числа.

Модуль комплексного числа: r=a2+b2

Аргумент комплексного числа:cos=rasin=rb

Мнимые и комплексные числа

Рассмотрим неполное квадратное уравнение:
x 2 = a ,
где а – известная величина. Решение этого уравнения можно записать как:
Здесь возможны три случая:

1). Если a = 0 , то x = 0.

2). Если а – положительное число, то его квадратный корень имеет два значения: одно положительное, другое отрицательное; например, уравнение x 2 = 25 имеет два корня: 5 и – 5. Это часто записывается как корень с двойным знаком:
3).Если а – отрицательное число, то это уравнение не имеет решений среди известных нам положительных и отрицательных чисел, потому что вторая степень любого числа есть число неотрицательное (продумайте это!). Но если мы хотим получить решения уравнения x 2 = a также и для отрицательных значений а, мы вынуждены ввести числа нового типа – мнимые числа. Таким образом, мнимым называется число,вторая степень которого является числом отрицательным. Согласно этому определению мнимых чисел мы можем определить и мнимую единицу:
Тогда для уравнения x 2 = – 25 мы получаем два мнимых корня:
Подставляя оба эти корня в наше уравнение, получаем тождество. (Проверьте!). В отличие от мнимых чисел все остальные числа (положительные и отрицательные, целые и дробные, рациональные и иррациональные) называются действительными или вещественными числами. Сумма действительного и мнимого числа называется комплексным числом и обозначается:

Где a, b – действительные числа, i – мнимая единица.

П р и м е р ы комплексных чисел: 3 + 4 i , 7 – 13.6 i , 0 + 25 i = 25 i , 2 + i.

Напомним необходимые сведения о комплексных числах.

Комплексное число - это выражение вида a + bi , где a , b - действительные числа, а i - так называемая мнимая единица , символ, квадрат которого равен –1, то есть i 2 = –1. Число a называется действительной частью , а число b - мнимой частью комплексного числа z = a + bi . Если b = 0, то вместо a + 0i пишут просто a . Видно, что действительные числа - это частный случай комплексных чисел.

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi ) ± (c + di ) = (a ± c ) + (b ± d )i , а умножение - по правилу (a + bi ) · (c + di ) = (ac bd ) + (ad + bc )i (здесь как раз используется, что i 2 = –1). Число = a bi называется комплексно-сопряженным к z = a + bi . Равенство z · = a 2 + b 2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

(Например, .)

У комплексных чисел есть удобное и наглядное геометрическое представление: число z = a + bi можно изображать вектором с координатами (a ; b ) на декартовой плоскости (или, что почти то же самое, точкой - концом вектора с этими координатами). При этом сумма двух комплексных чисел изображается как сумма соответствующих векторов (которую можно найти по правилу параллелограмма). По теореме Пифагора длина вектора с координатами (a ; b ) равна . Эта величина называется модулем комплексного числа z = a + bi и обозначается |z |. Угол, который этот вектор образует с положительным направлением оси абсцисс (отсчитанный против часовой стрелки), называется аргументом комплексного числа z и обозначается Arg z . Аргумент определен не однозначно, а лишь с точностью до прибавления величины, кратной 2π радиан (или 360°, если считать в градусах) - ведь ясно, что поворот на такой угол вокруг начала координат не изменит вектор. Но если вектор длины r образует угол φ с положительным направлением оси абсцисс, то его координаты равны (r · cos φ ; r · sin φ ). Отсюда получается тригонометрическая форма записи комплексного числа: z = |z | · (cos(Arg z ) + i sin(Arg z )). Часто бывает удобно записывать комплексные числа именно в такой форме, потому что это сильно упрощает выкладки. Умножение комплексных чисел в тригонометрической форме выглядит очень просто: z 1 · z 2 = |z 1 | · |z 2 | · (cos(Arg z 1 + Arg z 2) + i sin(Arg z 1 + Arg z 2)) (при умножении двух комплексных чисел их модули перемножаются, а аргументы складываются). Отсюда следуют формулы Муавра : z n = |z | n · (cos(n · (Arg z )) + i sin(n · (Arg z ))). С помощью этих формул легко научиться извлекать корни любой степени из комплексных чисел. Корень n-й степени из числа z - это такое комплексное число w , что w n = z . Видно, что , а , где k может принимать любое значение из множества {0, 1, ..., n – 1}. Это означает, что всегда есть ровно n корней n -й степени из комплексного числа (на плоскости они располагаются в вершинах правильного n -угольника).