Sääntö kompleksisen funktion derivaatan löytämiseksi. Monimutkainen toiminto

On täysin mahdotonta ratkaista matematiikan fyysisiä ongelmia tai esimerkkejä ilman tietoa derivaatista ja sen laskentamenetelmistä. Derivaata on yksi matemaattisen analyysin tärkeimmistä käsitteistä. Päätimme omistaa tämän päivän artikkelin tälle perustavanlaatuiselle aiheelle. Mikä on derivaatta, mikä on sen fysikaalinen ja geometrinen merkitys, miten lasketaan funktion derivaatta? Kaikki nämä kysymykset voidaan yhdistää yhdeksi: kuinka ymmärtää johdannainen?

Johdannan geometrinen ja fyysinen merkitys

Olkoon toiminto f(x) , annetaan tietyllä aikavälillä (a, b) . Pisteet x ja x0 kuuluvat tähän väliin. Kun x muuttuu, itse funktio muuttuu. Argumentin muutos - sen arvojen ero x-x0 . Tämä ero on kirjoitettu muodossa delta x ja sitä kutsutaan argumenttilisäykseksi. Funktion muutos tai lisäys on funktion arvojen välinen ero kahdessa pisteessä. Johdannainen määritelmä:

Funktion derivaatta pisteessä on raja funktion inkrementin tietyssä pisteessä suhteessa argumentin lisäykseen, kun jälkimmäinen pyrkii nollaan.

Muuten se voidaan kirjoittaa näin:

Mitä järkeä on löytää tällainen raja? Mutta kumpi:

funktion derivaatta pisteessä on yhtä suuri kuin OX-akselin välisen kulman tangentti ja funktion kaavion tangentti tietyssä pisteessä.


Johdannan fyysinen merkitys: reitin aikaderivaata on yhtä suuri kuin suoraviivaisen liikkeen nopeus.

Todellakin, kouluajoista lähtien kaikki ovat ymmärtäneet, että nopeus on yksityinen tie. x=f(t) ja aikaa t . Keskinopeus tietyn ajanjakson aikana:

Selvittääksesi liikkeen nopeuden kerrallaan t0 sinun on laskettava raja:

Sääntö yksi: ota vakio pois

Vakio voidaan ottaa pois derivaatan etumerkistä. Lisäksi se on tehtävä. Kun ratkaiset matematiikan esimerkkejä, ota sääntönä - Jos voit yksinkertaistaa ilmaisua, muista yksinkertaistaa .

Esimerkki. Lasketaan derivaatta:

Sääntö kaksi: funktioiden summan derivaatta

Kahden funktion summan derivaatta on yhtä suuri kuin näiden funktioiden derivaattojen summa. Sama pätee funktioiden eron johdannaiseen.

Emme todista tätä lausetta, vaan harkitsemme käytännön esimerkkiä.

Etsi funktion derivaatta:

Kolmas sääntö: funktioiden tulon derivaatta

Kahden differentioituvan funktion tulon derivaatta lasketaan kaavalla:

Esimerkki: etsi funktion derivaatta:

Päätös:

Tässä on tärkeää sanoa monimutkaisten funktioiden derivaattojen laskemisesta. Kompleksisen funktion derivaatta on yhtä suuri kuin tämän funktion derivaatan tulo väliargumentin suhteen väliargumentin derivaatalla riippumattoman muuttujan suhteen.

Yllä olevassa esimerkissä kohtaamme lausekkeen:

Tässä tapauksessa väliargumentti on 8x viidenteen potenssiin nähden. Tällaisen lausekkeen derivaatan laskemiseksi tarkastelemme ensin ulkoisen funktion derivaatta väliargumentin suhteen ja kerromme sitten itse väliargumentin derivaatalla riippumattoman muuttujan suhteen.

Neljäs sääntö: Kahden funktion osamäärän johdannainen

Kaava kahden funktion osamäärän derivaatan määrittämiseksi:

Yritimme puhua nukkejen johdannaisista tyhjästä. Tämä aihe ei ole niin yksinkertainen kuin miltä se kuulostaa, joten varoita: esimerkeissä on usein sudenkuoppia, joten ole varovainen laskeessasi johdannaisia.

Jos sinulla on kysyttävää tästä ja muista aiheista, voit ottaa yhteyttä opiskelijapalveluun. Lyhyessä ajassa autamme sinua ratkaisemaan vaikeimman ohjauksen ja selviytymään tehtävistä, vaikka et olisi koskaan aiemmin käsitellyt johdannaisten laskemista.

Ja lause kompleksisen funktion derivaatta, jonka muotoilu on seuraava:

Olkoon 1) funktiolla $u=\varphi (x)$ derivaatta $u_(x)"=\varphi"(x_0)$ jossain pisteessä $x_0$, 2) funktiolla $y=f(u)$ on vastaavassa pisteessä $u_0=\varphi (x_0)$ derivaatta $y_(u)"=f"(u)$. Tällöin kompleksifunktiolla $y=f\left(\varphi (x) \right)$ mainitussa pisteessä on myös derivaatta, joka on yhtä suuri kuin funktioiden $f(u)$ ja $\varphi ( x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

tai lyhyemmällä merkinnällä: $y_(x)"=y_(u)"\cdot u_(x)"$.

Tämän osion esimerkeissä kaikki funktiot ovat muotoa $y=f(x)$ (eli otamme huomioon vain yhden muuttujan $x$ funktiot). Vastaavasti kaikissa esimerkeissä derivaatta $y"$ otetaan suhteessa muuttujaan $x$. Korostaakseen, että derivaatta otetaan suhteessa muuttujaan $x$, kirjoitetaan usein $y"_x$ eikä $. y"$.

Esimerkit #1, #2 ja #3 tarjoavat yksityiskohtaisen prosessin monimutkaisten funktioiden derivaatan löytämiseksi. Esimerkki nro 4 on tarkoitettu johdannaistaulukon täydellisempään ymmärtämiseen ja siihen on järkevää tutustua.

Esimerkkien nro 1-3 aineiston tutkimisen jälkeen kannattaa siirtyä esimerkkien nro 5, nro 6 ja nro 7 itsenäiseen ratkaisemiseen. Esimerkit #5, #6 ja #7 sisältävät lyhyen ratkaisun, jotta lukija voi tarkistaa tuloksensa oikeellisuuden.

Esimerkki #1

Etsi funktion $y=e^(\cos x)$ derivaatta.

Meidän on löydettävä kompleksifunktion $y"$ johdannainen. Koska $y=e^(\cos x)$, niin $y"=\left(e^(\cos x)\right)"$. etsi derivaatta $ \left(e^(\cos x)\right)"$ käytä kaavaa #6 derivaattataulukosta. Jotta voisit käyttää kaavaa nro 6, sinun on otettava huomioon, että meidän tapauksessamme $u=\cos x$. Toinen ratkaisu koostuu lausekkeen $\cos x$ banaalista korvaamisesta $u$:n sijaan kaavaan nro 6:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Nyt on löydettävä lausekkeen $(\cos x)"$ arvo. Siirrymme jälleen derivaattataulukkoon ja valitsemme siitä kaavan nro 10. Korvaamalla $u=x$ kaavan nro 10, saamme : $(\cos x)"=-\ sin x\cdot x"$. Jatketaan yhtälöä (1.1) täydentämällä sitä löydetyllä tuloksella:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Koska $x"=1$, jatkamme tasa-arvoa (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Eli yhtälöstä (1.3) on: $y"=-\sin x\cdot e^(\cos x)$. Selitykset ja väliyhtälöt yleensä ohitetaan, kirjoitetaan derivaatta yhdelle riville, kuten yhtälössä ( 1.3) Eli kompleksifunktion derivaatta on löydetty, jää vain kirjoittaa vastaus muistiin.

Vastaus: $y"=-\sin x\cdot e^(\cos x)$.

Esimerkki #2

Etsi funktion $y=9\cdot \arctg^(12)(4\cdot \ln x)$ derivaatta.

Meidän on laskettava derivaatta $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Aluksi huomautamme, että vakio (eli luku 9) voidaan ottaa pois derivaatan merkistä:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Siirrytään nyt lausekkeeseen $\left(\arctg^(12)(4\cdot \ln x) \right)"$. Jotta halutun kaavan valinta johdannaistaulukosta olisi helpompaa, esitän lausekkeen kyseessä tässä muodossa: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Nyt on selvää, että on tarpeen käyttää kaavaa nro 2, ts. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Korvaa $u=\arctg(4\cdot \ln x)$ ja $\alpha=12$ tähän kaavaan:

Täydentämällä yhtäläisyyttä (2.1) saadulla tuloksella saamme:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

Tässä tilanteessa tehdään usein virhe, kun ratkaisija valitsee ensimmäisessä vaiheessa kaavan $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ kaavan sijaan $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Asia on siinä, että ensin on löydettävä ulkoisen funktion derivaatta. Ymmärtääksesi, mikä funktio on lausekkeen $\arctg^(12)(4\cdot 5^x)$ ulkopuolinen, kuvittele, että lasket lausekkeen $\arctg^(12)(4\cdot 5^ x)$ jollekin arvolle $x$. Laske ensin arvon $5^x$ ja kerro sitten tulos 4:llä saadaksesi $4\cdot 5^x$. Nyt otamme tämän tuloksen arktangentin, jolloin saadaan $\arctg(4\cdot 5^x)$. Sitten nostetaan saatu luku kahdestoista potenssiin, jolloin saadaan $\arctg^(12)(4\cdot 5^x)$. Viimeinen toimenpide, ts. nostaa tehoon 12, - ja se on ulkoinen toiminto. Ja juuri siitä pitäisi aloittaa derivaatan etsiminen, mikä tehtiin yhtälössä (2.2).

Nyt meidän on löydettävä $(\arctg(4\cdot \ln x))"$. Käytämme johdannaistaulukon kaavaa nro 19 ja korvaamme sen $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Yksinkertaistetaan hieman tuloksena olevaa lauseketta ottaen huomioon $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Tasa-arvosta (2.2) tulee nyt:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Jäljelle jää löytää $(4\cdot \ln x)"$. Otetaan vakio (eli 4) derivaatan etumerkistä: $(4\cdot \ln x)"=4\cdot (\ln x )"$. Löytääksemme $(\ln x)"$ käytämme kaavaa nro 8 ja korvaamme sen $u=x$: $(\ln x)"=\frac(1)(x) \cdot x"$. Koska $x"=1$, niin $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x ) $ Korvaamalla saatu tulos kaavaan (2.3) saadaan:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)).$ $

Muistutan, että kompleksisen funktion derivaatta on useimmiten yhdellä rivillä, kuten viimeisessä yhtälössä on kirjoitettu. Siksi standardilaskelmia tai -kokeita tehtäessä ratkaisua ei tarvitse maalata samalla tavalla.

Vastaus: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Esimerkki #3

Etsi $y"$ funktiosta $y=\sqrt(\sin^3(5\cdot9^x))$.

Aluksi muutetaan hieman $y$-funktiota ilmaisemalla radikaali (juuri) potenssina: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9) ^x) \oikea)^(\frac(3)(7))$. Aloitetaan nyt johdannaisen etsiminen. Koska $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, niin:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Käytämme johdannaistaulukon kaavaa nro 2 korvaamalla siihen $u=\sin(5\cdot 9^x)$ ja $\alpha=\frac(3)(7)$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Jatkamme yhtälöä (3.1) käyttämällä saatua tulosta:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Nyt meidän on löydettävä $(\sin(5\cdot 9^x))"$. Tätä varten käytämme johdannaistaulukon kaavaa nro 9 korvaamalla siihen $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Täydentäen yhtälöä (3.2) saadulla tuloksella saamme:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Vielä on löydettävä $(5\cdot 9^x)"$. Ensin otetaan vakio (luku $5$) derivaatan etumerkistä, eli $(5\cdot 9^x)"=5\ cdot (9^x) "$. Löytääksemme derivaatan $(9^x)"$, käytämme johdannaistaulukon kaavaa nro 5 korvaamalla siihen $a=9$ ja $u=x$: $ (9^x)"=9^x\cdot \ ln9\cdot x"$. Koska $x"=1$, sitten $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Nyt voimme jatkaa yhtäläisyyttä (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9) ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\oikea) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Voit palata potenssista radikaaleihin (eli juuriin) kirjoittamalla $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ muodossa $\ frac(1 )(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\ cdot 9^) x)))$. Sitten johdannainen kirjoitetaan seuraavassa muodossa:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))). $$

Vastaus: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

Esimerkki #4

Osoita, että johdannaistaulukon kaavat nro 3 ja nro 4 ovat tämän taulukon kaavan nro 2 erikoistapaus.

Johdannaisten taulukon kaavaan nro 2 kirjoitetaan funktion $u^\alpha$ derivaatta. Korvaamalla $\alpha=-1$ kaavaan #2 saadaan:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Koska $u^(-1)=\frac(1)(u)$ ja $u^(-2)=\frac(1)(u^2)$, yhtälö (4.1) voidaan kirjoittaa uudelleen seuraavasti: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Tämä on johdannaistaulukon kaava numero 3.

Käännytään taas johdannaistaulukon kaavaan nro 2. Korvaa siihen $\alpha=\frac(1)(2)$:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Koska $u^(\frac(1)(2))=\sqrt(u)$ ja $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1) )(2)))=\frac(1)(\sqrt(u))$, niin yhtälö (4.2) voidaan kirjoittaa uudelleen seuraavasti:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Tuloksena oleva yhtälö $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ on johdannaistaulukon kaava nro 4. Kuten näet, johdannaistaulukon kaavat nro 3 ja 4 saadaan kaavasta nro 2 korvaamalla vastaava arvo $\alpha$.

Jos noudatamme määritelmää, niin funktion derivaatta pisteessä on funktion Δ lisäyssuhteen raja. y argumentin Δ lisäykseen x:

Kaikki näyttää olevan selvää. Mutta yritä laskea tällä kaavalla esimerkiksi funktion derivaatta f(x) = x 2 + (2x+ 3) · e x synti x. Jos teet kaiken määritelmän mukaan, nukahdat vain muutaman sivun laskelmien jälkeen. Siksi on olemassa yksinkertaisempia ja tehokkaampia tapoja.

Aluksi huomautamme, että ns. alkeisfunktiot voidaan erottaa kaikista funktioiden valikoimasta. Nämä ovat suhteellisen yksinkertaisia ​​lausekkeita, joiden johdannaisia ​​on laskettu ja syötetty taulukkoon pitkään. Tällaiset funktiot ja niiden johdannaiset ovat riittävän helppoja muistaa.

Alkeisfunktioiden johdannaiset

Perustoiminnot ovat kaikki alla lueteltuja. Näiden funktioiden johdannaiset on tiedettävä ulkoa. Lisäksi niitä ei ole vaikea muistaa - siksi ne ovat alkeellisia.

Eli alkeisfunktioiden johdannaiset:

Nimi Toiminto Johdannainen
Jatkuva f(x) = C, CR 0 (kyllä, kyllä, nolla!)
Aste rationaalisen eksponentin kanssa f(x) = x n n · x n − 1
Sinus f(x) = synti x cos x
Kosini f(x) = cos x - synti x(miinus sini)
Tangentti f(x) = tg x 1/cos 2 x
Kotangentti f(x) = ctg x − 1/sin2 x
luonnollinen logaritmi f(x) = loki x 1/x
Mielivaltainen logaritmi f(x) = loki a x 1/(x ln a)
Eksponentti funktio f(x) = e x e x(mikään ei muuttunut)

Jos perusfunktio kerrotaan mielivaltaisella vakiolla, niin uuden funktion derivaatta on myös helppo laskea:

(C · f)’ = C · f ’.

Yleensä vakiot voidaan ottaa pois derivaatan etumerkistä. Esimerkiksi:

(2x 3)' = 2 ( x 3)' = 2 3 x 2 = 6x 2 .

On selvää, että perusfunktioita voidaan lisätä toisiinsa, kertoa, jakaa ja paljon muuta. Näin ilmaantuu uusia toimintoja, jotka eivät enää ole kovin alkeellisia, mutta myös erotettavissa tiettyjen sääntöjen mukaan. Näitä sääntöjä käsitellään alla.

Summan ja erotuksen johdannainen

Anna toiminnot f(x) ja g(x), joiden johdannaiset tunnemme. Voit esimerkiksi ottaa edellä käsitellyt perusfunktiot. Sitten voit löytää näiden funktioiden summan ja erotuksen derivaatan:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Joten kahden funktion summan (eron) derivaatta on yhtä suuri kuin derivaattojen summa (ero). Termejä voi olla enemmän. Esimerkiksi, ( f + g + h)’ = f ’ + g ’ + h ’.

Tarkkaan ottaen algebrassa ei ole käsitettä "vähennys". On olemassa "negatiivisen elementin" käsite. Siksi ero fg voidaan kirjoittaa uudelleen summaksi f+ (-1) g, ja sitten jäljellä on vain yksi kaava - summan derivaatta.

f(x) = x 2 + sinx; g(x) = x 4 + 2x 2 − 3.

Toiminto f(x) on kahden perusfunktion summa, joten:

f ’(x) = (x 2+ synti x)’ = (x 2)' + (synti x)’ = 2x+ cosx;

Väittelemme samalla tavalla funktion puolesta g(x). Vain kolme termiä on jo olemassa (algebran näkökulmasta):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Vastaus:
f ’(x) = 2x+ cosx;
g ’(x) = 4x · ( x 2 + 1).

Tuotteen johdannainen

Matematiikka on loogista tiedettä, joten monet ihmiset uskovat, että jos summan derivaatta on yhtä suuri kuin johdannaisten summa, niin tuotteen derivaatta lakko"\u003e yhtä suuri kuin johdannaisten tulo. Mutta viikunat sinulle! Tuotteen johdannainen lasketaan täysin eri kaavalla. Nimittäin:

(f · g) ’ = f ’ · g + f · g

Kaava on yksinkertainen, mutta usein unohtuu. Eikä vain koululaiset, vaan myös opiskelijat. Tuloksena on virheellisesti ratkaistuja ongelmia.

Tehtävä. Etsi funktioiden johdannaiset: f(x) = x 3 cosx; g(x) = (x 2 + 7x– 7) · e x .

Toiminto f(x) on kahden perusfunktion tulos, joten kaikki on yksinkertaista:

f ’(x) = (x 3 cos x)’ = (x 3)' cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (-sin x) = x 2 (3cos xx synti x)

Toiminto g(x) ensimmäinen kerroin on hieman monimutkaisempi, mutta yleinen kaavio ei muutu tästä. Ilmeisesti funktion ensimmäinen kerroin g(x) on polynomi, ja sen derivaatta on summan derivaatta. Meillä on:

g ’(x) = ((x 2 + 7x– 7) · e x)’ = (x 2 + 7x− 7)' · e x + (x 2 + 7x− 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x– 7) · e x = e x(2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Vastaus:
f ’(x) = x 2 (3cos xx synti x);
g ’(x) = x(x+ 9) · e x .

Huomaa, että viimeisessä vaiheessa johdannainen faktoroidaan. Muodollisesti tämä ei ole välttämätöntä, mutta useimpia johdannaisia ​​ei lasketa yksinään, vaan funktion tutkimiseksi. Tämä tarkoittaa, että edelleen derivaatta rinnastetaan nollaan, sen merkit selvitetään ja niin edelleen. Tällaisessa tapauksessa on parempi, että lauseke on jaettu tekijöihin.

Jos toimintoja on kaksi f(x) ja g(x), ja g(x) ≠ 0 meitä kiinnostavassa joukossa, voimme määritellä uuden funktion h(x) = f(x)/g(x). Tällaista funktiota varten löydät myös johdannaisen:

Ei heikko, eihän? Mistä miinus tuli? Miksi g 2? Mutta näin! Tämä on yksi monimutkaisimmista kaavoista - et voi selvittää sitä ilman pulloa. Siksi on parempi tutkia sitä erityisillä esimerkeillä.

Tehtävä. Etsi funktioiden johdannaiset:

Jokaisen murtoluvun osoittajassa ja nimittäjässä on alkeisfunktiot, joten tarvitsemme vain kaavan osamäärän derivaatalle:


Perinteisesti laskemme osoittajan tekijöihin - tämä yksinkertaistaa vastausta suuresti:

Monimutkainen funktio ei välttämättä ole puoli kilometriä pitkä kaava. Esimerkiksi funktion ottaminen riittää f(x) = synti x ja vaihda muuttuja x, sano, päälle x 2+ln x. Se käy ilmi f(x) = synti ( x 2+ln x) on monimutkainen funktio. Hänellä on myös johdannainen, mutta sen löytäminen ei onnistu yllä käsiteltyjen sääntöjen mukaisesti.

Kuinka olla? Tällaisissa tapauksissa muuttujan korvaaminen ja kompleksisen funktion derivaatan kaava auttavat:

f ’(x) = f ’(t) · t', jos x korvataan merkillä t(x).

Pääsääntöisesti tilanne tämän kaavan ymmärtämisessä on vielä surullisempi kuin osamäärän derivaatan kanssa. Siksi on myös parempi selittää se erityisillä esimerkeillä ja yksityiskohtaisella kuvauksella jokaisesta vaiheesta.

Tehtävä. Etsi funktioiden johdannaiset: f(x) = e 2x + 3 ; g(x) = synti ( x 2+ln x)

Huomaa, että jos funktiossa f(x) lausekkeen 2 sijaan x+3 tulee olemaan helppoa x, niin saadaan alkeisfunktio f(x) = e x. Siksi teemme korvauksen: olkoon 2 x + 3 = t, f(x) = f(t) = e t. Etsimme kompleksisen funktion johdannaista kaavalla:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Ja nyt - huomio! Käänteisen vaihdon suorittaminen: t = 2x+ 3. Saamme:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Katsotaan nyt toimintoa g(x). Ilmeisesti pitää vaihtaa. x 2+ln x = t. Meillä on:

g ’(x) = g ’(t) · t' = (synti t)’ · t' = cos t · t

Käänteinen vaihto: t = x 2+ln x. Sitten:

g ’(x) = cos ( x 2+ln x) · ( x 2+ln x)' = cos ( x 2+ln x) · (2 x + 1/x).

Siinä kaikki! Kuten viimeisestä lausekkeesta voidaan nähdä, koko ongelma on rajoittunut summan derivaatan laskemiseen.

Vastaus:
f ’(x) = 2 e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2+ln x).

Hyvin usein tunneillani käytän termin "johdannainen" sijaan sanaa "halvaus". Esimerkiksi summan veto on yhtä suuri kuin vetojen summa. Onko se selkeämpi? No se on hyvä.

Täten johdannaisen laskennassa päästään eroon juuri näistä vedoista edellä käsiteltyjen sääntöjen mukaisesti. Viimeisenä esimerkkinä palataan derivatiiviseen potenssiin rationaalisen eksponentin kanssa:

(x n)’ = n · x n − 1

Harva tietää sen roolissa n voi hyvinkin olla murtoluku. Esimerkiksi juuri on x 0,5 . Mutta entä jos juuren alla on jotain hankalaa? Jälleen tulee monimutkainen toiminto - he haluavat antaa tällaisia ​​rakenteita testeissä ja kokeissa.

Tehtävä. Etsi funktion derivaatta:

Ensin kirjoitetaan juuri uudelleen potenssiksi rationaalisen eksponentin kanssa:

f(x) = (x 2 + 8x − 7) 0,5 .

Nyt teemme vaihdon: anna x 2 + 8x − 7 = t. Löydämme johdannaisen kaavalla:

f ’(x) = f ’(t) · t ’ = (t 0,5)" t' = 0,5 t−0,5 t ’.

Teemme käänteisen vaihdon: t = x 2 + 8x− 7. Meillä on:

f ’(x) = 0,5 ( x 2 + 8x− 7) −0,5 ( x 2 + 8x− 7)' = 0,5 (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Lopuksi takaisin juurille:

Ensimmäinen taso

Funktiojohdannainen. Kattava opas (2019)

Kuvittele suora tie, joka kulkee mäkisen alueen läpi. Eli se menee ylös ja alas, mutta ei käänny oikealle tai vasemmalle. Jos akseli on suunnattu vaakasuoraan tietä pitkin ja pystysuoraan, tieviiva on hyvin samanlainen kuin jonkin jatkuvan funktion kaavio:

Akseli on tietty nollakorkeus, elämässä käytämme merenpintaa sellaisena.

Tällaista tietä eteenpäin liikkuessamme liikumme myös ylös tai alas. Voidaan myös sanoa: kun argumentti muuttuu (liikkuen abskissa-akselia pitkin), funktion arvo muuttuu (liikkuu ordinaatta-akselia pitkin). Mietitään nyt, kuinka tiemme "jyrkkyys" määritetään? Mikä tämä arvo voisi olla? Hyvin yksinkertaista: kuinka paljon korkeus muuttuu liikuttaessa eteenpäin tietyn matkan. Tien eri osuuksilla, kulkiessamme eteenpäin (abskissaa pitkin) yhden kilometrin, nousemme tai laskemme eri määrän metrejä merenpinnan suhteen (ordinaatta pitkin).

Merkitsemme edistymistä eteenpäin (lue "delta x").

Kreikan kirjainta (delta) käytetään yleisesti matematiikassa etuliitteenä, joka tarkoittaa "muutosta". Eli - tämä on suuruusmuutos, - muutos; mikä se sitten on? Aivan oikein, koon muutos.

Tärkeää: lauseke on yksi entiteetti, yksi muuttuja. Älä koskaan revi pois "deltaa" "x":stä tai mistään muusta kirjaimesta! Eli esimerkiksi.

Olemme siis siirtyneet eteenpäin, vaakatasossa, eteenpäin. Jos vertaamme tien linjaa funktion kuvaajaan, niin miten merkitsemme nousua? Varmasti,. Eli kun kuljemme eteenpäin, nousemme korkeammalle.

Arvo on helppo laskea: jos olimme alussa korkeudessa ja siirron jälkeen olimme korkealla, niin silloin. Jos päätepiste osoittautui alhaisemmaksi kuin aloituspiste, se on negatiivinen - tämä tarkoittaa, että emme ole nouseva, vaan laskeva.

Takaisin "jyrkkyyteen": tämä on arvo, joka osoittaa kuinka paljon (jyrkästi) korkeus kasvaa liikuttaessa eteenpäin matkan yksikköä kohti:

Oletetaan, että jollain polun osuudella kilometriä eteenpäin tie nousee km. Silloin jyrkkyys tässä paikassa on yhtä suuri. Ja jos tie uppoaa km:llä eteneessään? Silloin kaltevuus on yhtä suuri.

Mieti nyt mäen huippua. Kun ottaa osuuden alkua puoli kilometriä huipulle ja loppu - puoli kilometriä sen jälkeen, huomaa, että korkeus on melkein sama.

Eli logiikkamme mukaan käy ilmi, että kaltevuus on melkein yhtä suuri kuin nolla, mikä ei selvästikään ole totta. Paljon voi muuttua vain muutaman kilometrin päässä. Pienempiä alueita on harkittava riittävän ja tarkemman jyrkkyyden arvioimiseksi. Jos esimerkiksi mittaat korkeuden muutoksen metrin liikuttaessa, tulos on paljon tarkempi. Mutta tämäkään tarkkuus ei välttämättä riitä meille - loppujen lopuksi, jos keskellä tietä on pylväs, voimme yksinkertaisesti liukua sen läpi. Mikä etäisyys meidän sitten pitäisi valita? Senttimetri? Millimetri? Vähemmän on parempi!

Tosielämässä etäisyyden mittaaminen lähimpään millimetriin on enemmän kuin tarpeeksi. Mutta matemaatikot pyrkivät aina täydellisyyteen. Siksi konsepti oli äärettömän pieni, eli modulo-arvo on pienempi kuin mikään numero, jonka voimme nimetä. Sanot esimerkiksi: biljoonasosa! Kuinka paljon vähemmän? Ja jaat tämän luvun - ja se on vielä pienempi. Jne. Jos haluamme kirjoittaa, että arvo on äärettömän pieni, kirjoitamme näin: (luetaan "x pyrkii nollaan"). On erittäin tärkeää ymmärtää että tämä luku ei ole nolla! Mutta hyvin lähellä sitä. Tämä tarkoittaa, että se voidaan jakaa.

Käsite äärettömän pienen vastakohta on äärettömän suuri (). Olet luultavasti kohdannut sen jo työskennellessäsi eriarvoisuuksien parissa: tämä luku on moduuliltaan suurempi kuin mikään luku, jota voit ajatella. Jos saat suurimman mahdollisen luvun, kerro se kahdella ja saat vielä enemmän. Ja äärettömyys on vielä enemmän kuin mitä tapahtuu. Itse asiassa äärettömän suuret ja äärettömän pienet ovat käänteisiä toisilleen, eli at ja päinvastoin: at.

Nyt takaisin tiellemme. Ihannetapauksessa laskettu kaltevuus on kaltevuus, joka on laskettu polun äärettömän pienelle osalle, eli:

Huomaan, että äärettömän pienellä siirtymällä myös korkeuden muutos on äärettömän pieni. Mutta haluan muistuttaa, että äärettömän pieni ei tarkoita yhtä kuin nolla. Jos jaat äärettömän pienet luvut keskenään, saat esimerkiksi täysin tavallisen luvun. Eli yksi pieni arvo voi olla täsmälleen kaksi kertaa niin suuri kuin toinen.

Miksi tämä kaikki? Tie, jyrkkyys... Emme ole menossa ralliin, mutta opettelemme matematiikkaa. Ja matematiikassa kaikki on täsmälleen samaa, vain kutsutaan eri tavalla.

Johdannaisen käsite

Funktion derivaatta on funktion inkrementin suhde argumentin inkrementin inkrementin äärettömällä pienellä lisäyksellä.

Lisäys matematiikassa sitä kutsutaan muutokseksi. Kutsutaan kuinka paljon argumentti () on muuttunut liikkuessaan akselia pitkin argumentin lisäys ja ilmaistaan ​​kuinka paljon funktio (korkeus) on muuttunut, kun akselia pitkin etäisyys eteenpäin liikkuu, kutsutaan funktion lisäys ja on merkitty.

Joten funktion derivaatta on suhde milloin. Merkitsemme derivaatta samalla kirjaimella kuin funktio, vain vedolla oikeasta yläkulmasta: tai yksinkertaisesti. Joten kirjoitetaan johdannaiskaava käyttämällä näitä merkintöjä:

Kuten analogisesti tien kanssa, tässä, kun funktio kasvaa, derivaatta on positiivinen ja kun se pienenee, se on negatiivinen.

Mutta onko derivaatta yhtä suuri kuin nolla? Varmasti. Jos esimerkiksi ajat tasaisella vaakatasolla, jyrkkyys on nolla. Itse asiassa korkeus ei muutu ollenkaan. Joten derivaatan kanssa: vakiofunktion derivaatta (vakio) on yhtä suuri kuin nolla:

koska tällaisen funktion inkrementti on nolla mille tahansa.

Otetaan esimerkki kukkulan huipulta. Kävi ilmi, että segmentin päät oli mahdollista järjestää kärjen vastakkaisille puolille siten, että korkeus päissä on sama, eli segmentti on yhdensuuntainen akselin kanssa:

Mutta suuret segmentit ovat merkki epätarkoista mittauksista. Nostamme segmenttiämme yhdensuuntaisesti itsensä kanssa, sitten sen pituus pienenee.

Lopulta, kun olemme äärettömän lähellä huippua, segmentin pituus tulee äärettömän pieneksi. Mutta samaan aikaan se pysyi yhdensuuntaisena akselin kanssa, eli korkeusero sen päissä on yhtä suuri kuin nolla (ei taipu, mutta on yhtä suuri). Siis johdannainen

Tämä voidaan ymmärtää seuraavasti: kun seisomme aivan huipulla, pieni siirtymä vasemmalle tai oikealle muuttaa korkeuttamme merkityksettömästi.

On myös puhtaasti algebrallinen selitys: yläosan vasemmalla puolella funktio kasvaa ja oikealla pienenee. Kuten olemme jo aiemmin havainneet, kun funktio kasvaa, derivaatta on positiivinen ja kun se pienenee, se on negatiivinen. Mutta se muuttuu sujuvasti, ilman hyppyjä (koska tie ei muuta kaltevuuttaan jyrkästi missään). Siksi negatiivisten ja positiivisten arvojen välillä on oltava. Se on paikka, jossa funktio ei kasva eikä pienene - kärkipisteessä.

Sama pätee laaksoon (alue, jossa funktio pienenee vasemmalla ja kasvaa oikealla):

Hieman lisää lisäyksistä.

Muutamme siis argumentin arvoksi. Mistä arvosta muutetaan? Mikä hänestä (argumentista) on nyt tullut? Voimme valita minkä tahansa pisteen, ja nyt tanssimme siitä.

Harkitse pistettä, jolla on koordinaatti. Siinä olevan funktion arvo on yhtä suuri. Sitten teemme saman lisäyksen: lisää koordinaattia. Mikä nyt on argumentti? Erittäin helppoa: . Mikä on funktion arvo nyt? Minne argumentti menee, sinne menee funktio: . Entä funktion lisäys? Ei mitään uutta: tämä on edelleen määrä, jolla toiminto on muuttunut:

Harjoittele lisäysten etsimistä:

  1. Etsi funktion lisäys pisteestä, jonka argumentin lisäys on yhtä suuri kuin.
  2. Sama funktiolle pisteessä.

Ratkaisut:

Eri kohdissa, samalla argumentin lisäyksellä, funktion kasvu on erilainen. Tämä tarkoittaa, että derivaatalla jokaisessa pisteessä on omansa (keskustelimme tästä aivan alussa - tien jyrkkyys eri kohdissa on erilainen). Siksi, kun kirjoitamme johdannaista, meidän on ilmoitettava, missä vaiheessa:

Virtatoiminto.

Tehofunktiota kutsutaan funktioksi, jossa argumentti on jossain määrin (looginen, eikö?).

Ja - missä tahansa määrin: .

Yksinkertaisin tapaus on, kun eksponentti on:

Etsitään sen johdannainen pisteestä. Muista johdannaisen määritelmä:

Joten argumentti muuttuu arvosta toiseen. Mikä on funktion lisäys?

Lisäys on. Mutta funktio missä tahansa kohdassa on yhtä suuri kuin sen argumentti. Niin:

Johdannainen on:

Johdannainen on:

b) Tarkastellaan nyt neliöfunktiota (): .

Muistetaan nyt se. Tämä tarkoittaa, että lisäyksen arvo voidaan jättää huomiotta, koska se on äärettömän pieni ja siksi merkityksetön toisen termin taustalla:

Joten meillä on toinen sääntö:

c) Jatkamme loogista sarjaa: .

Tätä lauseketta voidaan yksinkertaistaa eri tavoilla: avaa ensimmäinen hakasulke summan kuution lyhennetyn kertolaskukaavan avulla tai jaa koko lauseke tekijöiksi käyttämällä kuutioiden erotuskaavaa. Yritä tehdä se itse millä tahansa ehdotetuista tavoista.

Sain siis seuraavan:

Ja muistellaanpa se taas. Tämä tarkoittaa, että voimme jättää huomiotta kaikki termit, jotka sisältävät:

Saamme: .

d) Samat säännöt voidaan saada suurille tehoille:

e) Osoittautuu, että tämä sääntö voidaan yleistää potenssifunktiolle, jolla on mielivaltainen eksponentti, ei edes kokonaisluku:

(2)

Voit muotoilla säännön sanoilla: "aste tuodaan eteenpäin kertoimena ja laskee sitten".

Todistamme tämän säännön myöhemmin (melkein aivan lopussa). Katsotaanpa nyt muutamia esimerkkejä. Etsi funktioiden derivaatta:

  1. (kahdella tavalla: kaavalla ja käyttämällä derivaatan määritelmää - laskemalla funktion inkrementti);
  1. . Usko tai älä, tämä on tehotoiminto. Jos sinulla on kysymyksiä, kuten "Miten se menee? Ja missä on tutkinto? ”, Muista aihe" "!
    Kyllä, kyllä, juuri on myös aste, vain murto-osa:.
    Joten neliöjuuremme on vain potenssi, jossa on eksponentti:
    .
    Etsimme johdannaista käyttämällä äskettäin opittua kaavaa:

    Jos tässä vaiheessa asia jäi taas epäselväksi, toista aihe "" !!! (noin aste negatiivisella indikaattorilla)

  2. . Nyt eksponentti:

    Ja nyt määritelmän kautta (oletko unohtanut?):
    ;
    .
    Nyt, kuten tavallista, jätämme huomiotta termin, joka sisältää:
    .

  3. . Aiempien tapausten yhdistelmä: .

trigonometriset funktiot.

Tässä käytämme yhtä faktaa korkeammasta matematiikasta:

Kun ilmaisu.

Todistuksen opit instituutin ensimmäisenä vuonna (ja päästäksesi sinne, sinun on läpäistävä tentti hyvin). Näytän sen nyt vain graafisesti:

Näemme, että kun funktiota ei ole olemassa - kaavion piste on punkturoitu. Mutta mitä lähempänä arvoa, sitä lähempänä funktio on.Tämä on juuri se "pyrkimys".

Lisäksi voit tarkistaa tämän säännön laskimella. Kyllä, kyllä, älä ole ujo, ota laskin, emme ole vielä kokeessa.

Joten kokeillaan: ;

Älä unohda vaihtaa laskinta radiaanitilaan!

jne. Näemme, että mitä pienempi, sitä lähempänä suhdeluku on.

a) Tarkastellaan funktiota. Kuten tavallista, löydämme sen lisäyksen:

Käännetään sinien ero tuotteeksi. Tätä varten käytämme kaavaa (muista aihe ""):.

Nyt johdannainen:

Tehdään vaihto: . Sitten äärettömän pienelle se on myös äärettömän pieni: . Ilmaisu for saa muotoa:

Ja nyt muistamme sen ilmauksella. Ja myös, entä jos äärettömän pieni arvo voidaan jättää huomiotta summassa (eli at).

Joten saamme seuraavan säännön: sinin derivaatta on yhtä suuri kuin kosini:

Nämä ovat perusjohdannaisia ​​("taulukko"). Tässä ne ovat yhdessä listassa:

Myöhemmin lisäämme niihin muutaman lisää, mutta nämä ovat tärkeimmät, koska niitä käytetään useimmin.

Harjoitella:

  1. Etsi funktion derivaatta pisteessä;
  2. Etsi funktion derivaatta.

Ratkaisut:

  1. Ensin löydämme johdannaisen yleisessä muodossa ja korvaamme sen arvon sen sijaan:
    ;
    .
  2. Tässä meillä on jotain samanlaista kuin tehofunktio. Yritetään tuoda hänet luokse
    normaali näkymä:
    .
    Ok, nyt voit käyttää kaavaa:
    .
    .
  3. . Eeeeeee… Mikä se on????

Okei, olet oikeassa, emme vieläkään tiedä, kuinka löytää tällaisia ​​johdannaisia. Tässä meillä on useiden erityyppisten toimintojen yhdistelmä. Jotta voit työskennellä heidän kanssaan, sinun on opittava vielä muutama sääntö:

Eksponentti ja luonnollinen logaritmi.

Matematiikassa on sellainen funktio, jonka derivaatta mille tahansa on yhtä suuri kuin itse funktion arvo samalle. Sitä kutsutaan "eksponentiksi" ja se on eksponentiaalinen funktio

Tämän funktion kanta - vakio - on ääretön desimaaliluku, eli irrationaalinen luku (kuten). Sitä kutsutaan "Euler-numeroksi", minkä vuoksi se on merkitty kirjaimella.

Joten sääntö on:

Se on erittäin helppo muistaa.

No, emme mene pitkälle, harkitsemme heti käänteisfunktiota. Mikä on eksponentiaalisen funktion käänteisarvo? Logaritmi:

Meidän tapauksessamme kanta on numero:

Tällaista logaritmia (eli logaritmia, jossa on kanta) kutsutaan "luonnolliseksi" ja käytämme sille erityistä merkintää: kirjoitamme sen sijaan.

Mikä on yhtä suuri? Tietysti, .

Luonnollisen logaritmin derivaatta on myös hyvin yksinkertainen:

Esimerkkejä:

  1. Etsi funktion derivaatta.
  2. Mikä on funktion derivaatta?

Vastaukset: Eksponentti ja luonnollinen logaritmi ovat funktioita, jotka ovat derivaatan suhteen ainutlaatuisen yksinkertaisia. Eksponentiaalisilla ja logaritmisilla funktioilla, joilla on jokin muu kanta, on erilainen derivaatta, jota analysoimme myöhemmin, kun olemme käyneet läpi differentiaatiosäännöt.

Erottamisen säännöt

mitkä säännöt? Taas uusi termi?!...

Erilaistuminen on johdannaisen löytämisprosessi.

Vain ja kaikki. Mikä toinen sana on tälle prosessille? Ei proizvodnovanie... Matematiikan differentiaalia kutsutaan funktion erittäin lisäykseksi. Tämä termi tulee latinan sanasta differentia - differentia. Tässä.

Kaikkia näitä sääntöjä johdettaessa käytämme kahta funktiota, esimerkiksi ja. Tarvitsemme myös kaavoja niiden lisäyksille:

Sääntöjä on yhteensä 5.

Vakio otetaan pois derivaatan etumerkistä.

Jos - jokin vakioluku (vakio), niin.

Ilmeisesti tämä sääntö toimii myös eron suhteen: .

Todistetaan se. Anna, tai helpompaa.

Esimerkkejä.

Etsi funktioiden johdannaiset:

  1. pisteessä;
  2. pisteessä;
  3. pisteessä;
  4. pisteessä.

Ratkaisut:

  1. (derivaata on sama kaikissa pisteissä, koska se on lineaarinen funktio, muistatko?);

Tuotteen johdannainen

Kaikki on samanlaista täällä: esittelemme uuden toiminnon ja löydämme sen lisäyksen:

Johdannainen:

Esimerkkejä:

  1. Etsi derivaatat funktioista ja;
  2. Etsi funktion derivaatta pisteessä.

Ratkaisut:

Eksponentiaalifunktion johdannainen

Nyt tietosi riittää oppiaksesi löytämään minkä tahansa eksponentiaalisen funktion derivaatan, ei vain eksponenttia (oletko unohtanut, mikä se on?).

Joten missä on joku numero.

Tiedämme jo funktion derivaatan, joten yritetään tuoda funktiomme uudelle perustalle:

Tätä varten käytämme yksinkertaista sääntöä: . Sitten:

No, se toimi. Yritä nyt löytää johdannainen, äläkä unohda, että tämä funktio on monimutkainen.

Tapahtui?

Tässä, tarkista itse:

Kaava osoittautui hyvin samankaltaiseksi kuin eksponentin derivaatta: sellaisenaan se pysyy, vain tekijä ilmestyi, joka on vain numero, mutta ei muuttuja.

Esimerkkejä:
Etsi funktioiden johdannaiset:

Vastaukset:

Tämä on vain luku, jota ei voida laskea ilman laskinta, eli sitä ei voi kirjoittaa yksinkertaisemmassa muodossa. Siksi vastauksessa se jätetään tähän muotoon.

Logaritmisen funktion derivaatta

Tässä se on samanlainen: tiedät jo luonnollisen logaritmin derivaatan:

Siksi, jos haluat löytää logaritmista mielivaltaisen, jolla on eri kanta, esimerkiksi:

Meidän on saatettava tämä logaritmi perustalle. Kuinka muutat logaritmin kantaa? Toivottavasti muistat tämän kaavan:

Vasta nyt sen sijaan kirjoitamme:

Nimittäjä osoittautui vain vakioksi (vakioluku, ilman muuttujaa). Johdannainen on hyvin yksinkertainen:

Eksponentiaalisten ja logaritmien funktioiden johdannaisia ​​ei kokeesta löydy lähes koskaan, mutta niiden tunteminen ei ole tarpeetonta.

Monimutkaisen funktion johdannainen.

Mikä on "monimutkainen funktio"? Ei, tämä ei ole logaritmi eikä arkitangentti. Näitä toimintoja voi olla vaikea ymmärtää (vaikka jos logaritmi näyttää vaikealta, lue aihe "Logaritmit" ja kaikki selviää), mutta matematiikan kannalta sana "monimutkainen" ei tarkoita "vaikeaa".

Kuvittele pieni kuljetin: kaksi ihmistä istuu ja tekevät joitain toimintoja joidenkin esineiden kanssa. Esimerkiksi ensimmäinen kääri suklaapatukan kääreeseen ja toinen sitoo sen nauhalla. Sellainen yhdistelmäesine osoittautuu: suklaapatukka, joka on kääritty ja sidottu nauhalla. Jos haluat syödä suklaapatukkaa, sinun on suoritettava päinvastaiset vaiheet käänteisessä järjestyksessä.

Luodaan samanlainen matemaattinen liukuhihna: ensin etsitään luvun kosini ja sitten neliötetään tuloksena oleva luku. Joten, he antavat meille numeron (suklaa), löydän sen kosinin (kääre), ja sitten neliötät sen, minkä sain (sido se nauhalla). Mitä tapahtui? Toiminto. Tämä on esimerkki monimutkaisesta funktiosta: kun sen arvon löytämiseksi teemme ensimmäisen toiminnon suoraan muuttujalla ja sitten toisen toisen toiminnon sillä, mitä tapahtui ensimmäisen seurauksena.

Voimme tehdä samat vaiheet käänteisessä järjestyksessä: ensin neliö, ja sitten etsin tuloksena olevan luvun kosinia:. On helppo arvata, että lopputulos on lähes aina erilainen. Monimutkaisten funktioiden tärkeä ominaisuus: kun toimintojen järjestys muuttuu, toiminto muuttuu.

Toisin sanoen, Monimutkainen funktio on funktio, jonka argumentti on toinen funktio: .

Ensimmäisessä esimerkissä .

Toinen esimerkki: (sama). .

Viimeinen toimintamme on nimeltään "ulkoinen" toiminto, ja ensin suoritettu toiminto - vastaavasti "sisäinen" toiminto(nämä ovat epävirallisia nimiä, käytän niitä vain selventämään materiaalia yksinkertaisella kielellä).

Yritä määrittää itse, mikä toiminto on ulkoinen ja mikä sisäinen:

Vastaukset: Sisäisten ja ulkoisten funktioiden erottaminen on hyvin samanlaista kuin muuttujien muuttaminen: esimerkiksi funktiossa

  1. Mihin toimiin ryhdymme ensin? Ensin laskemme sinin ja vasta sitten nostamme sen kuutioksi. Se on siis sisäinen toiminto, ei ulkoinen.
    Ja alkuperäinen tehtävä on niiden koostumus: .
  2. Sisäinen: ; ulkoinen: .
    Tutkimus: .
  3. Sisäinen: ; ulkoinen: .
    Tutkimus: .
  4. Sisäinen: ; ulkoinen: .
    Tutkimus: .
  5. Sisäinen: ; ulkoinen: .
    Tutkimus: .

muutamme muuttujia ja saamme funktion.

No, nyt puramme suklaamme - etsi johdannainen. Proseduuri on aina päinvastainen: ensin etsitään ulkofunktion derivaatta, sitten kerrotaan tulos sisäisen funktion derivaatalla. Alkuperäisessä esimerkissä se näyttää tältä:

Toinen esimerkki:

Joten muotoillaan lopuksi virallinen sääntö:

Algoritmi kompleksisen funktion derivaatan löytämiseksi:

Kaikki näyttää olevan yksinkertaista, eikö?

Tarkastetaan esimerkeillä:

Ratkaisut:

1) Sisäinen: ;

Ulkoinen: ;

2) Sisäinen: ;

(älä vain yritä vähentää tähän mennessä! Kosinin alta ei oteta mitään, muistatko?)

3) Sisäinen: ;

Ulkoinen: ;

On heti selvää, että tässä on kolmitasoinen monimutkainen toiminto: tämä on jo itsessään monimutkainen toiminto, ja silti poimimme siitä juuren, eli suoritamme kolmannen toiminnon (laita suklaa kääreeseen ja salkussa oleva nauha). Mutta ei ole syytä pelätä: joka tapauksessa "purkamme" tämän toiminnon samassa järjestyksessä kuin tavallisesti: lopusta.

Eli ensin erotetaan juuri, sitten kosini ja vasta sitten lauseke suluissa. Ja sitten kerromme kaiken.

Tällaisissa tapauksissa on kätevää numeroida toimet. Eli kuvitellaan mitä tiedämme. Missä järjestyksessä suoritamme toiminnot laskeaksemme tämän lausekkeen arvon? Katsotaanpa esimerkkiä:

Mitä myöhemmin toiminto suoritetaan, sitä "ulkoisempi" vastaava toiminto on. Toimintojen järjestys - kuten aiemmin:

Täällä pesimä on yleensä 4-tasoinen. Päätetään toimintatapa.

1. Radikaali ilmaisu. .

2. Juuri. .

3. Sinus. .

4. Neliö. .

5. Laita kaikki yhteen:

JOHDANNAIS. LYHYESTI TÄRKEISTÄ

Funktiojohdannainen- funktion lisäyksen suhde argumentin lisäykseen äärettömän pienellä argumentin lisäyksellä:

Perusjohdannaiset:

Erottamisen säännöt:

Vakio otetaan pois derivaatan etumerkistä:

Summan johdannainen:

Johdannainen tuote:

Osamäärän johdannainen:

Monimutkaisen funktion johdannainen:

Algoritmi kompleksisen funktion derivaatan löytämiseksi:

  1. Määrittelemme "sisäisen" funktion, löydämme sen johdannaisen.
  2. Määrittelemme "ulkoisen" funktion, löydämme sen johdannaisen.
  3. Kerromme ensimmäisen ja toisen pisteen tulokset.

Monimutkaisen funktion johdannainen. Ratkaisuesimerkkejä

Tällä oppitunnilla opimme löytämään kompleksisen funktion derivaatta. Oppitunti on looginen jatko oppitunnille Kuinka löytää johdannainen?, jolla analysoimme yksinkertaisimpia johdannaisia ​​ja tutustuimme myös differentiaatiosääntöihin ja joihinkin teknisiin menetelmiin derivaattojen löytämiseksi. Joten jos et ole kovin hyvä funktioiden johdannaisten kanssa tai jotkin tämän artikkelin kohdat eivät ole täysin selviä, lue ensin yllä oleva oppitunti. Ole hyvä ja viritä vakavaan tunnelmaan - materiaali ei ole helppoa, mutta yritän silti esittää sen yksinkertaisesti ja selkeästi.

Käytännössä monimutkaisen funktion derivaatta joutuu käsittelemään hyvin usein, sanoisin jopa lähes aina, kun annetaan tehtäviä derivaattojen etsimiseen.

Katsomme taulukosta sääntöä (nro 5) monimutkaisen funktion erottamiseksi:

Me ymmärrämme. Ensinnäkin, katsotaanpa merkintää. Tässä on kaksi funktiota - ja, ja funktio kuvaannollisesti sanottuna on sisäkkäinen funktioon . Tällaista funktiota (kun yksi funktio on sisäkkäinen toisen sisällä) kutsutaan kompleksifunktioksi.

Kutsun toiminnon ulkoinen toiminto, ja toiminto – sisäinen (tai sisäkkäinen) toiminto.

! Nämä määritelmät eivät ole teoreettisia, eivätkä ne saa esiintyä tehtävien lopullisessa suunnittelussa. Käytän epävirallisia ilmaisuja "ulkoinen toiminto", "sisäinen" toiminto vain helpottaakseni materiaalin ymmärtämistä.

Selvittääksesi tilannetta, harkitse:

Esimerkki 1

Etsi funktion derivaatta

Sinin alla ei ole vain kirjain "x", vaan koko lauseke, joten derivaatan löytäminen heti taulukosta ei toimi. Huomaamme myös, että tässä on mahdotonta soveltaa neljää ensimmäistä sääntöä, ero näyttää olevan, mutta tosiasia on, että siniä on mahdotonta "repiä":

Tässä esimerkissä jo selityksistäni on intuitiivisesti selvää, että funktio on monimutkainen funktio ja polynomi on sisäinen funktio (upotus) ja ulkoinen funktio.

Ensimmäinen askel, joka on suoritettava, kun löydetään kompleksisen funktion derivaatta ymmärtää, mikä toiminto on sisäinen ja mikä ulkoinen.

Yksinkertaisten esimerkkien tapauksessa näyttää selvältä, että polynomi on sisäkkäin sinin alle. Mutta entä jos se ei ole ilmeistä? Kuinka määrittää tarkalleen, mikä toiminto on ulkoinen ja mikä sisäinen? Tätä varten ehdotan seuraavan tekniikan käyttöä, joka voidaan suorittaa henkisesti tai luonnoksessa.

Kuvitellaan, että meidän on laskettava lausekkeen arvo laskimella (yksien sijaan voi olla mikä tahansa luku).

Mitä laskemme ensin? Ensisijaisesti sinun on suoritettava seuraava toiminto: , joten polynomi on sisäinen funktio:

toiseksi sinun on löydettävä, joten sini - on ulkoinen funktio:

Meidän jälkeen YMMÄRTÄÄ Sisäisten ja ulkoisten funktioiden kanssa on aika soveltaa yhdistelmäfunktioiden erottelusääntöä.

Alamme päättää. Oppitunnilta Kuinka löytää johdannainen? muistamme, että minkä tahansa derivaatan ratkaisun suunnittelu alkaa aina näin - kirjoitamme lausekkeen sulkuihin ja laitamme vedon oikeaan yläkulmaan:

Ensiksi löydämme ulkoisen funktion derivaatan (sini), katsomme alkeisfunktioiden derivaattataulukkoa ja huomaamme, että . Kaikki taulukkokaavat ovat käyttökelpoisia, vaikka "x" korvattaisiin monimutkaisella lausekkeella, tässä tapauksessa:

Huomaa, että sisäinen toiminto ei ole muuttunut, emme koske siihen.

No sehän on aivan ilmeistä

Kaavan soveltamisen lopputulos näyttää tältä:

Vakiotekijä sijoitetaan yleensä lausekkeen alkuun:

Jos sinulla on väärinkäsityksiä, kirjoita päätös paperille ja lue selitykset uudelleen.

Esimerkki 2

Etsi funktion derivaatta

Esimerkki 3

Etsi funktion derivaatta

Kuten aina, kirjoitamme:

Selvitämme, missä meillä on ulkoinen toiminto ja missä on sisäinen. Tätä varten yritämme (mielisesti tai luonnoksessa) laskea lausekkeen arvon . Mitä pitää tehdä ensin? Ensinnäkin sinun on laskettava, mikä kanta on yhtä suuri:, mikä tarkoittaa, että polynomi on sisäinen funktio:

Ja vasta sitten suoritetaan eksponentio, joten tehofunktio on ulkoinen toiminto:

Kaavan mukaan ensin on löydettävä ulkoisen funktion derivaatta, tässä tapauksessa aste. Etsimme haluttua kaavaa taulukosta:. Toistamme vielä: mikä tahansa taulukkokaava ei kelpaa vain "x:lle", vaan myös monimutkaiselle lausekkeelle. Siten kompleksisen funktion differentiaatiosäännön soveltamisen tulos on seuraava:

Korostan jälleen, että kun otamme ulkofunktion derivaatan, sisäfunktio ei muutu:

Nyt on vielä löydettävä hyvin yksinkertainen johdannainen sisäisestä funktiosta ja "kampattava" tulos hieman:

Esimerkki 4

Etsi funktion derivaatta

Tämä on esimerkki itseratkaisusta (vastaus oppitunnin lopussa).

Monimutkaisen funktion derivaatan ymmärtämisen vahvistamiseksi annan esimerkin ilman kommentteja, yritä selvittää se itse, syy, missä on ulkoinen ja missä on sisäinen funktio, miksi tehtävät ratkaistaan ​​tällä tavalla?

Esimerkki 5

a) Etsi funktion derivaatta

b) Etsi funktion derivaatta

Esimerkki 6

Etsi funktion derivaatta

Tässä meillä on juuri, ja juuren erottamiseksi se on esitettävä asteena. Joten tuomme ensin funktion oikeaan muotoon erottamista varten:

Funktiota analysoimalla tulemme siihen tulokseen, että kolmen termin summa on sisäinen funktio ja eksponentio on ulkoinen funktio. Sovellamme monimutkaisen funktion differentiaatiosääntöä:

Aste esitetään jälleen radikaalina (juurena), ja sisäisen funktion derivaatalle sovelletaan yksinkertaista sääntöä summan erottamiseksi:

Valmis. Voit myös tuoda lausekkeen yhteiseen nimittäjään suluissa ja kirjoittaa kaiken yhdeksi murtoluvuksi. Se on tietysti kaunista, mutta kun hankalia pitkiä johdannaisia ​​saadaan, on parempi olla tekemättä tätä (on helppo hämmentyä, tehdä tarpeeton virhe, ja opettajan on hankala tarkistaa).

Esimerkki 7

Etsi funktion derivaatta

Tämä on esimerkki itseratkaisusta (vastaus oppitunnin lopussa).

On mielenkiintoista huomata, että joskus monimutkaisen funktion erottamissäännön sijaan voidaan käyttää osamäärän erottamissääntöä , mutta tällainen ratkaisu näyttäisi perversiolta ja hauskalta. Tässä on tyypillinen esimerkki:



Esimerkki 8

Etsi funktion derivaatta

Tässä voit käyttää osamäärän differentiaatiosääntöä , mutta on paljon kannattavampaa löytää derivaatta monimutkaisen funktion differentiaatiosäännön kautta:

Valmistelemme funktion differentiaatiota varten - poistamme derivaatan miinusmerkin ja nostamme kosinin osoittajaan:

Kosini on sisäinen funktio, eksponentio on ulkoinen funktio.
Käytetään sääntöämme:

Löydämme sisäisen funktion derivaatan, nollaamme kosinin alaspäin:

Valmis. Tarkastetussa esimerkissä on tärkeää olla hämmentymättä merkkejä. Muuten, yritä ratkaista se säännöllä , vastausten on oltava samat.

Esimerkki 9

Etsi funktion derivaatta

Tämä on esimerkki itseratkaisusta (vastaus oppitunnin lopussa).

Toistaiseksi olemme tarkastelleet tapauksia, joissa meillä oli vain yksi sisäkkäinen monimutkainen funktio. Käytännön tehtävissä voi usein löytää johdannaisia, joissa pesivien nukkejen tapaan sisäkkäin 3 tai jopa 4-5 funktiota upotetaan kerralla.

Esimerkki 10

Etsi funktion derivaatta

Ymmärrämme tämän toiminnon liitteet. Pyrimme arvioimaan lausekkeen kokeellisen arvon avulla. Kuinka laskemme laskimeen?

Ensin sinun on löydettävä, mikä tarkoittaa, että arcsini on syvin pesä:

Tämä yksikköarsini tulee sitten neliöidä:

Ja lopuksi nostamme seitsemän valtaan:

Eli tässä esimerkissä meillä on kolme erilaista funktiota ja kaksi sisäkkäistä funktiota, kun taas sisin funktio on arcsini ja uloin funktio on eksponentiaalinen funktio.

Alamme päättää

Säännön mukaan sinun on ensin otettava ulkoisen funktion derivaatta. Katsomme derivaattataulukkoa ja löydämme eksponentiaalisen funktion derivaatan: Ainoa ero on, että "x":n sijasta meillä on kompleksilauseke, joka ei kumoa tämän kaavan pätevyyttä. Joten monimutkaisen funktion differentiaatiosäännön soveltamisen tulos on seuraava:

Kojelaudan alla meillä on taas hankala toiminto! Mutta se on jo helpompaa. On helppo nähdä, että sisäfunktio on arcsini ja ulkofunktio on aste. Monimutkaisen funktion differentiaatiosäännön mukaan sinun on ensin otettava tutkinnon derivaatta.