Какая радиация. Что такое радиация? Ее воздействие на организм человека

Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

Основными источниками радиации являются:

  • природные радиоактивные вещества вокруг и внутри нас - 73%;
  • медицинские процедуры (рентгеноскопия и прочие) - 13%;
  • космическое излучение - 14%.

Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

mos-rep.ru

Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

В каких единицах измеряется радиация

Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

С прочими единицами измерения можно ознакомиться в таблице.

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель, Бк

1 Ки = 3,7 × 10 10 Бк

Число радиоактивных распадов в единицу времени

Мощность дозы

Зиверт в час, Зв/ч

Рентген в час, Р/ч

1 мкР/ч = 0,01 мкЗв/ч

Уровень излучения в единицу времени

Поглощённая доза

Радиан, рад

1 рад = 0,01 Гр

Количество энергии ионизирующего излучения, переданное определённому объекту

Эффективная доза

Зиверт, Зв

1 рем = 0,01 Зв

Доза облучения, учитывающая различную

чувствительность органов к радиации

Последствия облучения

Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


chornobyl.in.ua

Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

  • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
  • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
  • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
  • около 7 000 000 мкЗв - смерть.

Опасны ли рентгенологические исследования


Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

  • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
  • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
  • 80 цифровых ортопантомограмм (13–17 мкЗв);
  • 40 плёночных ортопантомограмм (25–30 мкЗв);
  • 20 компьютерных томограмм (45–60 мкЗв).

То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

Кому нельзя облучаться

Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

Как защититься

Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.

Радиация – это невидимое человеческому глазу излучение, которое тем не менее оказывает мощнейшее влияние на организм. К сожалению, последствия облучения для человека исключительно негативные.

Изначально излучение влияет на организм извне. Оно исходит от естественных радиоактивных элементов, которые находятся в земле, а также попадает на планету из космоса. Также внешнее облучение исходит в микродозах от стройматериалов, медицинских рентгеновских аппаратов. Большие дозы облучения можно обнаружить на ядерных электростанциях, специальных физических лабораториях и урановых рудниках. Также крайне опасны полигоны испытания ядерного оружия и места захоронения радиационных отходов.

В определенной степени наша кожа, одежда и даже дома защищают от вышеперечисленных источников излучения. Но главная опасность радиации заключается в том, что облучение может быть не только внешним, но и внутренним.

Радиоактивные элементы могут проникать с воздухом и водой, через порезы в коже и даже сквозь ткани организма. В этом случае источник облучения действует намного дольше – пока он не будет выведен из тела человека. От него не защититься свинцовой плитой и невозможно уехать подальше, что делает ситуацию еще опаснее.

Дозировка облучения

Для того чтобы определить мощность облучения и степень воздействия радиации на живые организмы было придумано несколько шкал измерения. В первую очередь измеряется мощность источника излучения в Греях и Радах. Здесь все достаточно просто. 1 Гр=100Р. Именно так определяется уровень облучения с помощью счетчика Гейгера. Также используется шкала Рентген.

Но не стоит считать, что данные показания достоверно указывают на степень опасности для здоровья. Недостаточно знать мощность излучения. Влияние радиации на организм человека меняется также в зависимости от типа излучения. Всего их 3:

  1. Альфа. Это тяжелые радиоактивные частицы – нейтроны и протоны, которые несут наибольший вред для человека. Но они обладают малой пробивной силой и не способны проникнуть даже сквозь верхние слои кожи. Но при наличии ран или взвеси частиц в воздухе,
  2. Бета. Это радиоактивные электроны. Их пробивная способность – 2 см. кожи.
  3. Гамма. Это фотоны. Они свободно пронизывают тело человека, и защититься возможно только с помощью свинца или толстого слоя бетона.

Радиационное воздействие происходит на молекулярном уровне. Облучение приводит к образованию в клетках тела свободных радикалов, которые начинают разрушать окружающие вещества. Но, учитывая уникальность каждого организма и неравномерную чувствительность органов к действию радиации на человека, ученым пришлось ввести понятие эквивалентной дозы.

Для определения, чем опасна радиация в той или иной дозе, мощность излучения в Радах, Рентгенах и Греях умножается на коэффициент качества.

Для Альфа-излучения он равен 20, а для Бета и Гамма – 1. Рентгеновские лучи также имеют коэффициент 1. Полученный результат измеряется в Бэрах и Зивертах. При коэффициенте равном единице, 1 Бэр равен одному Раду или Рентгену, а 1 Зиверт равен одному Грею или 100 Бэрам.

Чтобы определить степень воздействия эквивалентной дозы на организм человека пришлось ввести еще один коэффициент риска. Для каждого органа он отличается, в зависимости от того как влияет радиация на отдельные ткани тела. Для организма в целом он равен единице. Благодаря этому получилось составить шкалу опасности радиации и ее влияния на человека при однократном воздействии:

  • 100 Зиверт. Это быстрая смерть. Через несколько часов, а в лучшем случае дней нервная система организма прекращает свою деятельность.
  • 10-50 – это смертельная доза, в результате которой человек умрет от многочисленных внутренних кровоизлияний спустя несколько недель мучений.
  • 4-5 Зиверт – -смертность составляет около 50%. Из-за поражения костного мозга и нарушения процесса кроветворения организм погибает спустя пару месяцев или меньше.
  • 1 Зиверт. Именно с этой дозы начинается лучевая болезнь.
  • 0,75 Зиверта. Кратковременные изменения в составе крови.
  • 0,5 – эта доза считается достаточной, чтобы стать причиной развития онкозаболеваний. Но других симптомов обычно не бывает.
  • 0,3 Зиверта. Это мощность аппарата при получении рентгеновского снимка желудка.
  • 0,2 Зиверта. Это безопасный уровень излучения, допустимого при работе с радиоактивными материалами.
  • 0,1 – при данном радиационном фоне добывается уран.
  • 0,05 Зиверта. Норма фонового облучения медицинской аппаратурой.
  • 0,005 Зиверта. Допустимый уровень радиации возле АЭС. Также это годовая норма облучения для гражданского населения.

Последствия радиационного облучения

Опасное влияние радиации на организм человека обуславливается воздействием свободных радикалов. Они образуются на химическом уровне из-за воздействия облучения и поражают в первую очередь быстро делящиеся клетки. Соответственно в большей мере от радиации страдают органы кроветворения и половая система.

Но на этом радиационные эффекты облучения человека не ограничиваются. В случае с нежными тканями слизистых и нервных клеток, происходит их разрушение. Из-за этого могут развиваться разнообразные нарушения психической деятельности.

Часто из-за действия радиации на организм человека страдает зрение. При большой дозе радиации может наступить слепота вследствие лучевой катаракты.

Другие ткани тела претерпевают качественные изменения, что не менее опасно. Именно из-за этого многократно увеличивается риск онкологических заболеваний. Во-первых, меняется структура тканей. А во-вторых, свободные радикалы повреждают молекулу ДНК. Благодаря этому развиваются мутации клеток, что и приводит к раку и опухолям в различных органах тела.

Самое опасное, что данные изменения могут сохраняться и у потомков, из-за повреждения генетического материала половых клеток. С другой стороны, возможно и обратно воздействие радиации на человека – бесплодие. Также во всех без исключения случаях, радиационное облучение приводит к быстрому износу клеток, что ускоряет старение организма.

Мутации

Сюжет многих фантастических историй начинается с того, как радиация приводит к мутации человека или животного. Обычно мутагенный фактор дает главному герою разнообразные сверхспособности. В реальности радиация влияет немного иначе – в первую очередь генетические последствия радиации сказываются на будущих поколениях.

Из-за нарушений в цепочке молекулы ДНК, вызванных свободными радикалами, у плода могут развиваться различные отклонения, связанные с проблемами внутренних органов, внешними уродствами или нарушениями психики. При этом данное нарушение может распространяться и на будущие поколения.

Молекула ДНК участвует не только в размножении человека. Каждая клетка тела делится согласно программе, заложенной в генах. Если данная информация повреждается, клетки начинают делиться неправильно. Это приводит к образованию опухолей. Обычно оно сдерживается за счет иммунной системы, которая пытается ограничить поврежденный участок тканей, а в идеале и избавиться от него. Но из-за иммунодепрессии, вызванной радиацией, мутации могут распространяться бесконтрольно. Из-за этого опухоли начинают пускать метастазы, превращаясь в рак, или разрастаются и давят на внутренние органы, например мозг.

Лейкоз и другие виды рака

Из-за того, что влияние радиации на здоровье человека в первую очередь распространяется на кроветворные органы и кровеносную систему, наиболее частым следствием лучевой болезни является лейкоз. Его еще называют «раком крови». Его проявления затрагивают весь организм:

  1. Человек теряет в весе, при этом отсутствует аппетит. Его постоянно сопровождает слабость в мышцах и хроническая усталость.
  2. Появляются боли в суставах, они начинают сильнее реагировать на окружающие условия.
  3. Воспаляются лимфатические узлы.
  4. Увеличиваются печень и селезенка.
  5. Затрудняется дыхание.
  6. На коже обнаруживаются пурпурные высыпания. Человек часто и обильно потеет, могут открываться кровотечения.
  7. Проявляется иммунодефицит. Инфекции свободно проникают в тело, из-за чего часто поднимается температура.

До событий в Хиросиме и Нагасаки, врачи не считали лейкоз болезнью от радиации. Но 109 тысяч обследованных японцев подтвердили связь радиации и онкологических заболеваний. Также выяснилась вероятность поражения тех или иных органов. На первом месте оказался лейкоз.

Затем радиационные эффекты облучения людей чаще всего приводят к:

  1. Рак молочной железы. Поражается каждая сотая женщина, пережившая сильное радиационное облучение.
  2. Рак щитовидной железы. Им также страдает 1% облученных.
  3. Рак легких. Эта разновидность сильнее всего проявляет себя у облучаемых шахтеров урановых рудников.

К счастью, современная медицина вполне может справиться с онкологическими заболеваниями на ранних стадиях, если влияние радиации на здоровье человека было кратковременным и достаточно слабым.

Что влияет на последствия облучения

Влияние радиации на живые организмы сильно различается от мощности и типа излучения: альфа, бета или Гамма. В зависимости от этого одна и та же доза радиации может оказаться практически безопасной или привести к скоропостижной смерти.

Также важно понимать, что воздействие радиации на организм человека редко бывает одновременным. Получить дозу в 0.5 Зиверта за один раз – это опасно, а 5-6 – смертельно. Но сделав несколько рентгеновских снимков по 0,3 Зиверта в течение определенного времени, человек дает возможность организму очиститься. Поэтому негативные последствия радиационного облучения просто не проявляются, так как при суммарной дозе в несколько Зиверт, единовременно на тело будет действовать лишь малая часть облучения.

Кроме того, различные последствия действия радиации на человека сильно зависят от индивидуальных особенностей организма. Здоровое тело дольше сопротивляется разрушительному действию облучения. Но лучше всего для обеспечения безопасности радиации для человека, как можно меньше контактировать с излучением для минимизации ущерба.

Радиация представляет собой ионизирующее излучение, наносящее непоправимый вред всему окружающему. Страдают люди, животные, растения. Самая большая опасность заключается в том, что она не видима человеческим глазом, поэтому важно знать об ее главных свойствах и воздействии, чтобы защититься.

Радиация сопровождает людей всю жизнь. Она встречается в окружающей среде, а также внутри каждого из нас. Огромнейшее воздействие несут внешние источники. Многие наслышаны об аварии на Чернобыльской АЭС, последствия которой до сих пор встречаются в нашей жизни. Люди оказались не готовы к такой встрече. Это лишний раз подтверждает, что в мире есть события неподвластные человечеству.


Виды радиации

Не все химические вещества устойчивы. В природе существуют определенные элементы, ядра которых трансформируются, распадаясь на отдельные частички с выделением огромного количества энергии. Это свойство называется радиоактивностью. Ученые в результате исследований обнаружили несколько разновидностей излучения:

  1. Альфа излучение — это поток тяжелых радиоактивных частиц в виде ядер гелия, способных нанести наибольший вред окружающим. К счастью, им свойственна низкая проникающая способность. В воздушном пространстве они распространяются всего на пару сантиметров. В ткани их пробег составляет доли миллиметра. Таким образом, внешнее излучение не несет опасности. Можно защититься, используя плотную одежду или лист бумаги. А вот внутреннее облучение – внушительная угроза.
  2. Бета излучение – поток легких частичек, перемещающихся в воздухе на пару метров. Это электроны и позитроны, проникающие в ткань на два сантиметра. Оно несет вред при соприкосновении с кожей человека. Однако большую опасность дает при воздействии изнутри, но меньшую, чем альфа. Для предохранения от влияния этих частиц, используются специальные контейнеры, защитные экраны, определенное расстояние.
  3. Гамма и рентгеновское излучение – это электромагнитные излучения, пронизывающие тело насквозь. Защитные средства от такого воздействия включает создание экранов из свинца, возведение бетонных конструкций. Наиболее опасное из облучений при внешнем поражении, так как оказывает влияние весь на организм.
  4. Нейтронное излучение состоит из потока нейтронов, обладающих более высоким показателем проникающей способности, чем гамма. Образуется в результате ядерных реакций, протекающих в реакторах и специальных исследовательских установках. Появляется во время ядерных взрывов и находится в отходах утилизированного топлива от ядерных реакторов. Броня от такого воздействия создается из свинца, железа, бетона.

Всю радиоактивность на Земле можно поделить на два основных вида: естественную и искусственную. К первой относятся излучения из космоса, почвы, газов. Искусственная же появилась благодаря человеку при использовании атомных электростанций, различного оборудования в медицине, ядерных предприятий.


Естественные источники

Радиоактивность естественного происхождения всегда находилась на планете. Излучение присутствует во всем, что окружает человечество: животные, растения, почва, воздух, вода. Считается, что этот небольшой уровень радиации, не оказывает вредного воздействия. Хотя, некоторые ученые придерживаются иного мнения. Так как люди не имеют возможности повлиять на эту опасность, следует избегать обстоятельств, увеличивающих допустимые значения.

Разновидности источников естественного происхождения

  1. Космическое излучение и солнечная радиация — мощнейшие источники, способными ликвидировать все живое на Земле. К счастью, планета защищена от этого воздействия атмосферой. Однако люди постарались исправить это положение, развивая деятельность, приводящую к образованию озоновых дыр. Не стоит надолго попадать под прямые солнечные лучи.
  2. Излучение земной коры опасно вблизи месторождений различных минералов. Сжигая уголь или используя фосфорные удобрения, радионуклиды активно просачиваются внутрь человека с вдыхаемым воздухом и употребляемой им едой.
  3. Радон – это радиоактивный химический элемент, присутствующий в строительных материалах. Представляет собой бесцветный газ без запаха и вкуса. Этот элемент активно накапливается в почвах и выходит наружу вместе с добычей полезных ископаемых. В квартиры он попадает вместе с бытовым газом, а также с водопроводной водой. К счастью, его концентрацию легко уменьшить, постоянно проветривая помещения.

Искусственные источники

Данный вид появился благодаря людям. Его действие увеличивается и распространяется с их помощью. Во время начала ядерной войны не так страшна сила и мощность оружия, как последствия радиоактивного излучения после взрывов. Даже если вас не зацепит взрывная волна или физические факторы — вас добьет радиация.


К искусственным источникам относятся:

  • Ядерное оружие;
  • Медицинское оборудование;
  • Отходы с предприятий;
  • Определенные драгоценные камни;
  • Некоторые старинные предметы, вывезенные из опасных зон. В том числе из Чернобыля.

Норма радиоактивного излучения

Ученым удалось установить, что радиация по-разному оказывает влияние на отдельные органы и весь организм в целом. Для того чтобы оценить ущерб, возникающий при хроническом облучении ввели понятие эквивалентной дозы. Она рассчитывается по формуле и равна произведению полученной дозы, поглощенной организмом и усредненной по конкретному органу или всему организму человека, на весовой множитель.

Единицей измерения эквивалентной дозы есть соотношение Джоуля к килограммам, которое получило название – зиверт (Зв). С её использованием была создана шкала, позволяющая понять о конкретной опасности излучения для человечества:

  • 100 Зв. Моментальная смерть. У пострадавшего есть несколько часов, максимум пару дней.
  • От 10 до 50 Зв. Получивший повреждения такого характера погибнет через несколько недель от сильного внутреннего кровотечения.
  • 4-5 Зв. При попадании данного количества, организм справляется в 50% случаев. В остальном печальные последствия приводят к смерти спустя пару месяцев из-за повреждений костного мозга и нарушения кровообращения.
  • 1 Зв. При поглощении такой дозы лучевая болезнь неизбежна.
  • 0,75 Зв. Изменения в системе кровообращения на небольшой промежуток времени.
  • 0,5 Зв. Данного количества достаточно, чтобы у больного развились онкологические заболевания. Остальные симптомы отсутствуют.
  • 0,3 Зв. Такое значение присуще аппарату для проведения рентгена желудка.
  • 0,2 Зв. Допустимый уровень для работы с радиоактивными материалами.
  • 0,1 Зв. При таком количестве происходит добыча урана.
  • 0,05 Зв. Данное значение – норма облучения медицинских аппаратов.
  • 0,0005 Зв. Допустимое количество уровня радиации около АЭС. Также это значение годового облучения населения, которое приравнивается к норме.

К безопасной дозе радиации для человека относится значения до 0,0003-0,0005 Зв в час. Предельно допустимым считается облучение в 0,01 Зв в час, если такое воздействие непродолжительно.

Влияние радиации на человека

Радиоактивность оказывает огромное влияние на население. Вредному воздействию подвергаются не только люди, столкнувшиеся лицом к лицу с опасностью, но и последующее поколение. Такие обстоятельства вызваны действием радиации на генетическом уровне. Различают два вида влияния:

  • Соматический. Заболевания возникают у пострадавшего, получившего дозу радиации. Приводит к появлению лучевой болезни, лейкозу, опухоли разнообразных органов, локальные лучевые поражения.
  • Генетический. Связан с дефектом генетического аппарата. Проявляется в последующих поколениях. Страдают дети, внуки и более далекие потомки. Возникают генные мутации и хромосомные изменения

Помимо отрицательного воздействия, есть и благоприятный момент. Благодаря изучению радиации, ученым удалось создать на ее основе медицинское обследование, позволяющее спасать жизни.


Мутация после радиации

Последствия облучения

При получении хронического облучения в организме происходят восстановительные мероприятия. Это приводит к тому, что пострадавший приобретает меньшую нагрузку, чем получил бы при разовом проникновении одинакового количества радиации. Радионуклиды размещаются внутри человека неравномерно. Чаще всего страдают: дыхательная система, пищеварительные органы, печень, щитовидка.

Враг не дремлет даже спустя 4-10 лет после облучения. Внутри человека может развиться рак крови. Особую опасность он представляет у подростков, не достигших 15 лет. Замечено, что смертность людей, работающих с оборудованием для проведения рентгена, увеличена из-за лейкоза.

Самым частым результатом облучения проявляется лучевая болезнь, возникающая как при однократном получении дозы, так и при длительном. При большом количестве радионуклидов приводит к смерти. Распространен рак молочной и щитовидной желез.

Страдает огромное количество органов. Нарушается зрение и психическое состояние потерпевшего. У шахтеров, участвующих в добыче урана, часто встречается рак легких. Внешние облучения вызывают страшные ожоги кожных и слизистых покровов.

Мутации

После воздействия радионуклидов возможно проявление двух типов мутаций: доминантной и рецессивной. Первая возникает сразу же после облучения. Второй тип обнаруживается спустя большой промежуток времени не у пострадавшего, а у его последующего поколения. Нарушения, вызванные мутацией, приводят к отклонениям в развитии внутренних органов у плода, внешним уродствам и изменением психики.

К сожалению, мутации достаточно плохо изучены, так как обычно проявляются не сразу. Спустя время сложно понять, что именно оказало главенствующее влияние на её возникновение.

1. Что такое радиоактивность и радиация?

Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией

2. Какая бывает радиация?

Различают несколько видов радиации.
Альфа-частицы : относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.
Бета-частицы - это просто электроны.
Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью. 2 Нейтроны - электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.
Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце - один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.

Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества - например, обычная одежда (если, конечно, источник излучения находится снаружи).

Следует различать радиоактивность и радиацию. Источники радиации - радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) – могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе.

3. К чему может привести воздействие радиации на человека?

Воздействие радиации на человека называют облучением . Основу этого воздействия составляет передача энергии радиации клеткам организма.
Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.
Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

4. Как радиация может попасть в организм?

Организм человека реагирует на радиацию, а не на ее источник. 3
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем облучении .
Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.
Внутреннее облучение значительно опаснее внешнего. 5. Передается ли радиация как болезнь? Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

6. В каких единицах измеряется радиоактивность?

Мерой радиоактивности служит активность . Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).
Также встречается еще такая единица активности, как Кюри (Ки). Это - огромная величина: 1 Ки = 37000000000 Бк.
Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду.
4
Как было сказано выше, при этих распадах источник испускает ионизирующее излучения. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза . Часто измеряется в Рентгенах (Р). Поскольку 1 Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена.
Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы . Единица измерения мощности экспозиционной дозы - микроРентген/час.
Мощность дозы, умноженная на время, называется дозой . Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).
Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы . Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час. В быту можно считать, что 1 Зиверт = 100 Рентген. Необходимо указывать на какой орган, часть или все тело пришлась данная доза.
Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров - приблизительно 0,003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

7. Что такое изотопы?

В таблице Менделеева более 100 химических элементов. Почти каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 - стабильные.
Например, у первого элемента таблицы Менделеева - водорода - существуют следующие изотопы:
- водород Н-1 (стабильный),
- дейтерий Н-2 (стабильный),
- тритий Н-3 (радиоактивный, период полураспада 12 лет).

Радиоактивные изотопы обычно называют радионуклидами 5

8. Что такое период полураспада?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.
Скорость распада принято характеризовать периодом полураспада : это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.
Абсолютно ошибочной является следующая трактовка понятия "период полураспада": "если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час - вторая половина, и это вещество полностью исчезнет (распадется)".

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа - в 4, через 3 часа - в 8 раз и т.д., но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида - свой период полураспада, он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно.
Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

9. Что вокруг нас радиоактивно?
6

Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма (по данным А.Г.Зеленкова, 1990).

В самом широком смысле слова, радиация (лат. "сияние", "излучение") — это процесс распространения энергии в пространстве в форме различных волн и частиц. Сюда можно отнести: инфракрасное (тепловое), ультрафиолетовое, видимое световое излучение, а также различные типы ионизирующего излучения. Наибольший интерес с точки зрения здоровья и безопасности жизнедеятельности представляет ионизирующая радиация, т.е. виды излучений, способные вызывать ионизацию вещества, на которое они воздействуют. В частности, в живых клетках ионизирующая радиация вызывает образование свободных радикалов, накопление которых ведет к разрушению белков, гибели или перерождению клеток, а в итоге может вызвать смерть макроорганизма (животных, растений, человека). Именно поэтому в большинстве случаев под термином радиация принято подразумевать именно ионизирующее излучение. Стоит также понимать различия между такими терминами, как радиация и радиоактивность . Если первое можно применить к ионизирующему излучению, находящемуся в свободном пространстве, которое будет существовать, пока не поглотится каким-либо предметом (веществом), то радиоактивность — это способность веществ и предметов испускать ионизирующее излучение, т.е. быть источником радиации. В зависимости от характера предмета и его происхождения разделяют термины: естественная радиоактивность и искусственная радиоактивность. Естественная радиоактивность сопровождает спонтанный распад ядер вещества в природе и характерна для "тяжелых" элементов таблицы Менделеева (с порядковым номером более 82). Искусственная радиоактивность инициируется человеком целенаправленно с помощью различных ядерных реакций. Кроме того, стоит выделить так называемую "наведенную" радиоактивность , когда какое-то вещество, предмет или даже организм после сильного воздействия ионизирующей радиации сам становится источником опасного излучения за счет дестабилизации атомных ядер. Мощным источником излучения, опасным для жизни и здоровья человека, может быть любое радиоактивное вещество или предмет . В отличие от многих других видов опасности, радиация невидима без специальных приборов, что делает её ещё более пугающей. Причиной радиоактивности вещества являются нестабильные ядра, входящие в состав атомов, которые при распаде выделяют в окружающую среду невидимые излучения или частицы. В зависимости от различных свойств (состав, проникающая способность, энергия), сегодня выделяют множество видов ионизирующего излучения, из которых наиболее значимыми и распространенными являются: . Альфа-излучение . Источником радиации в нем являются частицы с положительным зарядом и сравнительно большим весом. Альфа-частицы (2 протона + 2 нейтрона) довольно громоздки и потому легко задерживаются даже незначительными преградами: одеждой, обоями, оконными занавесками и т.д. Даже если альфа-излучение попадает на обнаженного человека, в этом нет ничего страшного, дальше поверхностных слоев кожи оно не пройдет. Однако, несмотря на малую проникающую способность, альфа-излучение обладает мощной ионизацией, что особо опасно, если вещества-источники альфа-частиц попадают непосредственно в организм человека, например в легкие или пищеварительный тракт. . Бета-излучение . Представляет собой поток заряженных частиц (позитронов или электронов). Такое излучение обладает более значительной проникающей способностью, чем альфа-частицы, задержать его может деревянная дверь, оконное стек-ло, кузов автомобиля и т.д. Для человека опасно при воздействии на незащищенные кожные покровы, а также при попадании внутрь радиоактивных веществ. . Гамма-излучение и близкое к нему рентгеновское излучение. Ещё одна разновидность ионизирующей радиации, которая является родственной световому потоку, но с лучшей способностью к проникновению в окружающие предметы. По своему характеру это высокоэнергетическое коротковолновое электромагнитное излучение. Для того, чтобы задержать гамма-излучение в отдельных случаях может потребоваться стена из нескольких метров свинца, или нескольких десятков метров плотного железобетона. Для человека такое излучение является самым опасным. Основным источником этого вида излучения в природе является Солнце, однако, до человека смертоносные лучи не доходят благодаря защитному слою атмосферы.

Схема образования радиации различных типов Естественная радиация и радиоактивность В окружающей нас обстановке, вне зависимости от того, городская она или сельская, имеются естественные источники радиации. Как правило, ионизирующее излучение естественного происхождения редко представляет опасность для человека, его значения обычно находятся в пределах допустимой нормы. Естественной радиоактивностью обладает почва, вода, атмосфера, некоторые продукты и вещи, многие космические объекты. Первоисточником естественной радиации во многих случаях служит излучение Солнца и энергия распада некоторых элементов земной коры. Естественной радиоактивностью обладает даже сам человек. В организме каждого из нас имеются такие вещества как рубидий-87 и калий-40, создающие персональный радиационный фон. Источником радиационного излучения может быть здание, стройматериалы, предметы обихода, в которые входят вещества с нестабильными атомными ядрами. Стоит отметить, что естественный уровень радиации не везде одинаков. Так в некоторых городах, расположенных высоко в горах, уровень радиации превышает таковой на высоте мирового океана почти в пять раз. Также есть зоны земной поверхности, где радиация ощутимо выше за счет расположения в недрах земли радиоактивных веществ. Искусственная радиация и радиоактивность В отличие от естественной, искусственная радиоактивность — следствие человеческой деятельности. Источниками искусственной радиации являются: атомные электростанции, военная и мирная техника, использующая ядерные реакторы, места добычи полезных ископаемых с нестабильными атомными ядрами, зоны ядерных испытаний, места захоронения и утечки ядерного топлива, кладбища ядерных отходов, некоторая диагностическая и лечебная техника, а также радиоактивные изотопы в медицине.
Как обнаружить радиацию и радиоактивность? Единственным доступным для обычного человека способом определить уровень радиации и радиоактивности является использование специального прибора — дозиметра (радиометра). Принцип измерения заключается в регистрации и оценке количества частиц радиационного излучения с помощью счетчика Гейгера-Мюллера. Персональный дозиметр От воздействия радиации не застрахован никто. К сожалению, любой предмет вокруг нас может быть источником смертельного излучения: деньги, продукты питания, инструменты, стройматериалы, одежда, мебель, транспорт, земля, вода и т.д. В умеренных дозах наш организм способен без губительных последствий переносить воздействие радиации, однако сегодня редко кто уделяет достаточное внимание радиационной безопасности, ежедневно подвергая себя и свою семью смертельному риску. Чем опасна радиация для человека? Как известно, влияние радиации на организм человека или животного может быть двух видов: изнутри или снаружи. Здоровья не добавляет ни один из них. Кроме того, науке известно, что внутреннее влияние радиационных веществ опаснее внешнего. Чаще всего радиационные вещества попадают в наш организм вместе с зараженной водой и пищей. Для того, чтобы избежать внутреннего воздействия радиации достаточно знать, какие продукты питания являются её источником. А вот с внешним радиационным воздействием все немного иначе. Источники радиации Радиационный фон классифицируется на естественный и техногенный . Избежать естественной радиации на нашей планете практически невозможно, так как к ее источниками является Солнце и внутрипочвенный газ радон. Этот вид радиации практически не оказывает негативного воздействия на организм людей и животных, так как на поверхности Земли её уровень находится в рамках ПДК. Правда, в космосе или даже на высоте в 10 км на борту авиалайнера солнечная радиация может представлять реальную опасность. Таким образом, радиация и человек находятся в постоянном взаимодействии. С техногенными источниками радиации все неоднозначно. В некоторых сферах промышленности и добычи полезных ископаемых рабочие носят специальную защитную одежду от воздействия радиации. Уровень радиационного фона на таких объектах может быть гораздо больше допустимых норм.
Живя в современном мире, важно знать, что такое радиация и каким образом она влияет на людей, животных и растительность. Степень воздействия радиационного излучения на организм человека принято измерять в Зивертах (сокращенно Зв, 1 Зв = 1000 мЗв = 1000000 мкЗв). Делается это с помощью специальных приборов для измерения радиации — дозиметров. Под воздействием естественной радиации каждый из нас облучается в год на 2,4 мЗв, и мы этого не ощущаем, так как данный показатель является абсолютно безопасным для здоровья. Но при высоких дозах облучения последствия для организма человека или животного могут быть самые тяжелые. Из известных заболеваний, которые возникают вследствие облучения организма человека, отмечаются такие, как лейкоз, лучевая болезнь со всеми вытекающими отсюда последствиями, всевозможные виды опухолей, катаракта, инфекции, бесплодие. А при сильном облучении радиация может даже вызвать ожоги! Примерная картина последствий радиации при различных дозах выглядит следующим образом: . при дозе эффективного облучения организма в 1 Зв происходит ухудшение состава крови; . при дозе эффективного облучения организма в 2-5 Зв возникает облысение и белокровие (т.н. "лучевая болезнь"); . при дозе эффективного облучения организма в 3 Зв около 50 процентов людей умирают в течение одного месяца. То есть, радиация при определенном уровне воздействия представляет собой чрезвычайно серьзную опасность для всего живого. Также бытует масса разговоров по поводу того, что радиационное воздействие приводит к мутации на генном уровне. Одни ученые считают радиацию основной причиной мутаций, другие же утверждают, что трансформация генов вовсе не связана с воздействием ионизирующего излучения. В любом случае, вопрос о мутагенном эффекте радиации пока остается открытым. А вот примеров того, что радиация вызывает бесплодие — масса. Заразна ли радиация? Опасно ли контактировать с облученными людьми? Вопреки мнению многих, радиация не заразна. С больными, страдающими лучевой болезнью и другими заболеваниями, вызванными воздействием радиации, можно общаться без средств индивидуальной защиты. Но только в том случае, если они не вступали в непосредственный контакт с радиоактивными веществами и сами не являются источниками излучения! Для кого радиация наиболее опасна? Наиболее сильное влияние радиация оказывает на подрастающее поколение, то есть, на детей. Научно это объясняется тем, что ионизирующее излучение сильнее воздействует на клетки, находящиеся в стадии роста и деления. На взрослых людей оказывается гораздо меньшее влияние, так как деление клеток у них замедляется или приостанавливается. А вот беременным женщинам нужно опасаться радиации во что бы то ни стало! На стадии внутриутробного развития клетки подрастающего организма особенно чувствительны к облучению, поэтому даже несильное и кратковременное воздействие радиации может крайне негативно сказаться на развитии плода. Как распознать радиацию? Обнаружить радиацию без специальных приборов до появления проблем со здоровьем практически невозможно. В этом и заключается главная опасность радиации — она невидима! Современный рынок товаров (продовольственных и непродовольственных) контролируется специальными службами, которые проверяют соответствие продукции установленным нормам радиационного излучения. Тем не менее, вероятность приобрести вещь или даже продукт питания, радиационный фон которого не соответствует нормам, все же существует. Обычно такие товары привозят с зараженных территорий нелегальным способом. Хотите ли Вы кормить своего ребенка продуктами с содержанием радиационных веществ? Очевидно, нет. Тогда покупайте продукты только в проверенных местах. А еще лучше, купите прибор, измеряющий радиацию, и пользуйтесь им на здоровье!
Как бороться с радиацией? Самым простым и очевидным ответом на вопрос "Как вывести радиацию из организма?"является следующий: идите в спортзал! Физическая нагрузка приводит к повышенному потовыделению, а вместе с потом выводятся радиационные вещества. Также уменьшить влияние радиации на организм человека можно, если посетить сауну. Она оказывает практически такое же действие, как и физические нагрузки — приводит к повышенному выделению пота. Снизить влияние радиации на здоровье человека позволяет и употребление свежих овощей, фруктов. Необходимо знать, что на сегодняшний день идеального средства защиты от радиации пока не придумано. Самый простой и эффективный способ защитить себя от негативного воздействия смертоносных лучей — держаться подальше от их источника. Если знать все о радиации и уметь правильно пользоваться приборами для её измерения, то можно практически полностью избежать ее негативного воздействия. Что может быть источником радиации? Мы уже говорили, что полностью оградить себя от воздействия радиации на нашей планете практически невозможно. Каждый из нас непрерывно находится под воздействием радиоактивного излучения, естественного и техногенного. Источником радиации может быть все что угодно, начиная от безобидной на первый взгляд детской игрушки и заканчивая расположенным неподалеку предприятием. Однако эти предметы можно считать временными источниками радиации, от которых можно защититься. Кроме них существует ещё и общий радиационный фон, создаваемый сразу несколькими источниками, которые нас окружают. Фоновое ионизирующее излучение могут создавать газообразные, твердые и жидкие вещества различного назначения. К примеру, самым массовым газообразным источником естественной радиации является газ радон. Он постоянно в небольших количествах выделяется из недр Земли и накапливается в подвалах, низинах, на нижних этажах помещений и т.п. От радиоактивного газа полностью защитить не могут даже стены помещений. Более того, в некоторых случаях и сами стены зданий могут быть источником радиации. Радиационная обстановка в помещениях Радиация в помещениях, создаваемая стройматериалами, из которых возведены стены, может представлять серьезную угрозу для жизни и здоровья людей. Для оценки качества помещений и строений с точки зрения радиоактивности в нашей стране организованы специальные службы. Их задача периодически измерять уровень радиации в домах и общественных постройках и сравнивать полученные результаты с существующими нормативами. Если уровень радиации от стройматериалов в помещении находится в пределах этих норм, то комиссия одобряет его дальнейшую эксплуатацию. В противном случае зданию может быть предписан ремонт, а в некоторых случаях — снос с последующей утилизацией стройматериалов. Надо заметить, определенный радиационный фон создает практически любое строение. Причем, чем старше здание, тем выше уровень радиации в нем. С учетом этого при измерении уровня радиации в здании в расчет принимается и его возраст.
Предприятия — техногенные источники радиации Бытовая радиация Существует категория бытовых предметов, которые излучают радиацию, хотя и в пределах допустимых нормативов. Это, например, часы или компас, стрелки которых покрыты солями радия, за счет чего они светятся в темноте (знакомое всем фосфорное свечение). Также можно с уверенностью сказать, что радиация есть в помещении, в котором установлен телевизор или монитор на базе обычной ЭЛТ. Ради эксперимента специалисты поднесли дозиметр к компасу с фосфорными стрелками. Получили небольшое превышение общего фона, правда, в пределах нормы.
Радиация и медицина Радиоактивному облучению человек подвергается на всех этапах своей жизни, работая на промышленных предприятиях, находясь дома и даже проходя курс лечения. Классический пример использования радиации в медицине — ФЛГ. Согласно действующим правилам флюорографию каждый обязан проходить не реже одного раза в год. В ходе такой процедуры обследования мы подвергаемся воздействию радиации, но доза облучения в таких случаях находится в пределах норм безопасности.
Зараженные продукты Считается, что самым опасным источником радиации, с которым можно столкнуться в быту, являются продукты питания, являющиеся источником радиации. Мало кто знает, откуда привезена, например картошка или другие фрукты и овощи, от которых сейчас буквально ломятся полки продовольственных магазинов. А ведь именно эти товары могут представлять серьезную угрозу для здоровья человека, храня в своем составе радиоактивные изотопы. Радиационная пища сильнее других источников излучения воздействует на организм, так как попадает непосредственно внутрь него. Таким образом, определенную дозу радиации излучает большая часть предметов и веществ. Другое дело, какова величина этой дозы излучения: опасна она для здоровья или нет. Оценить опасность тех или иных веществ с радиационной точки зрения можно при помощи дозиметра. Как известно, в небольших дозах радиация не оказывает практически никакого воздействия на состояние здоровья. Всё, что нас окружает, создает естественный радиационный фон: растения, земля, вода, почва, солнечные лучи. Но это вовсе не значит, что ионизирующего излучения не следует бояться вовсе. Радиация безопасна только тогда, когда она в норме. Так какие же нормы считать безопасными? Нормы общей радиационной безопасности помещений Помещения с точки зрения радиационного фона считаются безопасными, если содержание в них частиц тория и радона не выходит за пределы 100 Бк на один кубический метр. Кроме того, радиационную безопасность можно оценить по разности эффективной дозы радиации в помещении и за его пределами. Она не должна выходить за рамки 0.3 мкЗв в час. Подобные измерения может провести каждый желающий — для этого достаточно купить персональный дозиметр. На уровень радиационного фона в помещениях сильно влияет качество материалов, используемых в строительстве и ремонте зданий. Именно поэтому перед проведением строительных работ специальные санитарные службы выполняют соответствующие замеры содержания радионуклидов в стройматериалах (например, определяют удельную эффективную активность радионуклидов). В зависимости от того, для какой категории объекта предполагается использовать тот или иной строительный материал, допустимые нормы удельной активности варьируются в достаточно широких пределах: . Для стройматериалов, используемых в возведении общественных и жилых объектов (I класс ) эффективная удельная активность не должна превышать значения в 370 Бк/кг. . У материалов для зданий II класса , то есть производственных, а также для строительства дорог в населенных пунктах порог допустимой удельной активности радионуклидов должен находиться на отметке 740 Бк/кг и ниже. . Дороги вне населенных пунктов, относящиеся к III классу должны возводиться с использованием материалов, удельная активность радионуклидов в которых не выходит за рамки 1,5 кБк/кг. . Для строительства объектов IV класса могут применяться материалы с удельной активностью радиационных компонентов не более 4 кБк/кг. Специалисты сайта выяснили, что на сегодняшний день стройматериалы с более высокими показателями содержания радионуклидов не допускаются к использованию. Какую воду можно пить? Предельно допустимые нормы содержания радионуклидов установлены и для питьевой воды. Вода допускается для питья и приготовления еды, если удельная активность альфа-радионуклидов в ней не превышает 0.1 Бк/кг, а бета-радионуклидов — 1 Бк/кг. Нормы поглощения радиации Известно, что каждый предмет способен поглощать ионизирующее излучение, находясь в зоне действия источника радиации. Не исключение и человек — наш организм поглощает радиацию ничуть не хуже, чем вода или земля. В соответствии с этим разработаны нормативы поглощенных ионочастиц для человека: . Для основного населения допустимая эффектная доза в год составляет 1 мЗв (в соответствии с этим ограничивается количество и качество диагностических меди-цинских процедур, которые оказывают радиационное воздействие на человека). . Для персонала группы А усредненный показатель может быть выше, но в год не должен выходить за пределы 20 мЗв. . Для рабочего персонала группы Б допустимая эффективная годовая доза ионизирующего излучения должна быть в среднем не более 5 мЗв. Существуют также нормы эквивалентной дозы облучения за год для отдельных органов человеческого организма: хрусталика глаза (до 150 мЗв), кожи (до 500 мЗв), кистей, стоп и т.п. Нормы общей радиационной обстановки Естественное излучение не нормируется, так как в зависимости от географического расположения и времени этот показатель может меняться в очень широком диапазоне. К примеру, последние измерения радиационного фона на улицах российской столицы показали, что уровень фона тут находится в диапазоне от 8 до 12 микрорентген в час. На горных вершинах, где защитные свойства атмосферы ниже, чем в населенных пунктах расположенных ближе к уровню мирового океана, показатели ионизирующего излучения могут быть выше московских значений даже в 5 раз! Также уровень радиационного фона может быть выше среднего в местах, где воздух перенасыщен пылью и песком с высоким содержанием тория, урана. Определить качество условий, в которых Вы живете или только собираетесь поселиться по параметру радиационной безопасности можно с помощью бытового дозиметра-радиометра. Это небольшое устройство может работать от аккумуляторов и позволяет оценить радиационную безопасность строительных материалов, удобрений, продуктов питания, что немаловажно в условиях и без того плохой экологии в мире. Несмотря на высокую опасность, которую несет в себе практически любой источник радиации, методы защиты от облучения все же существуют. Все способы защиты от радиационного воздействия можно разделить на три вида: время, расстояние и специальные экраны. Защита временем Смысл этого метода защиты от радиации заключается в том, чтобы максимально уменьшить время пребывания вблизи источника излучения. Чем меньше времени человек находится вблизи источника радиации, тем меньше вреда здоровью он причинит. Данный метод защиты использовался, к примеру, при ликвидации аварии на АЭС в Чернобыле. Ликвидаторам последствий взрыва на атомной электростанции отводилось всего несколько минут на то, чтобы сделать свою работу в пораженной зоне и вернуться на безопасную территорию. Превышение времени приводило к повышению уровня облучения и могло стать началом развития лучевой болезни и других последствий, которые может вызывать радиация. Защита расстоянием Если Вы обнаружили вблизи себя предмет, являющийся источником радиации — такой, который может представлять опасность для жизни и здоровья, необходимо удалиться от него на расстояние, где радиационный фон и излучение находятся в пределах допустимых норм. Также можно вывести источник радиации в безопасную зону или для захоронения. Противорадиационные экраны и спецодежда В некоторых ситуациях просто необходимо осуществлять какую-либо деятельность в зоне с повышенным радиационным фоном. Примером может быть устранение последствий аварии на атомных электростанциях или работы на промышленных предприятиях, где существуют источники радиоактивного излучения. Находиться в таких зонах без использования средств индивидуальной защиты опасно не только для здоровья, но и для жизни. Специально для таких случаев были разработаны средства индивидуальной защиты от радиации. Они представляют собой экраны из материалов, которые задерживают различные виды радиационного излучения и специальную одежду. Защитный костюм против радиации Из чего делают средства защиты от радиации? Как известно, радиация классифицируется на несколько видов в зависимости от характера и заряда частиц излучения. Чтобы противостоять тем или иным видам радиационного излучения средства защиты от него изготавливаются с использованием различных материалов: . Обезопасить человека от излучения альфа , помогают резиновые перчатки, "барьер" из бумаги или обычный респиратор.
. Если в зараженной зоне преобладает бета-излучение , то для того, чтобы оградить организм от его вредного воздействия потребуется экран из стекла, тонкого алюминиевого листа или такой материал, как плексиглас. Для защиты от бета-излучения органов дыхания обычным респиратором уже не отделаться. Тут потребуется противогаз.
. Сложнее всего оградить себя от гамма-излучения . Обмундирование, которое обладает экранирующим действием от такого рода радиации, выполняется из свинца, чугуна, стали, вольфрама и других металлов с высокой массой. Именно одежда из свинца использовалась при проведении работ на Чернобыльской АЭС после аварии.
. Всевозможные барьеры из полимеров, полиэтилена и даже воды эффективно предохраняют от вредного воздействия нейтронных частиц .
Пищевые добавки против радиации Очень часто совместно со спецодеждой и экранами для обеспечения защиты от радиации используются пищевые добавки. Они принимаются внутрь до или после попадания в зону с повышенным уровнем радиации и во многих случаях позволяют снизить токсическое воздействие радионуклидов на организм. Кроме того, снизить вредное воздействие ионизирующего излучения позволяют некоторые продукты питания. Элеутерококк снижает влияние радиации на организм 1) Продукты питания, снижающие действие радиации. Даже орехи, белый хлеб, пшеница, редиска способны в небольшой степени снижать последствия радиационного воздействия на человека. Дело в том, что в них содержится селен, препятствующий образованию опухолей, которые могут быть вызваны радиационным облучением. Очень хороши в борьбе с радиацией и биодобавки на основе водорослей (ламинарии, хлорелле). Частично избавить организм от проникших в него радиоактивных нуклидов позволяет даже лук и чеснок. АСД — препарат для защиты от радиации 2) Фармацевтические растительные препараты против радиации. Против радиации эффективное действие оказывает препарат "Корень женьшеня", который можно купить в любой аптеке. Его применяют в два приема перед едой в количестве 40-50 капель за один раз. Также для снижения концентрации радионуклидов в организме рекомендуется употреблять экстракт элеутерококк в объеме от четверти до половины чайной ложки в день вместе с выпиваемым утром и в обеденное время чаем. Левзея, заманиха, медуница также относятся к категории радио-протекционных препаратов, и приобрести их можно в аптечных пунктах.
Индивидуальная аптечка с препаратами для защиты от радиации Но, повторимся, что никакой препарат не может полностью противостоять воздействию радиации. Cамый лучший способ защиты от радиации — вообще не иметь контакта с зараженными предметами и не находится в местах с повышенным радиационным фоном. Дозиметры представляют собой измерительные приборы для числовой оценки дозы радиоактивного излучения или мощности этой дозы за единицу времени. Измерение производится с помощью встроенного или подключаемого отдельно счетчика Гейгера-Мюллера: он измеряет дозу радиации за счет подсчета количества ионизирующих частиц, проходящих через его рабочую камеру. Именно этот чувствительный элемент является главной деталью любого дозиметра. Полученные в ходе измерений данные преобразуются и усиливаются встроенной в дозиметр электроникой, а показания выводятся на стрелочный или числовой, чаще жидкокристаллический индикатор. По значению дозы ионизирующего излучения, которая обычно измеряется бытовыми дозиметрами в пределах от 0.1 до 100 мкЗв/ч (микрозиверт в час) можно оценивать степень радиационной безопасности территории или объекта. Для проверки веществ (как жидких, так и твердых) на предмет соответствия радиационным нормам необходим прибор, позволяющий производить измерение такой величины, как микрорентген. Большинство современных дозиметров позволяет измерять и эту величину в пределах от 10 до 10 000 мкР/ч, и именно поэтому такие устройства чаще называются дозиметрами-радиометрами. Виды дозиметров Все дозиметры классифицируются на профессиональные и индивидуальные (для использования в бытовых условиях). Разница между ними заключается в основном в пределах измерения и величине погрешности. В отличие от бытовых, профессиональные дозиметры имеют более широкий диапазон измерения (обычно от 0.05 до 999 мкЗв/ч), в то время как индивидуальные дозиметры в большинстве своем не способны определять дозы величиной более 100 мкЗв в час. Также профессиональные приборы отличаются от бытовых значением погрешности: для бытовых погрешность измерений может достигать 30 %, а для профессиональных — не может быть больше 7 %.
Современный дозиметр можно носить с собой везде! В число функций как профессиональных, так и бытовых дозиметров может входить звуковая сигнализация, которая включается при определенном пороге измеряемой дозы излучения. Значение, при котором срабатывает сигнализация, в некоторых приборах может задаваться самим пользователем. Данная функция позволяет легко находить потенциально опасные предметы. Назначение профессиональных и бытовых дозиметров: 1. Профессиональные дозиметры предназначены для использования на промышленных объектах, атомных подводных лодках и в других подобных местах, где есть риск получения высокой дозы облучения (это и объясняет то, что профессиональные дозиметры в основном обладают более широким диапазоном измерений). 2. Бытовые дозиметры могут использоваться населением для оценки радиационного фона в квартире или доме. Также при помощи таких дозиметров можно производить проверку стройматериалов на уровень радиационного излучения и территории, на которой планируется возвести постройку, проверять "чистоту" покупных фруктов, овощей, ягод, грибов, удобрений и т.п.
Компактный профессиональный дозиметр с двумя счетчиками Гейгера-Мюллера Бытовой дозиметр обладает небольшими размерами и массой. Работает, как правило, от аккумуляторов или батарей питания. Его можно брать с собой везде, например, при походе в лес за грибами или даже в магазин за продуктами. Функция радиометрии, которая есть практически во всех бытовых дозиметрах, позволяет быстро и эффективно оценивать состояние продуктов и их пригодность для употребления в пищу. Дозиметры прошлых лет были неудобными и громоздкими Купить дозиметр сегодня может практически каждый. Ещё не так давно они были доступны только специальным службам, обладали высокой стоимостью и большими габаритами, то значительно затрудняло их использование населением. Современные достижения в сфере электроники позволили значительно уменьшить размеры бытовых дозиметров и сделать их более доступными по цене. Обновленные приборы вскоре получили признание во всем мире и на сегодняшний день являются единственным эффективным решением для оценки дозы ионизирующего излучения. От столкновения с источниками радиации не застрахован никто. Узнать о том, что уровень радиации превышен, можно лишь по показаниям дозиметра или по особому предупреждающему знаку. Обычно подобные знаки устанавливаются вблизи техногенных источников радиации: заводов, атомных электростанций, мест захоронений радиоактивных отходов и т.п. На рынке или в магазине таких табличек Вы, конечно, не встретите. Но это вовсе не означает, что источников радиации в таких местах быть не может. Известны случаи, когда источником радиации были продукты питания, фрукты, овощи и даже медицинские препараты. Каким образом в товарах народного потребления могут оказаться радионуклиды, вопрос другой. Главное знать, как правильно вести себя в случае обнаружения источников радиации. Где можно найти радиоактивный предмет? Поскольку на промышленных объектах определенной категории вероятность столкнуться с источником радиации и получить дозу особенно высока, дозиметры здесь выдаются практически всему персоналу. Кроме того, рабочие проходят специальный обучающий курс, на котором людям объясняют, как вести себя при возникновении радиационной угрозы или при обнаружении опасного предмета. Также многие предприятия, работающие с радиоактивными веществами, оснащаются световой и звуковой сигнализацией, при срабатывании которой весь штат сотрудников предприятия быстро эвакуируется. В общем, работники промышленности хорошо осведомлены, как действовать при появлении радиационной угрозы. Дела обстоят совсем иначе, когда источники радиации обнаруживаются в быту или на улице. Многие из нас просто не знают, как поступить в таких ситуациях и что нужно делать. Предупреждающая табличка "радиоактивность" Как себя вести при обнаружении источника радиации? При обнаружении объекта радиационного излучения важно знать, как себя вести, чтобы радиационная находка не навредила ни Вам, ни окружающим. Учтите: если у Вас в руках оказался дозиметр, это не дает Вам никакого права, чтобы пытаться самостоятельно устранить обнаруженный источник радиации. Лучшее, что Вы можете сделать в такой ситуации — удалиться на безопасное расстояние от объекта и предупредить об опасности прохожих. Всю остальную работу по утилизации объекта следует доверить соответствующим органам, например, милиции. Поиском и утилизацией радиационных предметов занимаются соответствующие службы Мы уже не раз говорили о том, что источник радиации может быть обнаружен даже в продовольственном магазине. В таких ситуациях также нельзя молчать или пытаться "разобраться" с продавцами самостоятельно. Лучше вежливо предупредить администрацию магазина и обратиться в службу Санэпидем надзора. Если Вы не сделали опасную покупку, то это ещё не значит, что радиационный предмет не купит кто-либо другой!