Теорема для нахождения площади фигуры по точкам. Исследовательская работа "формула пика"

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Выполнила ученица МОУ СОШ №7 8 «А» класса Юношева Ксения Преподаватель: Бабина Наталья Алексеевна г. Сальск 2011 год «Формула Пика»

Цели работы: Выяснение существования иной, отличной от школьной программы, формулы нахождения площади решетчатого многоугольника. Области применения искомой формулы.

Введение. Математическое образование, получаемое в общеобразовательных школах, является важнейшим компонентом общего образования и общей культуры современного человека. На данном этапе, школьная система рассчитана на одиннадцатилетнее обучение. Всем учащимся в конце одиннадцатого класса предстоит сдавать Единый Государственный Экзамен, который покажет уровень знаний, полученный во время учебы в школе. Но школьная программа не всегда предоставляет самые рациональные способы решения каких-либо задач. Например, просматривая результаты ЕГЭ 2010 года видно, что многие ученики теряют баллы из-за задания В6. Я задалась целью, как же можно сэкономить время и правильно решить это задание.

Задание В6. На клетчатой бумаге с клетками размером 1 см на 1 см изображены фигуры(см. рисунок). Найдите их площади в квадратных сантиметрах.

Итак, чтобы все-таки решить это задание мне нужно применить формулы нахождения площади, которые мы изучаем в 8классе.Но на это уйдет очень много времени, а мне нужно ответить на поставленный вопрос как можно быстрее, ведь время на экзамене строго ограниченно. Поэтому, проведя исследования, я выяснила, что существует теорема Пика, которая в школьной программе не изучается, но которая поможет мне быстрее справиться с заданием.

Историческая справка. Георг Александр Пик (10 августа, 1859 - 26 июля 1942) был австрийским математиком. Он умер в концлагере Терезин. Сегодня он известен из-за формулы Пика для определения площади решетки полигонов. Он опубликовал свою формулу в статье в 1899 году, она стала популярной, когда Хьюго Штейнгауз включил её в 1969 году в издание математических снимков. Пик учился в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско-Фердинандском университете в Праге. Он стал преподавателем там в 1881 году. Взяв отпуск в университете в 1884 году, стал работать с Феликсом Клейном в Лейпцигском университете. Он оставался в Праге до своей отставки в 1927 году, а за тем вернулся в Вену. Пик возглавлял комитет в(тогда) немецком университете Праги, который назначил Альберта Эйнштейна профессором кафедры математической физики в 1911 году. Пик был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги. После ухода на пенсию в 1927 году, Пик вернулся в Вену, город, где он родился. После аншлюса, когда нацисты вошли в Австрию 12 марта 1938 года, Пик вернулся в Прагу. В марте 1939 года нацисты вторглись в Чехословакию. Георг был отправлен в концентрационный лагерь Терезин 13 июля 1942. Он умер через две недели.

Теорема Пика. Теорема Пика - классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисленными вершинами равна сумме В + Г/2 – 1, где В есть количество целочисленных точек внутри многоугольника, а Г количество целочисленных точек на границе многоугольника.

Доказате льст во теоремы Пика. Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны 1/2, а, следовательно, площадь многоугольника равна половине их числа Т. Чтобы найти это число, обозначим через п число сторон многоугольника, через i - число узлов внутри его и через b - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна πТ. Теперь найдём эту сумму другим способом. Сумма углов с вершиной в любом внутреннем узле составляет 2 π , т. е. общая сумма таких углов равна 2 π i ; общая сумма углов при узлах на сторонах, но не в вершинах равна (b – n) π , а сумма углов при вершинах многоугольника - (п – 2) π . Таким образом, π Т = 2i π + (b – n) π + (n – 2) π , откуда получаем выражение для площади S многоугольника, известное как формула Пика. Например, на рисунке b = 9, i = 24, а следовательно, площадь многоугольника равна 27,5.

Применение. Итак, вернемся к заданию В6. Теперь, зная новую формулы, мы легко сможем найти площадь этого четырехугольника. Так как В – 5; Г – 14, то 5+14:2-1=11 (см в квадрате) Площадь данного четырехугольника равна 11 см в квадрате.

По той же формуле мы можем найти площадь треугольника. Так как В-14, Г-10,то 14+10:2-1=18 (см в квадрате) Площадь данного треугольника равна 18 см в квадрате.

Если В-9, Г-12, тогда: 9+12:2-1=14 (см в квадрате) Площадь данного четырехугольника равна 14 см в квадрате.

Области применения формулы. Помимо того, что формула применяется в различного рода экзаменах, заданиях и так далее, она сопровождает весь окружающий нас мир.

По формуле Пика S =В + ½ Г-1 1)туловище В=9,Г=26, S=9+½·26-1=9+13-1= 21 2) хвост В=0,Г=8, S= 0 +½· 8 -1= 3 3) S= 21+3=24

По формуле Пика S =В + ½ Г-1 В=36, Г=21 S = 36 + ½· 21 -1=36+10,5-1=45,5

Заключение. В итоге, я пришла к выводу, что существует много различных способов решения задач на нахождение площади, не изучаемых в школьной программе, и показала их на примере формулы Пика.

Справочник. Многоугольник без самопересечений называется решётчатым, если все его вершины находятся в точках с целочисленными координатами (в декартовой системе координат). Точка координатной плоскости называется целочисленной, если обе её координаты целые.


Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S - площадь многоугольника, - число клеток, которые целиком лежат внутри многоугольника, и - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать ниже только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги - в таких, где пересекаются линии сетки. Оказывается, что для таких многоугольников можно указать такую формулу:

где - площадь, r - число узлов, которые лежат строго внутри многоугольника.

Эту формулу называют «формула Пика» - по имени математика, открывшего её в 1899 году.

Простые треугольники

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Проделав это, например, для треугольников, изображённых на рисунке 1.34, можно убедиться, что площадь получается всегда равной «полученному» числу - числу вида, где - целое.

Назовём треугольник простым, если ни внутри него, ни на его сторонах нет узлов сетки, за исключением вершин. Все простые треугольники на рис. 1.34 имеют площадь. Мы увидим, что это не случайно.

Задача . Три кузнечика (три точки) в начальный момент времени сидят в трёх вершинах одной клетки, а затем начинают «играть в чехарду»: каждый может прыгнуть через одного из двух других, после чего оказывается в симметричной относительно его точке (рис. 1.35, ясно, что после любого числа таких прыжков кузнечики будут попадать в узлы клетчатой бумаги). В каких тройках точек могут через несколько прыжков оказаться кузнечики?

Назовём треугольник достижимым, если в его вершинах могут одновременно оказаться три кузнечика, которые вначале были в трёх вершинах одной клетки; прыжком будем называть преобразование треугольника, заключающееся в том, что одна из вершин переходит в точку, симметричную относительно любой из двух других вершин (эти две вершины остаются на месте).

Теорема 1 . Следующие три свойства треугольников с вершинами в узлах клетчатой бумаги эквивалентны друг другу:

1) треугольник имеет площадь,

2) треугольник прост,

3) треугольник достижим.

Познакомимся со следующими свойствами простого треугольника, которые и приводят к справедливости данной теоремы.

1. Площадь треугольника при прыжке не меняется.

2. Любой достижимый треугольник имеет площадь.

3. Если достроить простой треугольник АВС до параллелограмма ABCD , то ни внутри, ни на сторонах этого параллелограмма не будет узлов (не считая вершин).

4. Из простого треугольника при прыжке получается простой.

5. Из простого треугольника один из углов - тупой или прямой (причём последний случай возможен только для треугольника, у которого три вершины принадлежат одной клетке, такой простой треугольник - со сторонами 1, 1, будем называть минимальным.)

6. Из любого простого не минимального треугольника можно одним прыжком получить треугольник, у которого наибольшая сторона меньше, чем наибольшая сторона исходного.

7. Любой простой треугольник можно конечным числом прыжков перевести в минимальный.

8. Любой простой треугольник достижим.

9. Любой простой треугольник имеет площадь.

10. Любой треугольник можно разрезать на простые.

11. Площадь любого треугольника равна, причём при любом разрезании его на простые их количество равно m .

12. Любой треугольник площади - простой.

13. Для любых двух узлов А и В решётки, на отрезке между которыми нет других узлов, найдётся узел С такой, что треугольник АВС - простой.

14. Узел С в предыдущем свойстве можно всегда выбрать так, что угол АСВ будет тупым или прямым.

15. Пусть клетчатая плоскость разрезана на равные параллелограммы так, что все узлы являются вершинами параллелограммов. Тогда каждый из треугольников, на которые один из этих параллелограммов разрезается своей диагональю - простой.

16. (Обратное 15). Треугольник АВС - простой тогда и только тогда, когда всевозможные треугольники, полученные из АВС параллельными переносами, переводящими узел А в различные узлы решётки, не накладываются друг на друга.

17. Если решётку - узлы клетчатой бумаги - разбить на четыре подрешётки с клетками (рис. 1.36), то вершины простого треугольника обязательно попадут в три разные подрешётки (все три имеют разные обозначения).

Следующие два свойства дают ответ к задаче о трёх кузнечиках.

18. Три кузнечика могут одновременно попасть в те и только те тройки точек, которые служат вершинами простого треугольника и имеют тот же знак, что и соответствующие вершины начального треугольника.

19. Два кузнечика могут одновременно попасть в те и только те пары узлов соответствующих знаков, на отрезке между которыми нет других узлов.

Триангуляция многоугольника

Мы рассмотрим частный вид многоугольников на клетчатой бумаге, которому в формуле Пика соответствуют значения. Но от этого частного случая можно перейти сразу к самому общему, воспользовавшись теоремой о разрезании на треугольники произвольного многоугольника (клетчатая бумага больше не нужна).

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n - 2 (это разбиение - триангуляция с вершинами в вершинах n -угольника).

б) Пусть на границе многоугольника отмечено r точек (включая все вершины), внутри - ещё i точек. Тогда существует триангуляция с вершинами в отмеченных точках, причём количество треугольников такой триангуляции будет равно.

Разумеется, а) - частный случай б), когда.

Справедливость этой теоремы следует из следующих утверждений.

1) Из вершины наибольшего угла n -угольника () всегда можно провести диагональ, целиком лежащую внутри многоугольника.

2) Если n -угольник разрезан диагональю на р -угольник и q -угольник, то.

3) Сумма углов n -угольника равна.

4) Любой n -угольник можно разрезать диагоналями на треугольника.

5) Для любого треугольника, внутри и на границе которого отмечены несколько точек (в том числе и все три его вершины), существует триангуляция с вершинами в отмеченных точках.

6) То же самое верно и для любого n -угольника.

7) Число треугольников триангуляции равно, где i и r - количество отмечены несколько точек соответственно внутри и на границе многоугольника. Назовём разбиение n -угольника на несколько многоугольников правильным, если каждая вершина одного из многоугольников разбиения служит вершиной всех других многоугольников разбиения, которым она принадлежит. 8) Если из вершин k -угольников, на которые разбит правильным образом n -угольник, i вершин лежат внутри и r - на границе n -угольника, то количество k -угольников равно

9) Если точек плоскости и отрезков с концами в этих точках образуют многоугольник, правильно разбитый на многоугольников, то (рис. 1.38)

Из теорем 1 и 2 и вытекает формула Пика:

1.5 Теорема Пифагора о сумме площадей квадратов, построенных на катетах прямоугольного треугольника

Теорема . Сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе этого треугольника.Доказательство. Пусть АВС (рис. 1.39) - прямоугольный треугольник, а BDEA , AFGE и BCKH - квадраты, построенные на его катетах и гипотенузе; требуется доказать, что сумма площадей двух первых квадратов равна площади третьего квадрата.

Проведём ВС . Тогда квадрат BCKH разделится на два прямоугольника. Докажем, что прямоугольник BLMH равновелик квадрату BDEA , а прямоугольник LCKM равновелик квадрату AFGC .

Проведём вспомогательные прямые DC и АН . Рассмотрим треугольники DCB и ABH . Треугольник DCB , имеющий основание BD , общее с квадратом BDEA , а высоту СN , равную высоте АВ этого квадрата, равновелик половине квадрата. Треугольник АВН , имеющий основание ВН , общее с прямоугольником BLMH , и высоту АР , равную высоте BL этого прямоугольника, равновелик его половине. Сравнивая эти два треугольника между собой, находим, что у них BD = ВА и ВС = ВН (как стороны квадрата);

Сверх того, DCB = АВН , т. к. каждый из этих углов состоит из общей части - АВС и прямого угла. Значит, треугольники АВН и ВСD равны. Отсюда следует, что прямоугольник BLMN равновелик квадрату BDEA . Точно также доказывается, что прямоугольник LGKM равновелик квадрату AFGC . Отсюда следует, что квадрат ВСКН равновелик сумме квадратов BDEA и AFGC .

Просмотр содержимого документа
«На выступление»

Введение

Рано или поздно всякая правильная

математическая идея находит

(А.Н. Крылов)

Многие ученики сталкиваются с задачами на нахождение площади треугольника, параллелограмма, многоугольника и других геометрических фигур по рисунку на клетчатой бумаге. Применяя правила и теоремы из геометрии, ученик может запутаться или забыть, да и к тому же уходит много времени на дополнительное построение, а в условиях экзамена дорога каждая минута. Чтобы не тратить много усилий, времени и не вспоминать впопыхах теоремы, аксиомы, правила, существует теорема Пика, с помощью которой можно без проблем и траты времени вычислить площадь фигуры, расположенной на клетчатой бумаге.

Увидев такие задачи в контрольно–измерительных материалах ОГЭ и ЕГЭ, решил обязательно исследовать задачи на клетчатой бумаге, связанные с нахождением площади изображённой фигуры.

Так и была определена тема для исследования.

Теорема Пика актуальна для всех школьников, сдающих экзамены. Поэтому её нужно знать, чтобы быстро и правильно решать задачи на нахождение площади.
Объект исследования : задачи на клетчатой бумаге.

Предмет исследования : задачи на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования :

Теоретические: анализ и синтез.

Эмпирические: сравнение.
Индуктивный метод – получение выводов из конкретных примеров.

Эксперимент.

Цель исследования: Проверить формулу Пика для вычисления площадей геометрических фигур в сравнении с формулами геометрии.

А кто же такой Пик?

Пик поступил в университет в Вене в 1875 году. Уже в следующем году он опубликовал свою первую работу по математике, ему было всего лишь семнадцать лет. Он изучал математику и физику, окончил в 1879 г. универститет, получив возможность преподавать оба эти предмета. В 1877 году из Дрезденской Высшей технической школы (Technische Hochschule) переехал Лео Кёнигсбергер, который занял кафедру в венском университете. Он стал руководителем Пика, и 16 апреля 1880 г. Пик защитил докторскую диссертацию “О классе абелевых интегралов”

Формула Пика позволит вам с необычайной легкостью находить площадь любого многоугольника на клетчатой бумаге с целочисленными вершинами.

Это задание мы рассматривали на уроке. Хотя многоугольник выглядел достаточно просто, для вычисления его площади нам пришлось изрядно потрудиться. Мы потратили 10 минут времени на решение этой задачи. Хочу отметить, что не все учащиеся нашего класса справились с данным заданием. А когда нам сказали, что есть формула позволяющая вычислить площадь за одну минуту, то меня очень заинтересовало и я решил заняться изучением этого вопроса.

Сначала я решил узнать какими способами вычисляли площадь мои одноклассники, кто справился с заданием и заняться изучением формулы. В нашем классе никто не знал формулы Пика. Также это задание мы решили дать учащимся 9 и 11 классов. Вот что у нас получилось.

Формула Пика:

А сейчас мы хотели показать вам пример, как с помощью формулы Пика можно найти площадь фигуры на клетчатой решетки.

Вывод: Таким образом, рассматривая задачи на нахождение площадей многоугольников, изображенных на клетчатой бумаге, по формулам геометрии и по формуле Пика и сравнивая результаты в таблицах, мы показали справедливость формулы Пика и пришли к выводу, что площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по выведенной формуле геометрии.


«Формула Пика»

Выполнил:

Руководитель: Паркина Наталья Ивановна,

учитель математики


Актуальность


Объект исследования:

Задачи на клетчатой бумаге.


Предмет исследования:


Методы исследования:


Цель исследования:



применение в том или ином деле.

(А.Н. Крылов)



  • Подсчет количества клеток;
  • Формула Пика.

Найдём площадь многоугольника

Искать её можно по-разному.



S = 5 ・ 6 – 13=17 (кв.ед.)


Вот что у нас получилось

Класс

Правильно

Неправильно

всего

Способ

Класс

Подсчет клеток

Разбиение фигуры

всего

Формула

Пика



Теорема Пика или Формула Пика

Пусть В

Г S его площадь.

S = В + Г/2 – 1

Пример.

В = 13 (красные точки),

Г= 6 (синие точки), поэтому

S = 13 + 6/2 – 1 = 15 квадратных единиц.


Доказательство




Обозначим:

n

m

сторонах,

Следовательно, площадь многоугольника равна 1/2 m .

180 0 m .

180 0 (Г – n ).

n – 2) .

Общая сумма углов всех треугольников равна

360 0 В +180 0 (Г– n ) + 180 0 (n –2).

Таким образом, 180 0 m = 360 0 В + 180 0 (Г– n ) + 180 0 (n – 2),

180 0 m = 360 0 В + 180 0 Г – 180 0 n + 180 0 n – 180 0 ·2,

180 0 m = 360 0 В + 180 0 Г– 360 0 , 1/2 m = В + Г/2 – 1 ,




Г=4(точки на узлах)

В=0(точки внутри фигуры)

Ответ: 1см 2




  • 1 клетка = 1 см
  • Г = 15 (обозначены красным)
  • В = 34 (обозначены синим)



  • Г = 14 (обозначены красным)
  • В = 43 (обозначены синим)

Решение заданий ЕГЭ

Формула Пика-

формула для вычисления

площади

многоугольников,

полезна при решении заданий

ЕГЭ и ОГЭ


Задание ЕГЭ – 2015

Решение.

По формуле Пика:

S = Г:2 + В - 1

Г = 7 , В = 5

S = 7:2 + 5 – 1 =

= 7,5 (см²)

Ответ: 7,5 см².


Задания ЕГЭ - 2015

Г = 7 В = 2

S = 7:2 + 2 - 1 = 4 ,5

Г = 4 В = 0

S = 4: 2 + 0 - 1 = 1





Задача. Найдите площадь S

Ответ: ≈ 1,11.

Задача . ABC .


Задача. ABCD

Задача. Найдите площадь S

Ответ: ≈3,5.


Пример №1

Г = 14

S = 14:2 + 43–1 =

= 49


Пример № 2

Г = 11

S = 11:2 + 5 – 1= = 9,5


Пример №3

S = 15:2 + 22 – 1=


Пример № 4

S = 8:2 +16 – 1 =


Пример № 5

Г = 10

S = 10:2 + 30 –1 =


27

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см х 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

17

По формуле Пика S =В +½Г-1 В=4,Г=14, S=4+½·14-1=10


По формуле Пика S =В +½Г-1 В=36, Г=21

  • По формуле Пика S =В +½Г-1 В=36, Г=21 S = 36 + ½·21 -1=36+10,5-1=45,5

По формуле Пика S =В +½Г-1 В=6,Г=18, S=6+½·18-1=14


Г = 16 В = 4 S = Г : 2 + В - 1 S = 16 : 2 + 4 – 1 = 11


Задача.


Основной вывод:

Заключение


Просмотр содержимого презентации
«Формула Пика2»


Исследовательская работа по математике

Применение формулы Пика для вычисления площади многоугольников с вершинами в узлах клетки

Выполнил: Васякин Михаил, ученик 10 класса

Руководитель: Паркина Наталья Ивановна,

учитель математики


Актуальность работы состоит в том, что формула Пика для вычисления площади многоугольников в школьном курсе математики (геометрии) не рассматривается. Изучение данной темы расширяет интеллектуальный кругозор учащихся, а применение её упрощает нахождение площади геометрической фигуры, изображенной на клетчатой бумаге (сетке). Контрольно-измерительные материалы ЕГЭ содержат задания подобного типа, и их можно решить, применяя формулу Пика.


Объект исследования:

Задачи на клетчатой бумаге.


Предмет исследования:

Задачи на вычисление площади многоугольника на клетчатой бумаге.


Методы исследования:

Сравнение, моделирование, обобщение, аналогии, изучение литературы и Интернет-ресурсов, анализ и классификация информации.


Цель исследования:

Обосновать рациональность использования формулы Пика при решении задач на нахождение площади фигур, изображённых на клетчатой бумаге.


  • Изучить литературу по данной теме;
  • Рассмотреть различные способы вычислений площадей многоугольников;
  • Показать практическое применение этих способов;
  • Выяснить преимущества и недостатки каждого способа;
  • Систематизировать и углубить накопленные мной знания;
  • Повысить качество знаний и умений;
  • Создать электронную презентацию работы для представления собранного материала одноклассникам.

Рано или поздно всякая правильная математическая идея находит

применение в том или ином деле.

(А.Н. Крылов)


Георг Александр Пик- австрийский математик, родился в еврейской семье.

Круг математических интересов Пика был чрезвычайно широк. Им написаны работы в области математического анализа, дифференциальной геометрии, в теории дифференциальных уравнений и т. д., всего более 50 тем.

Широкую известность получила открытая им в 1899 году теорема Пика для расчёта площади многоугольника. В Германии эта теорема включена в школьные учебники.


  • Подсчет количества клеток;
  • Применение формул планиметрии;
  • Разбиение фигуры на более простые фигуры;
  • Достроение фигуры до прямоугольника;
  • Формула Пика.

Найдём площадь многоугольника

Искать её можно по-разному.


Способы, применяемые для вычисления площади данной фигуры

1способ: Подсчет количества клеток (для данной фигуры приближенный).

2 способ: Попробовать разрезать многоугольник на достаточно простые фигуры (рис.2), найти их площади и сложить.


3 способ: Вычислить площадь фигуры (рис.3), которая дополняет многоугольник до прямоугольника, и вычесть эту площадь из площади прямоугольника. Дополненная фигура (в отличие от исходного многоугольника) легко разбивается на прямоугольники и прямоугольные треугольники так, что её площадь вычисляется без усилий.

S = 2+1+0,5 + 3+ 2 + 1 + 2 +1,5=13 (кв.ед.)

Следовательно, площадь исходного многоугольника равна

S = 5 ・ 6 – 13=17 (кв.ед.)


Вот что у нас получилось

Класс

Правильно

Неправильно

всего

Способ

Подсчет клеток

Класс

Разбиение фигуры

всего

Достроить фигуру до прямоугольника

Формула

Пика


Попробуйте найти площадь фигуры

Для этого есть простой и удобный способ.


Теорема Пика или Формула Пика

Пусть В число узлов сетки внутри многоугольника,

Г количество узлов на его границе, S его площадь.

Тогда справедлива формула Пика: S = В + Г/2 – 1

Пример.

Для многоугольника на рисунке В = 13 (красные точки),

Г= 6 (синие точки), поэтому

S = 13 + 6/2 – 1 = 15 квадратных единиц.


Доказательство

Рассмотрим многоугольник, вершины которого находятся в узлах целочисленной решётки, то есть имеют целочисленные координаты.




Обозначим:

n – число сторон многоугольника,

m – количество треугольников с вершинами в узлах

решётки, не содержащие узлов ни внутри, ни на

сторонах,

В – число узлов внутри многоугольника,

Г – число узлов на сторонах, включая вершины.

Площади всех этих треугольников одинаковы и равны

Следовательно, площадь многоугольника равна 1/2m.

Общая сумма углов всех треугольников равна 180 0 m .

Теперь найдём эту сумму другим способом.

Сумма углов с вершиной в любом внутреннем узле составляет 360 0 .

Тогда сумма углов с вершинами во всех внутренних узлах равна 360 0 В.

Общая сумма углов при узлах на сторонах, но не в вершинах равна

180 0 (Г – n ).

Сумма углов при вершинах многоугольника равна 180 0 (n – 2) .

Общая сумма углов всех треугольников равна

360 0 В +180 0 (Г– n ) + 180 0 (n –2).

Таким образом, 180 0 m = 360 0 В + 180 0 (Г– n ) + 180 0 (n – 2),

180 0 m = 360 0 В + 180 0 Г – 180 0 n + 180 0 n – 180 0 ·2,

180 0 m = 360 0 В + 180 0 Г– 360 0 , 1/2m= В + Г/2 – 1 ,

откуда получаем выражение для площади S многоугольника:

S = В + Г/2 – 1 , известное как формула Пика.




Г=4(точки на узлах)

В=0(точки внутри фигуры)

Ответ: 1см 2




  • 1 клетка = 1 см
  • Г = 15 (обозначены красным)
  • В = 34 (обозначены синим)



  • Г = 14 (обозначены красным)
  • В = 43 (обозначены синим)

Решение заданий ЕГЭ

Формула Пика-

формула для вычисления

площади

многоугольников,

полезна при решении заданий

ЕГЭ и ОГЭ


Задание ЕГЭ – 2015

Найдите площадь четырёхугольника АВСD

Решение.

По формуле Пика:

S = Г:2 + В - 1

Г = 7 , В = 5

S = 7:2 + 5 – 1 =

= 7,5 (см²)

Ответ: 7,5 см².


Задания ЕГЭ - 2015

Г = 7 В = 2

S = 7:2 + 2 - 1 = 4,5

Г = 4 В = 0

S = 4: 2 + 0 - 1 = 1


Теперь, зная новую формулу, мы легко сможем найти площадь и этого четырехугольника.

Так как В =5; Г = 14, то 5+14:2-1=11 (см в квадрате)

Площадь данного четырехугольника равна 11 см в квадрате.


По той же формуле мы можем найти площадь треугольника.

Так как В=14, Г=10,то 14+10:2-1=18 (см в квадрате)

Площадь данного треугольника равна 18 см в квадрате.


Если В=9, Г=12, тогда: 9+12:2-1=14 (см в квадрате)

Площадь данного четырехугольника равна 14 см в квадрате.


Задача. Найдите площадь S сектора, считая стороны квадратных клеток равными 1. В ответе укажите.

Решение: Г= 5, В= 2, S = В + Г/2 – 1= 2 + 5/2 – 1= 3,5 .

Ответ: ≈ 1,11.

Задача . Найдите площадь треугольника ABC .

Решение: Г = 7, В = 5, S = В + Г/2 – 1= 5 + 7/2 – 1= 7,5.


Задача. Найдите площадь четырехугольника ABCD , считая стороны квадратных клеток равными 1.

Решение: Г= 4, В= 5, S = В + Г/2 – 1= 5 + 4/2 – 1= 6

Задача. Найдите площадь S кольца, считая стороны квадратных клеток равными 1. В ответе укажите

Решение: Г= 8, В= 8, S = В + Г/2 – 1= 8 + 8/2 – 1=11,

Ответ: ≈3,5.


Пример №1

Г = 14

S = 14:2 + 43–1 =


Пример №2

Г = 11

S = 11:2 + 5 – 1= = 9,5


Пример №3

S = 15:2 + 22 – 1=


Пример № 4

S = 8:2 +16 – 1=


Пример № 5

Г = 10

S = 10:2 + 30 –1=


Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см х 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

27

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см х 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

17

По формуле Пика S =В +½Г-1 В=4,Г=14, S=4+½·14-1=10


По формуле Пика S =В +½Г-1 В=36, Г=21

S = 36 + ½·21 -1=36+10,5-1=45,5


По формуле Пика S =В +½Г-1 В=6,Г=18, S=6+½·18-1=14


Г = 16 В = 4 S = Г : 2 + В - 1 S = 16 : 2 + 4 – 1 = 11


Задача. Найти площадь прямоугольного параллелепипеда, считая стороны квадратных клеток равными 1.

полной поверхности по формуле Пика невозможно!


Основной вывод:

Формула Пика имеет ряд преимуществ перед другими способами вычисления площадей многоугольников на клетчатой бумаге:

1.Для вычисления площади многоугольника, нужно знать всего одну формулу: S = В + Г/2 - 1

2.Формула Пика очень проста для запоминания.

3.Формула Пика очень удобна и проста в применении.

4.Многоугольник, площадь которого необходимо вычислить, может быть любой, даже самой причудливой формы.

Заключение

При выполнении работы были решены задачи на нахождение площади многоугольников, изображённых на клетчатой бумаге двумя способами: геометрическим и с помощью формулы Пика.

Проанализировав способы решения задач, можно сделать следующие выводы:

1) Формула Пика даёт быстрое и простое решение задач на нахождение площади фигуры, вершины которой лежат в узлах решётки, то есть нахождения площадей многоугольников.

2) Использование формулы Пика для нахождения площади кругового сектора или кольца нецелесообразно, так как она даёт приближённый результат.

3) Формула Пика не применяется для решения задач в пространстве.

4) Формула Пика облегчает и ускоряет нахождение площади многоугольников. Но и она имеет свои недостатки:

  • Чертёж должен быть очень четким (для подсчета узлов);
  • Формула применяется лишь в том случае, если многоугольник изображен на клетчатой бумаге;

Способы вычисления площадей многоугольников, в том числе с помощью формулы Пика позволяет успешному изучению геометрии в старших классах. Данная работа может быть полезна для учащихся при подготовке к итоговой аттестации.


Вычисление площади фигуры.

Метод Пика

Работа обучающейся 5Б класса МБОУ СОШ №23 г. Иркутска

Балсуковой Александры

Руководитель: Ходырева Т.Г.

2014г.

Вычисление площади фигуры. Метод Пика

Объект исследования : задачи на клетчатой бумаге

Предмет исследования : задач на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования : сравнение, обобщение, аналогии, изучение литературы и Интернет-ресурсов, анализ информации.

Цель исследования:

    выбрать главную, интересную, понятную информацию

    Проанализировать и систематизировать полученную информацию

    Найти различные методы и приёмы решения задач на клетчатой бумаге

    проверить формулы вычисления площадей геометрических фигур с помощью формулы Пика

    Создать электронную презентацию работы для представления собранного материала

Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать.

(Г. Галилей)

    Актуальность темы

Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» встает вопрос есть ли задачи, отличные от задач рассмотренных в учебнике. К таким задачам можно отнести задачи на клетчатой бумаге. В чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. На уроке математики учитель познакомила нас с интересным методом вычисления многоугольников. Я приступила к изучению литературы, Интернет-ресурсов по данной теме. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке. Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.

И еще я узнала, что такие задачи рассматриваются в контрольно – измерительных материалах ГИА и ЕГЭ. Поэтому, считаю изучение этого материала полезным для применения его не только в дальнейшем учебном процессе, но и для решения нестандартных олимпиадных задач.

2.Понятие площади

Площадь - численная характеристика двумерной геометрической фигуры, показывающая размер этой фигуры. Исторически вычисление площади называлось . Фигура, имеющая площадь, называется квадрируемой .

Площадь плоской фигуры с точки зрения геометрии

1. Площадь -мера плоской фигуры по отношению к стандартной фигуре, являющейся квадратом со стороной, равной единице длины.

2. Площадь - численная характеристика, приписываемая плоским фигурам определенного класса (например, многоугольникам). Площадь квадрата со стороной, равной единице длины, принимаемая равной единице площади

3. Площадь - положительная величина, численное значение которой обладает следующими свойствами:

Равные фигуры имеют равные площади;

Если фигура разбивается на части, являющиеся простыми фигурами (т.е. те, которые можно разбить на конечное число плоских треугольников), то площадь этой фигуры равна сумме площадей ее частей;

Площадь квадрата со стороной, равной единице измерения, равна единице.

Таким образом, можно сделать вывод, что площадь не является конкретной величиной, а только дает некоторую условную характеристику какой-либо плоской фигуры. Чтобы найти площадь произвольной фигуры, то необходимо определить, сколько квадратов со стороной, равной единице длины, она в себя вмещает. Например, возьмем прямоугольник, в котором квадратный сантиметр укладывается ровно 6 раз. Это означает, что площадь прямоугольника равняется 6 см 2 .

Выбор площади квадрата со стороной, равной единице измерения, в качестве минимальной единицы измерения всех площадей не случаен. Это результат договоренности между людьми, возникший в ходе «естественного» многовекового отбора. Кроме того, были и другие предложения о единице измерения. Так, например, за такую единицу предлагалось взять площадь равностороннего треугольника (т.е. любую плоскую фигуру можно было представить в виде «суммы» некоего числа равносторонних треугольников), что привело бы к изменению численного представления площадей.

Таким образом, формулы для вычисления площадей появились в математике и осознались человеком не сразу-это многих ученых, проживающих в разные эпохи и разных странах. (Ошибочные формулы не находили место в науке и уходили в небытие). Истинные же формулы дополнялись, исправлялись и обосновывались на протяжений тысячелетий, пока не дошли до нас в их современном обличии.

Само же измерение площади состоит в сравнении площади данной фигуры с площадью фигуры, принятой за единицу измерения. В результате сравнения получается некоторое число- численное значение площади данной фигуры. Это число показывает, во сколько раз площадь данной фигуры больше (или меньше) площади фигуры, принятой за единицу измерения площади.

Таким образом, можно сделать вывод, что площадь-это искусственная величина, исторически введенная человеком для измерения некоторого свойства плоской фигуры. Необходимость ввода такой величины обуславливалась возрастающими потребностями в знании того, насколько большая та или иная территория, сколько надо зерна, чтобы засеять поле или вычислить площадь поверхности пола для украшения орнаментной плитки.

    Формула Пика

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S – площадь многоугольника, В - число клеток, которые целиком лежат внутри многоугольника, и Г - число клеток, которые имеют с внутренностью. Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги – в таких, где пересекаются линии сетки многоугольника хоть одну общую точку.

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

Теорема . Пусть - число целочисленных точек внутри многоугольника, - количество целочисленных точек на его границе, - его площадь. Тогда справедлива формула Пика :

Пример. Для многоугольника на рисунке L = 7 (красные точки), 9 (зеленые точки), поэтому S = 7+ 9/2 -1 = 10,5 квадратных единиц.

Теорема Пика - классический результат и .

Площадь треугольника с вершинами в узлах и не содержащего узлов ни внутри, ни на сторонах (кроме вершин), равна 1/2. Этот факт.

3. История

Формула Пика была открыта австрийским математиком Георгом Александром (1859-1942) в г.. В 16 лет Георг закончил школу и поступил в . В 20 лет получил право преподавать физику и математику. В 1884 году Пик уехал в к . Там он познакомился с другим учеником Клейна, . Позже, в 1885 году, он вернулся в , где и прошла оставшаяся часть его научной карьеры.

Георг Пик дружил с Эйнштейном. Пик и Эйнштейн не только имели общие научные интересы, но и страстно увлекались музыкой. Пик, игравший в квартете, который состоял из университетских профессоров, ввёл Эйнштейна в научное и музыкальное общества Праги.

Круг математических интересов Пика был чрезвычайно широк. В частности, им более 50 научных работ. Широкую известность получила открытая им в 1899 году теорема Пика для расчёта площади многоугольника. В Германии эта теорема включена в школьные учебники.

4.Приложения формулы Пика

Формула Пика используется не только для вычисления площадей многоугольников, но и для решения многих задач олимпиадного уровня.

Некоторые примеры использования формулы Пика при решении задач:

1) Шахматный король обошел доску 8 × 8 клеток, побывав на каж-

дом поле ровно один раз и последним ходом вернувшись на исходное

поле. Ломаная, соединяющая последовательно центры полей, которые

проходил король, не имеет самопересечений. Какую площадь может

ограничивать эта ломаная? (Сторона клетки равна 1.)

Из формулы Пика сразу следует, что площадь, ограниченная ло-

маной, равна 64/2 − 1 = 31; здесь узлами решетки служат центры 64

полей и, по условию, все они лежат на границе многоугольника. Таким

образом, хотя таких «траекторий» короля достаточно много, но все они

ограничивают многоугольники равных площадей.

    Задачи из контрольно – измерительных материалов ГИА и ЕГЭ

Задание B3

Найдите площади фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

4.Заключение

В процессе исследования я изучила справочную, научно-популярную литературу. Узнала, что задача на нахождение площади многоугольника с вершинами в узлах сетки с подвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке Рассмотренные задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша я решила продолжить работу в этом направлении.

5. Используемая литература:

1.В а с и л ь е в Н. Б. Вокруг формулы Пика // Квант. - 1974. - № 12

2.К о к с е П р а с о л о в В. В. Задачи по планиметрии. - М.: МЦНМО, 2006.т е р Г. С.М. Введение в геометрию. - М.: Наука, 1966

3.Рослова Л.О., Шарыгин И.Ф. Измерения. – М.:Изд. «Открытый мир», 2005.

Интернет – ресурсы :

:

Отзыв на работу

«Вычисление площадей плоских фигур. Метод Пика»

Рассмотрение данной темы позволит повысить познавательную активность обучающегося, который впоследствии на уроках геометрии начнет видеть гармонию чертежа и перестанет воспринимать геометрию (да и математику в целом) как скучную науку.

Отзыв составила учитель математики

Ходырева Татьяна Георгиевна

1

Гибадуллина Г.И. (Нурлат, МАОУ СОШ №1)

1. Бунимович Е.А., Дорофеев Г.В., Суворова С.Б. и др. Математика. Арифметика. Геометрия. 5 класс: учебн. для общеобразоват. организаций с прил. на электрон. носителе -3–е изд. – М.: Просвещение, 2014. – 223, с. : ил. – (Сферы).

2. Бунимович Е.А., Кузнецова Л.В., Минаева С.С. и др. Математика. Арифметика. Геометрия. 6 класс: учебн. для общеобразоват. организаций. 5-е изд. – М.: Просвещение, 2016. – 240 с.: ил. – (Сферы).

3. Васильев Н.Б. Вокруг формулы Пика // Квант. – 1974. – №2. – С. 39–43.

4. Рассолов В.В. Задачи по планиметрии. 5–е изд., испр. и доп. – М.: 2006. – 640 с.

5. Ященко И.В. ОГЭ. Математика: типовые экзаменационные варианты: О-39 36 вариантов – М.: Изд-во «Национальное образование», 2017. – 240 с. – (ОГЭ. ФИПИ – школе).

6. Решу ОГЭ: математика. Обучающая система Дмитрия Гущина. ОГЭ-2017: задания, ответы, решения [Электронный ресурс]. – Режим доступа: https://oge.sdamgia.ru/test?id=6846966 (дата обращения 02.04.2017).

Я ученик 6 класса. Изучать геометрию начал ещё с прошлого года, ведь занимаюсь я в школе по учебнику «Математика. Арифметика. Геометрия» под редакцией Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и другие.

Наибольшее мое внимание привлекли темы «Площади фигур», « Составление формул». Я заметил, что площади одних и тех же фигур можно находить различными способами. В быту мы часто сталкиваемся с задачами нахождения площади. Например, найти площадь пола, который придется покрасить. Любопытно ведь, чтобы купить необходимое количество обоев для ремонта, нужно знать размеры комнаты, т.е. площадь стен. Вычисление площади квадрата, прямоугольника и прямоугольного треугольника не вызывало у меня затруднений.

Заинтересовавшись этой темой, я начал искать дополнительный материал в Интернете. В результате поисков я натолкнулся на формулу Пика- это формула для вычисления площади многоугольника, нарисованного на клетчатой бумаге. Вычисление площади по этой формуле мне показалось доступным любому ученику. Именно поэтому я решил провести исследовательскую работу.

Актуальность темы . Данная тема является дополнением и углублением изучения курса геометрии.

Изучение данной темы поможет лучше подготовиться к олимпиадам и экзаменам.

Цель работы:

1. Ознакомиться с формулой Пика.

2. Овладеть приемами решений геометрических задач с использованием формулы Пика.

3. Систематизировать и обобщить теоретический и практический материалы.

Задачи исследования:

1. Проверить эффективность и целесообразность применения формулы при решении задач.

2. Научиться применять формулу Пика в задачах разной сложности.

3. Сравнить задачи, решенные с помощью формулы Пика и традиционным способом.

Основная часть

Историческая справка

Георг Александр Пик - австрийский математик , родился 10 августа года. Он был одарённым ребёнком, его обучал отец, возглавлявший частный институт. В 16 лет Георг закончил школу и поступил в Венский университет. В 20 лет получил право преподавать физику и математику. Всемирную известность ему принесла формула для определения площади решетки полигонов. Свою формулу он опубликовал в статье в 1899 году. Она стала популярной, когда польский ученый Хьюго Штейнгауз включил ее в 1969 году в издание математических снимков.

Георг Пик получил образование в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско- Фердинандском университете в Праге. Там же он стал преподавателем. Он оставался в Праге до своей отставки в 1927 году, а затем вернулся в Вену.

Пик возглавлял комитет в немецком университете Праги, который назначил Эйнштейна профессором кафедры математической физики в 1911 году.

Он был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги.

Когда нацисты вошли в Австрию 12 марта 1938 года, он вернулся Прагу. В марте 1939 года нацисты вторглись в Чехословакию. 13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии лагерь Терезиенштадт, где умер две недели спустя в возрасте 82 лет.

Исследование и доказательство

Свою исследовательскую работу я начал с выяснения вопроса: площади каких фигур я смогу найти? Составить формулу для вычисления площади различных треугольников и четырехугольников я мог. А как же быть с пяти-, шести-, и вообще с многоугольниками?

В ходе исследования на различных сайтах я увидел решения задач на вычисление площади пяти-, шести-, и других многоугольников. Формула, позволяющая решать данные задачи, называлась формулой Пика. Она выглядит так: S=B+Г/2-1, где В - количество узлов, лежащих внутри многоугольника, Г - количество узлов, лежащих на границе многоугольника. Особенность данной формулы состоит в том, что её можно применять только для многоугольников, нарисованных на клетчатой бумаге.

Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны ½, а следовательно, площадь многоугольника равна половине их числа Т.

Чтобы найти это число, обозначим через n число сторон многоугольника, через В - число узлов внутри него, через Г - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна 180°. Т.

Теперь найдем сумму другим способом.

Сумма углов с вершиной в любом внутреннем узле составляет 2.180°, т.е. общая сумма углов равна 360°. В; общая сумма углов при узлах на сторонах, но не в вершинах равна (Г - n)180°, а сумма углов при вершинах многоугольника будет равна (Г - 2)180°. Таким образом, Т=2.180°. В+(Г-n)180°+(n-2)180°. Выполнив раскрытие скобок и разделив на 360°, получаем формулу для площади S многоугольника, известную как формула Пика.

Практическая часть

Эту формулу решил проверить на заданиях из сборника ОГЭ-2017. Взял задачи на вычисление площади треугольника, четырехугольника и пятиугольника. Решил сравнить ответы, решая двумя способами: 1) дополнил фигуры до прямоугольника и из площади полученного прямоугольника вычел площадь прямоугольных треугольников; 2) применил формулу Пика.

S = 18-1,5-4,5 = 12 и S = 7+12/2-1= 12.

S = 24-9-3 = 12 и S = 7+12/2-1 = 12.

S = 77-7,5-12-4,5-4 =49 и S = 43+14/2-1 = 49.

Сравнив полученное, делаю вывод, что обе формулы дают один и тот же ответ. Найти площадь фигуры по формуле Пика, оказалось быстрее и легче, ведь вычислений было меньше. Легкость решения и экономия времени на вычислениях мне пригодятся в будущем при сдаче ОГЭ.

Это подтолкнуло меня на проверку возможности применения формулы Пика на более сложных фигурах.

S = 0 + 4/2 -1 = 1

S = 5+11/2-1 = 9,5

S = 4+16/2-1 = 1

Заключение

Формула Пика проста в понимании и удобна в применении. Во-первых, достаточно уметь считать, делить на 2, складывать и вычитать. Во-вторых, можно найти площадь и сложной фигуры, не затратив много времени. В-третьих, эта формула работает для любого многоугольника.

Недостаток в том, что Формула Пика применима только для фигур, которые нарисованы на клетчатой бумаге и вершины лежат на узлах клеток.

Я уверен, что при сдаче выпускных экзаменов, задачи на вычисление площади фигур не будут вызывать затруднения. Ведь я уже знаком с формулой Пика.

Библиографическая ссылка

Габбазов Н.Н. ФОРМУЛА ПИКА // Старт в науке. – 2017. – № 6-1. – С. 130-132;
URL: http://science-start.ru/ru/article/view?id=908 (дата обращения: 02.03.2019).