Ленц эмилий христианович биография. Ленц и его достижения

С именем Ленца связаны фундаментальные открытия в области электродинамики. Наряду с этим ученый по праву считается одним из основоположников русской географии.

Эмилий Христианович Ленц родился 24 февраля 1804 года в Дерпте (ныне Тарту). В 1820 году он окончил гимназию и поступил в Дерптский университет. Самостоятельную научную деятельность Ленц начал в качестве физика в кругосветной экспедиции на шлюпе "Предприятие" (1823- 1826), в состав которой был включен по рекомендации профессоров университета. В очень короткий срок он совместно с ректором Е.И. Парротом создал уникальные приборы для глубоководных океанографических наблюдений - лебедку-глубомер и батометр. В плавании Ленц провел океанографические, метеорологические и геофизические наблюдения в Атлантическом, Тихом и Индийском океанах. В 1827 году он выполнил обработку полученных данных и проанализировал их. В феврале 1828 года Ленц представил в Академию наук доклад "Физические наблюдения, произведенные во время кругосветного путешествия под командованием капитана Отто фон Коцебу в 1823, 1824, 1825 и 1826 гг.". За этот труд, получивший очень высокую оценку, в мае 1828 года Ленц был избран адъюнктом Академии по физике.

В 1829-1830 годах Ленц занимался геофизическими исследованиями в южных районах России. В июле 1829 года он участвовал в первом восхождении на Эльбрус и барометрическим способом определил высоту этой горы. Тем же способом он установил, что уровень Каспийского моря на 30,5 м ниже Черного.

В сентябре 1829 года Ленц выполнил гравитационные и магнитные наблюдения в Николаевской обсерватории по программе, составленной А. Гумбольдтом, а несколько позже - в Дагестане. Он собрал в окрестностях Баку образцы нефти и горючих газов, а также установил в этом городе футшток для наблюдений за уровнем Каспия.

В мае 1830 году Ленц вернулся в Петербург и приступил к обработке собранных материалов. Важнейшие научные результаты экспедиции были опубликованы им в 1832 и 1836 годах. В марте 1830 года еще до возвращения в Петербург он был избран экстраординарным академиком.

Замечательной чертой Ленца как ученого было глубокое понимание физических процессов и умение открывать их закономерности. Начиная с 1831 и по 1836 год он занимался изучением электромагнетизма. В начале тридцатых годов прошлого столетия Ампер и Фарадей создали несколько по существу мнемонических правил для определения направления наведенного тока (тока индукции). Но главного результата добился Ленц, открывший закон, определивший направление индуцируемого тока. Он известен сейчас как правило Ленца. Правило Ленца раскрывало главную закономерность явления: наведенный ток всегда имеет такое направление, что его магнитное поле противодействует процессам, вызывающим индукцию. 29 ноября 1833 году это открытие было доложено Академии наук. В 1834 году Ленца избрали ординарным академиком по физике.

В 1836 году Ленц был приглашен в Петербургский университет и возглавил кафедру физики и физической географии. В 1840 году он был избран деканом физико-математического факультета, а в 1863 году - ректором университета. С середины тридцатых годов, наряду с исследованиями в области физики и физической географии Ленц вел большую педагогическую работу: многие годы он заведовал кафедрой физики Главного педагогического института, преподавал в Морском корпусе, в Михайловском артиллерийском училище. В 1839 году он составил "Руководство к физике" для русских гимназий, выдержавшее одиннадцать изданий. Ленц существенно улучшил преподавание физических дисциплин в университете и других учебных заведениях. В числе его учеников были Д.И. Менделеев, К.А. Тимирязев, П.П. Семенов-Тян-Шанский. Ф.Ф. Петрушевский, А.С. Савельев, М.И. Малызин, Д.А. Лачинов, М.П. Авенариус, Ф.Н. Шведов, Н.П. Слугинов.

В 1842 году Ленц открыл независимо от Джеймса Джоуля закон, согласно которому количество тепла, выделяющегося при прохождении электрического тока, прямо пропорционально квадрату силы тока сопротивлению проводника и времени. Он явился одной из важных предпосылок установления закона сохранения и превращения энергии.

Совместно с Борисом Семеновичем Якоби Ленц впервые разработал методы расчета электромагнитов в электрических машинах, установил существование в последних "реакции якоря". Открыл обратимость электрических машин. Кроме того, он изучал зависимость сопротивления металлов от температуры.

Больших достижений добился Ленц и в исследованиях в области физической географии, главная задача которой, по его мнению, "заключается в определении: по каким именно физическим законам совершаются и совершались наблюдаемые нами явления".

В 1845 году по инициативе ряда выдающихся географов, в том числе адмиралов Ф.П. Литке, И.Ф. Крузенштерна. Ф.П. Врангеля, академиков К.М. Бэра, П.И. Кеппена, было создано Русское географическое общество. 7 октября на первом общем собрании действительных членов Академии наук был избран его Совет в составе семи человек, в который вошел Ленц. До конца жизни Эмилий Христианович выполнял в Географическом обществе большую разностороннюю работу.

В 1851 году был опубликован фундаментальный труд Ленца "Физическая география", который в дальнейшем неоднократно переиздавался в России и за рубежом. Ленц рассмотрел строение земной коры, происхождение и перемещение образующих ее пород и показал, что она непрерывно изменяется и что этот процесс влияет на рельеф материков. Он отметил три важнейших фактора, вызывающих непрерывное изменение поверхности суши: "вулканические силы, влияние вод при содействии атмосферы и, наконец, органические существа". Ленц убедительно показал, что для установления законов, управляющих атмосферными процессами, необходимы продолжительные метеорологические наблюдения в различных районах, производимые точными приборами по единой методике. Он открыл важные закономерности суточного и годового хода температуры и давления воздуха, ветровой деятельности, испарения воды, конденсации водяного пара и образования облаков, электрических и оптических явлений в атмосфере: объяснил происхождение голубого цвета неба, радуги, кругов около Солнца и Луны и ряда редких атмосферных явлений.

Русский ученый установил причину небольшого повышения температуры воды с глубиной в зоне к югу от 51 градуса южной широты и отметил, что подобная инверсия этой характеристики должна иметь место и в Северном Ледовитом океане. Тем самым он предвосхитил выдающееся открытие Ф. Нансена, обнаружившего во время экспедиции в 1893-1896 годах теплые атлантические воды в глубинных слоях Арктического бассейна. Ленц установил, что соленость воды мало изменяется с глубиной, а в верхнем слое уменьшается с широтой. Однако наибольшая соленость наблюдается не в экваториальной зоне, а в районах близ тропиков, вследствие сильного испарения в этих районах. Плотность воды возрастает с широтой и с глубиной. Главная причина такого ее изменения заключается в уменьшении температуры воды в этих направлениях.

Ленц пришел к выводу, что из-за увеличения плотности воды с широтой в Мировом океане наряду с течениями, вызываемыми ветром и наклоном уровня, должно существовать общее и не менее сильное движение поверхностных вод из тропической зоны в области высоких широт и движение глубинных вод из этих областей в тропическую зону. Такая циркуляция, существование которой было подтверждено всеми последующими наблюдениями, представляет собой одну из важнейших причин водообмена между низкими и высокими широтами. Она, в частности, и обусловливает поступление холодных вод из Южного, а также из Северного Ледовитого океанов в глубинные слои умеренных и низких широт. Ленц дал ценные методические указания для определения скоростей течений навигационным способом, впервые высказал мысль о том, что орбиты частиц в ветровых ваннах представляют собой эллипсы.

Огромное значение для развития науки о Земле имеет положение Ленца, согласно которому главной причиной процессов, происходящих в атмосфере, является солнечная радиация.

Исследования, начатые Ленцем, позднее были продолжены А.П. Военковым, М.П. Миланковичем и другими учеными. Они занимают одно из центральных мест в современной климатологии. Ленц заключил, что наибольшая часть солнечной радиации поглощается Мировым океаном. Эта энергия расходуется в основном на испарение воды, вызывая ее кругообращение в эпиогеосфере. Поэтому океаны, огромные резервуары тепла и влаги, играют гигантскую роль в формировании климата Земли. Ленц показал важность исследования процессов в Мировом океане во взаимной связи с процессами в других частях эпигеосферы. Наряду с американским ученым М.Ф. Мори, он был основоположником учения о взаимодействии океана с атмосферой.

Книга Ленца сыграла очень большую роль в развитии наук о Земле, в утверждении материалистического взгляда на природу. Сразу после выхода она получила высокую оценку в журналах "Современник" и "Отечественные записки". Выдающиеся географы С.О. Макаров, М.А. Рыкачев, Ю.М. Шокальский, Л.С. Берг и другие неоднократно отмечали точность океанографических наблюдений, достоверность и большое значение научных результатов, полученных Ленцем.

"Наблюдения Ленца не только первые в хронологическом отношении, но первые и в качественном, и я ставлю их выше своих наблюдений и выше наблюдений "Челленджера", - писал адмирал Макаров. "Таким образом, труды Коцебу и Ленца, - отмечал Ю.М. Шокальский, - представляют во многих отношениях не только важный вклад в науку, но и действительное начало точных наблюдений в океанографии, чем русский флот и русская наука могут гордиться".

Место работы: Учёная степень:

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Учёное звание: Альма-матер :

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Научный руководитель:

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Известные ученики:

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Известен как:

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Известна как:

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Награды и премии:

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Сайт:

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Подпись:

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

[[Ошибка Lua в Модуль:Wikidata/Interproject на строке 17: attempt to index field "wikibase" (a nil value). |Произведения]] в Викитеке Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Ошибка Lua в Модуль:CategoryForProfession на строке 52: attempt to index field "wikibase" (a nil value).

Эмилий Христианович Ленц (при рождении Генрих Фридрих Эмиль Ленц , нем. Heinrich Friedrich Emil Lenz ; 12 (24) февраля , Дерпт - 29 января (10 февраля) , Рим) - русский физик немецкого происхождения. Выходец из балтийских немцев. Э. Х. Ленц является одним из основоположников электротехники . С его именем связано открытие закона, определяющего тепловые действия тока , и закона, определяющего направление индукционного тока .

Биография

Память

Место на г. Эльбрус называется Скалы Ленца (Ленц участвовал в первой экспедиции на Эльбрус в 1829 г. под командованием генерала Эмануэля)

Напишите отзыв о статье "Ленц, Эмилий Христианович"

Литература

  • Ржонсницкий Б. Н. Эмилий Христианович Ленц. (1804-1865). - М.-Л.: 1952. (со
  • Ржонсницкий Б. Н. Академик Э. Х. Ленц и физическая география. - Известия АН СССР. № 2. 1954. С. 61
  • Ржонсницкий Б. Н. Выдающийся русский учёный. (150 лет со дня рождения физика Э. Х. Ленца). - Вечерний Ленинград. 24 февраля 1954 года
  • Ржонсницкий Б. Н. Выдающийся русский океанограф (к 150-летию Э. Х. Ленца). - Водный транспорт. 25 февраля 1954 года
  • Ржонсницкий Б. Н. Эмилий Христианович Ленц. - М.: Мысль, 1987. (Замечательные географы и путешественники).
  • Храмов Ю. А. Ленц Эмилий Христианович // Физики: Биографический справочник / Под ред. А. И. Ахиезера . - Изд. 2-е, испр. и дополн. - М .: Наука , 1983. - С. 161. - 400 с. - 200 000 экз. (в пер.)
  • в словаре Baltisches Biographisches Lexikon digital (нем.)

Ссылки

  • Ленц, Эмилий Христианович // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Ленц Эмилий Христианович // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.
  • на официальном сайте РАН
Предшественник:
А. А. Воскресенский
Ректор СПбГУ
1863-1865
Преемник:
А. А. Воскресенский

Отрывок, характеризующий Ленц, Эмилий Христианович

– Вас интересуют книги, Мадонна Изидора?..
«Мадонной» в Италии звали женщин и девушек, когда при обращении им выражалось уважение.
У меня похолодела душа – он знал моё имя... Но зачем? Почему я интересовала этого жуткого человека?!. От сильного напряжения закружилась голова. Казалось, кто-то железными тисками сжимает мозг... И тут вдруг я поняла – Караффа!!! Это он пытался мысленно меня сломать!.. Но, почему?
Я снова взглянула прямо ему в глаза – в них полыхали тысячи костров, уносивших в небо невинные души...
– Какие же книги интересуют вас, Мадонна Изидора? – опять прозвучал его низкий голос.
– О, я уверенна, не такие, какие вы ищете, ваше преосвященство, – спокойно ответила я.
Моя душа испуганно ныла и трепыхалась, как пойманная птица, но я точно знала, что показать ему это никак нельзя. Надо было, чего бы это не стоило, держаться как можно спокойнее и постараться, если получится, побыстрее от него избавиться. В городе ходили слухи, что «сумасшедший кардинал» упорно выслеживал своих намеченных жертв, которые позже бесследно исчезали, и никто на свете не знал, где и как их найти, да и живы ли они вообще.
– Я столько наслышан о вашем утончённом вкусе, Мадонна Изидора! Венеция только и говорит – о вас! Удостоите ли вы меня такой чести, поделитесь ли вы со мной вашим новым приобретением?
Караффа улыбался... А у меня от этой улыбки стыла кровь и хотелось бежать, куда глядят глаза, только бы не видеть это коварное, утончённое лицо больше никогда! Он был настоящим хищником по натуре, и именно сейчас был на охоте... Я это чувствовала каждой клеткой своего тела, каждой фиброй моей застывшей в ужасе души. Я никогда не была трусливой... Но я слишком много была наслышана об этом страшном человеке, и знала – его не остановит ничто, если он решит, что хочет заполучить меня в свои цепкие лапы. Он сметал любые преграды, когда дело касалось «еретиков». И его боялись даже короли... В какой-то степени я даже уважала его...
Изидора улыбнулась, увидев наши испуганные рожицы.
– Да, уважала. Но это было другое уважение, чем то, что подумали вы. Я уважала его упорство, его неистребимую веру в своё «доброе дело». Он был помешан на том, что творил, не так, как большинство его последователей, которые просто грабили, насиловали и наслаждались жизнью. Караффа никогда ничего не брал и никогда никого не насиловал. Женщины, как таковые, не существовали для него вообще. Он был «воином Христа» от начала до конца, и до последнего своего вздоха... Правда, он так никогда и не понял, что, во всём, что он творил на Земле, был абсолютно и полностью не прав, что это было страшным и непростительным преступлением. Он так и умер, искренне веря в своё «доброе дело»...
И вот теперь, этот фанатичный в своём заблуждении человек явно был настроен заполучить почему-то мою «грешную» душу...
Пока я лихорадочно пыталась что-то придумать, мне неожиданно пришли на помощь... Мой давний знакомый, почти что друг, Франческо, у которого я только что купила книги, вдруг обратился ко мне раздражённым тоном, как бы потеряв терпение от моей нерешительности:
– Мадонна Изидора, Вы наконец-то решили, что Вам подходит? Мои клиенты ждут меня, и я не могу потратить весь свой день только на Вас! Как бы мне это не было приятно.
Я с удивлением на него уставилась, но к своему счастью, тут же уловила его рискованную мысль – он предлагал мне избавиться от опасных книг, которые я в тот момент держала в руках! Книги были любимым «коньком» Караффы, и именно за них, чаще всего, умнейшие люди угождали в сети, которые расставлял для них этот сумасшедший инквизитор...
Я тут же оставила большую часть на прилавке, на что Франческо сразу же выразил «дикое неудовольствие». Караффа наблюдал. Я сразу же почувствовала, как сильно его забавляла эта простая, наивная игра. Он прекрасно всё понимал, и если бы хотел – мог преспокойно арестовать и меня, и моего бедного рискового друга. Но почему-то не захотел... Казалось, он искренне наслаждался моей беспомощностью, как довольный кот, зажавший в углу пойманную мышь...
– Разрешите Вас покинуть, Ваше преосвященство? – даже не надеясь на положительный ответ, осторожно спросила я.
– К моему великому сожалению, мадонна Изидора! – с деланным разочарованием воскликнул кардинал. – Вы позволите как-нибудь заглянуть к вам? Говорят, у Вас очень одарённая дочь? Мне бы очень хотелось познакомиться и побеседовать с ней. Надеюсь, она так же красива, как её мать...
– Моей дочери, Анне, всего десять лет, милорд, – как можно спокойнее ответила я.
А душа у меня кричала от животного ужаса!.. Он знал про меня всё!.. Зачем, ну зачем я была нужна сумасшедшему Караффе?.. Почему его интересовала моя маленькая Анна?!
Не потому ли, что я слыла знаменитой Видуньей, и он считал меня своим злейшим врагом?.. Ведь для него не имело значения, как меня называли, для «великого инквизитора» я была просто – ведьмой, а ведьм он сжигал на костре...
Я сильно и беззаветно любила Жизнь! И мне, как и каждому нормальному человеку, очень хотелось, чтобы она продолжалась как можно дольше. Ведь даже самый отъявленный негодяй, который, возможно, отнимал жизнь других, дорожит каждой прожитой минутой, каждым прожитым днём своей, драгоценной для него, жизни!.. Но именно в тот момент я вдруг очень чётко поняла, что именно он, Караффа, и заберёт её, мою короткую и такую для меня ценную, не дожитую жизнь...
Великий дух зарождается в малом теле, мадонна Изидора. Даже святой Иисус когда-то был ребёнком. Я буду очень рад навестить Вас! – и изящно поклонившись, Караффа удалился.
Мир рушился... Он рассыпался на мелкие кусочки, в каждом из которых отражалось хищное, тонкое, умное лицо....
Я старалась как-то успокоиться и не паниковать, но почему-то не получалось. Моя привычная уверенность в себе и в своих силах на этот раз подводила, и от этого становилось ещё страшней. День был таким же солнечным и светлым, как всего несколько минут назад, но в мою душу поселился мрак. Как оказалось, я давно ждала появления этого человека. И все мои кошмарные видения о кострах, были только предвестием... к сегодняшней встрече с ним.

Место рождения: Тарту

Направления деятельности: физика,науки о Земле

Ленц Эмилий Христианович , русский физик и электротехник. В 1828 был избран адъюнктом Петербургской АН, в 1830 – экстраординарным академиком, а в 1834 – ординарным. С 1863 года – ректор Петербургского университета (первый избранный ректор Петербургского университета). Родился в семье секретаря Городского магистрата. В 16 лет, после окончания гимназии, поступил в Дерптский (ныне Тартуский) университет на химический факультет, затем по материальным соображениям был вынужден перевестись на богословский факультет. В 1823 г., не закончив обучения, по рекомендации профессора Г.Ф. Паррота (ректора Дерптского университета) занял место физика на военном шлюпе «Предприятие», отправлявшемся в кругосветное плавание (1823-1826) под командованием О.Е. Коцебу. Измерения на суше и на море Ленц проводил согласно подробной инструкции, разработанной Парротом. Предполагалось измерять глубину, температуру, плотность морской воды на различных глубинах; вести наблюдения за показаниями барометра и гигрометра, используя давление на больших глубинах; предполагалось провести опыты по возникновению химических реакций и опыты по сжимаемости твердых тел при больших давлениях; предполагалось определять магнитное склонение. Для экспедиции в срочном порядке был изготовлен новый прибор - батометр (глубиномер), который включал оригинальной конструкции резервуар для поднятия проб воды и оригинальный «станок» для равномерного вытягивания (опускания) троса. Экспедиция на шлюпе «Предприятие» сыграла огромную роль в жизни Эмилия Христиановича: во время экспедиции были проявлены его исключительные способности к точному экспериментированию, за время экспедиции он сформировался как ученый. По результатам океанологических исследований во время плавания на «Предприятии» Ленц защитил диссертацию на степень доктора философии при Гейдельбергском университете (1927). В 1828 г. он по приглашению Паррота переезжает из Дерпта в Петербург. Здесь он некоторое время преподает в училище Святого Петра, а также помогает Парроту в Физическом кабинете АН. С этого времени и на всю жизнь Физический кабинет стал экспериментальной базой научной деятельности Эмилия Христиановича. Работу Ленца «О солености и температурах воды океанов на разных глубинах» Паррот представил в Академию наук, и в мае 1828 г. Ленц был избран адъюнктом академии по физике. В течение жизни Ленц плодотворно занимался разнообразными задачами в области физической географии и геофизики, имел в этих областях много достижений, но, наверное, самое важное из этих достижений относится к проблеме движения вод Мирового океана – это его заключение, согласно которому одной из причин океанических течений является разность плотности воды в тропических и высокоширотных зонах (плотностные течения). Ленцу принадлежит первая схема вертикальной циркуляции вод Мирового океана (1845).
В 1829 году Эмилий Христианович принимает участие в экспедиции на Кавказ, которую возглавлял генерал Г.А. Эмануэль. В план научных исследований входило наблюдение земного магнетизма, барометрическое измерение высот, гравиметрические измерения, измерение температур источников на различных глубинах. В рамках экспедиции было предпринято восхождение на Эльбрус. Восхождение по совокупности причин было на пределе возможностей, и вершины достиг только проводник Киллар Хаширов (первый человек, покоривший Эльбрус). Ленцу до вершины оставалось примерно двести метров вверх. Далее Ленц едет в Николаев для проведения гравиметрических наблюдений; затем едет в Баку (февраль 1830 г.), где проводит магнитные и гравиметрические наблюдения по программе Гумбольта и Паррота, исследует строение почв, описывает места недавнего извержения псевдовулкана (1827 г.), измеряет температуру горящего газа, собирает образцы газа и «белой нефти». 24-го марта 1830 года Ленц был избран экстраординарным академиком, а ему только 26 лет!
С начала 1830-х годов Ленца захватывают проблемы электромагнетизма. Следует напомнить, что в это время еще не существовало достаточно точных приборов для измерения электрических и магнитных величин, не было устоявшихся единиц измерения. В 1831 году произошло событие огромной научной важности – М. Фарадей опубликовал сообщение об открытии явления электромагнитной индукции. В ноябре 1833 года Эмилий Христианович выступил в Академии наук с докладом «Об определении направления гальванических токов, возбуждаемых электродинамической индукцией», где сформулировал свой знаменитый закон (правило Ленца): «Если металлический проводник движется вблизи электрического тока или магнита, то в нем возбуждается гальванический ток такого направления, что [если бы данный] проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном ему направлении». В слегка измененной формулировке этот закон сейчас известен каждому школьнику. Ленц ясно понимал и четко сформулировал, что следствием этого закона является «соответствие» (обратимость) процессов «электромагнитного движения» и «электродинамической индукции» (принцип обратимости электрических машин – азбука современной электротехники). В 1834 году Ленц стал ординарным академиком, официально возглавил Физический кабинет АН. В 1837 году в Петербург из Кенигсберга приехал Б.С. Якоби, которому было поручено создание электродвигателя для судоходства. 1838-1843 годы – это годы активного сотрудничества Ленца и Якоби. Результатом этого сотрудничества являются совместные публикации, посвященные законам намагничивания железа, методам расчета электромагнитов. В 1841 г. была опубликована работа Д.П. Джоуля по тепловому действию токов, но обоснованность его результатов вызывала у ученых некоторые сомнения. Ленц сделал доклад «О законах выделения тепла гальваническим током» только в декабре 1842 г., но проводить исследования в этой области Эмилий Христианович начал задолго до появления в печати статьи Джоуля. Его работа отличалась продуманностью, четкостью и надежностью экспериментальных результатов. Закон теплового действия тока известен как «закон Джоуля-Ленца». Ленц исследовал зависимость сопротивления металлов от температуры, разработал первый баллистический гальванометр, объяснил явление реакции якоря, предложил способ ослабления этого явления путем сдвига щеток с нейтральной линии.
Исключительный талант и способности Ленц проявил не только в науке, но и в педагогической деятельности. Он многие годы преподавал физику и физическую географию в Морском кадетском корпусе, Михайловском артиллерийском училище, Главном педагогическом институте, Санкт-Петербургском Императорском университете (с 1840 года – декан физико-математического факультета, с 1863 – ректор университета). С 1841 года обучал физике и математике детей Николая I. Эмилий Христианович написал учебник по физической географии, учебник по физике для гимназий. Осенью 1864 года Ленц уехал на лечение глаз в Рим, где в 1865 году умер и похоронен.

В фондах библиотек сети БЕН РАН имеются следующие монографии Эмилия Христиановича Ленца:
1. Избранные труды. – [М]: Изд-во Акад. наук СССР, 1950. – 522 с., 2 л. портр. и карт: ил.
2. О вентиляции в нашем климате. – СПб., 1863. – 39 с.
3. Руковоство к физике. – Изд. 9-е. - М.: Салаевы, 1870. – Ч. 1-2.
4. Руководство физики. – СПб., 1855. – Ч. 1-2.
5. Содержание солей в морской воде. – Б.м., б.г. – 36 с.
6. Физическая география. – СПб., 1851. – III, 272 с.
7. Физическая география. – 3-е изд. - СПб., 1865. – VIII, 325 с.

Была использована следующая литература:
1. Храмов Ю.А. Физики: Биогр. справ. – 2-е изд., испр. и доп. - М.: Наука, 1983. – 400 с.: портр.
2. Геккер И.Р., Стародуб А.Н., Фридман С.А. От Физического кабинета Императорской Академии наук и художеств в Санкт-Петербурге до Физической лаборатории Академии наук в Петрограде: К истории Физ. ин-та им. П.Н. Лебедева АН СССР. – М., 1985. - 46 с.
3. Баумгарт К.К. Эмилий Христианович Ленц: Краткий биогр. очерк // Ленц Э.Х. Избранные труды. – М.: Изд-во АН СССР, 1950. – С. 449-455.
4. Берг Л.С. Заслуги Э.Х. Ленца в области физической географии // Ленц Э.Х. Избранные труды. – М.: Изд-во АН СССР, 1950. – С. 456-464.
5. Кравец Т.П. О работах Э.Х. Ленца в области электромагнетизма // Ленц Э.Х. Избранные труды. – М.: Изд-во АН СССР, 1950. – С. 465-474.
6. Лежнева О.А., Ржонсницкий Б.Н. Эмилий Христианович Ленц (1804-1865). – М.; Л.: Госэнергоиздат, 1952. – 191 с.: ил.
7. Ржонсницкий Б.Н., Розен Б.Я. Э.Х. Ленц. – М.: Мысль, 1987. – 139 с.: ил., карт., факс.
8. Баумгарт К.К. Работы Э.Х. Ленца и Б.С. Якоби по электромагнетизму // Вопросы истории отечественной науки. Общее собрание Академии наук СССР, посвященное истории отечественной науки 5-11 января 1949 г. Доклады. – М.; Л., 1949. – С. 184-186.
9. Генин Л.Е. Ленц Эмилий Христианович // БСЭ. – 3-е изд. – М.: Совет. энцикл., 1973. – Т. 14. – С. 335-336.

Автор работал в организациях

Материалы автора

Наименование Тип материала Год издания Кол-во страниц
Ueber die Eigenschaften der magneto-elektrischen Ströme

Статья из журнала

1840 16
Ueber das Verhalten der Kupfervitriollösung in der galvanischen Kette

Статья из продолж. издания

1837 4
Bestimmungen der magnetischen Inclination und Intensität in St. — Petersburg , Archangel und auf Nowaja-Semlja von Hn. Ziwolka

Статья из журнала

1840 2
Vorschlag zur Construction eines Thermometers, welcher sich die Curve seines täglichen Steigens und Fallens selbst aufzeichnet

Статья из продолж. издания

1832 3
Über die Veränderungen der Höhe, welche die Oberfläche des Kaspischen Meeres bis zum April des Jahres 1830 erlitten hat

Статья из продолж. издания

1832 36
Über die Leitungsfähigkeit der Metalle für die Elektricität bei verschiedenen Temperaturen

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ХАБАРОВСКИЙ ИНСТИТУТ ИНФОКОММУНИКАЦИЙ (филиал) федерального государственного образовательного бюджетного учреждения высшего профессионального образования

«СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

ЛЕНЦ И ЕГО ДОСТИЖЕНЯ

ВЫПОЛНИЛ ДОВГИЙ ВАДИМ

  • КРАТКАЯ БИОГРАФИЯ
  • ЗАКОН ЛЕНЦА
    • ОТКРЫТИЕ ЗАКОНА ЛЕНЦА
  • ЗАКОН ТЕПЛОВОГО ДЕЙСТВИЯ ТОКА
    • ЗАКОН ДЖОУЛЯ-ЛЕНЦА В ИНТЕГРАЛЬНОЙ И ДИФФИРЕНЦИАЛЬНОЙ ФОРМАХ
  • ДРУГИЕ ДОСТИЖЕНИЯ
  • ЛИТЕРАТУРА

Краткая биография

Эмилий Христианович Ленц -- российский физик из балтийских немцев, один из основоположников электротехники. С его именем связано открытие закона, определяющего тепловые действия тока, и закона, определяющего направление индукционного тока.

Главнейшие результаты его исследований излагаются во всех учебниках физики. Именно:

Закон индукции («Правило Ленца»), по которому направление индукционного тока всегда таково, что он препятствует тому действию (направленному движению), которым он вызывается (1834 г.).

«Закон Джоуля -- Ленца»: количество теплоты, выделяемое током в проводнике, пропорционально квадрату силы тока и сопротивлению проводника (1842).

Опыты, подтверждающие «явление Пельтье»; если пропускать гальванический ток через висмутовый и сурьмяной стержни, спаянные концами и охлажденные до 0 °C, то можно заморозить воду, налитую в ямку около спая (1838).

Опыты над поляризацией электродов (1847) и т. д.

Некоторые свои исследования Ленц производил вместе с Парротом (о сжатии тел), Савельевым (о гальванической поляризации) и академиком Борисом Якоби (об электромагнитах).

По окончании с отличием гимназии в 1820 г., где Э.Х. Ленц серьезно увлекся естественными науками и математикой, он поступает на естественный факультет Дерптского университета - одного из старейших научных центров России. В университете благодаря усилиям его первого ректора, профессора физики Е.И. Паррота был создан один из лучших в стране физических кабинетов. Паррот привлек Ленца к работе в этом кабинете, чем в значительной степени определил будущую деятельность способного студента. В 1823 г. по счастливой случайности Ленцу удалось заняться любимым делом.

Самостоятельную научную деятельность Ленц начал в качестве физика в кругосветной экспедиции на шлюпе «Предприятие» (1823-1826), в состав которой был включен по рекомендации профессоров университета. В очень короткий срок он совместно с ректором Е.И. Парротом создал уникальные приборы для глубоководных океанографических наблюдений -- лебедку-глубомер и батометр. В плавании Эмилий Ленц провел океанографические, метеорологические и геофизические наблюдения в Атлантическом, Тихом и Индийском океанах. В 1827 году он выполнил обработку полученных данных и проанализировал их. В феврале 1828 года Ленц представил в Академию наук доклад «Физические наблюдения, произведенные во время кругосветного путешествия под командованием капитана Отто фон Коцебу в 1823, 1824, 1825 и 1826 гг.». За этот труд, получивший очень высокую оценку, в мае 1828 года Ленц был избран адъюнктом Академии по физике.

В 1829-1830 годах Ленц занимался геофизическими исследованиями в южных районах России. Ему были поручены магнитные и гравитационные наблюдения. В июле 1829 года он участвовал в первом восхождении на Эльбрус и барометрическим способом определил высоту этой горы. Тем же способом он установил, что уровень Каспийского моря ниже Черного.

В сентябре 1829 года Эмилий Ленц выполнил гравитационные и магнитные наблюдения в Николаевской обсерватории по программе, составленной Александром Гумбольдтом, а несколько позже -- в Дагестане. Он собрал в окрестностях Баку образцы нефти и горючих газов, а также установил в этом городе футшток для наблюдений за уровнем Каспия.

В мае 1830 году Эмилий Ленц вернулся в Петербург и приступил к обработке собранных материалов. Важнейшие научные результаты экспедиции были опубликованы им в 1832 и 1836 годах. Результаты наблюдений, в особенности описания нефтяных богатств Апшеронского полуострова, были отмечены Академией наук. В марте 1830 года еще до возвращения в Петербург он был избран экстраординарным академиком. Замечательной чертой Ленца как ученого было глубокое понимание физических процессов и умение открывать их закономерности. Начиная с 1831 и по 1836 год он занимался изучением электромагнетизма. В начале тридцатых годов 19 столетия Ампер и Фарадей создали несколько по существу мнемонических правил для определения направления наведенного тока (тока индукции). Но главного результата добился Ленц, открывший закон, определивший направление индуцируемого тока. Оно известно сейчас как правило Ленца. Правило Ленца раскрывало главную закономерность явления: наведенный ток всегда имеет такое направление, что его магнитное поле противодействует процессам, вызывающим индукцию. 29 ноября 1833 года это открытие было доложено Академии наук. В 1834 году Ленца избрали ординарным академиком по физике.

В 1836 году Эмилий Ленц был приглашен в Петербургский университет и возглавил кафедру физики и физической географии. В 1840 году он был избран деканом физико-математического факультета, а в 1863 году -- ректором университета. С середины тридцатых годов, наряду с исследованиями в области физики и физической географии Ленц вел большую педагогическую работу: многие годы он заведовал кафедрой физики Главного педагогического института, преподавал в Морском корпусе, в Михайловском артиллерийском училище. В 1839 году он составил «Руководство к физике» для русских гимназий, выдержавшее одиннадцать изданий. Ленц существенно улучшил преподавание физических дисциплин в университете и других учебных заведениях. В числе его учеников были Д.И. Менделеев, К.А. Тимирязев, П.П. Семенов-Тян-Шанский, Ф.Ф. Петрушевский, А.С. Савельев, М.И. Малызин, Д.А. Лачинов, М.П. Авенариус, Ф.Н. Шведов, Н.П. Слугинов.

В 1842 году Ленц открыл независимо от Джеймса Джоуля закон, согласно которому количество тепла, выделяющегося при прохождении электрического тока, прямо пропорционально квадрату силы тока сопротивлению проводника и времени. Он явился одной из важных предпосылок установления закона сохранения и превращения энергии.

Большой вклад в теорию электрических машин внесли исследования Ленца совместно с Якоби (1845-47 гг.), доказавшего зависимость генерируемого тока от скорости вращения якоря. Он открыл явление «реакции якоря» и не только объяснил его, но и предложил практический способ ослабления этого явления путем сдвига щеток с нейтральной линии машины. Открыл обратимость электрических машин. Кроме того, он изучал зависимость сопротивления металлов от температуры.

В современной электроизмерительной технике широкое применение получил осциллограф. Но далеко не всем известно, что задолго до изобретения этого прибора Ленц сконструировал специальный коммутатор, с помощью которого впервые снял фазовые кривые тока намагничивания, изображенные им в виде синусоид.

Совместно с академиком Б.С. Якоби Ленц провел важные для практической электротехники исследования законов намагничивания железа, стремясь получить «более глубокое представление о скорости, с которой железо воспринимает магнетизм». Высокую оценку современников получили работы Ленца и Якоби «О законах электромагнитов» и «О притяжении электромагнитов». Только через 30 с лишним лет были опубликованы результаты исследований А.Г. Столетова, развивавшие работы Якоби и Ленца по магнетизму и давшие более точные методы расчета магнитных цепей. Диапазон научных интересов Ленца был поразителен. Один из изобретателей в области электромедицины столкнулся с трудностями при подключении нескольких больных в параллельные цепи источника. Узнав об этом, Ленц в 1844 г. вывел формулу для определения тока в любой из параллельно соединенных ветвей, содержащих источники электродвижущих сил. Он по праву является предшественником немецкого ученого Г. Кирхгофа, установившего в 1847 г. два закона электрических цепей, носящих его имя.

Больших достижений добился Эмилий Ленц и в исследованиях в области физической географии, главная задача которой, по его мнению, «заключается в определении: по каким именно физическим законам совершаются и совершались наблюдаемые нами явления».

В 1845 году по инициативе ряда выдающихся географов, в том числе адмиралов Ф.П. Литке, И. Ф. Крузенштерна, Ф.П. Врангеля, академиков К.М. Бэра, П.И. Кеппена, было создано Русское географическое общество. 7 октября на первом общем собрании действительных членов Академии наук был избран его Совет в составе семи человек, в который вошел Ленц. До конца жизни Эмилий Христианович выполнял в Географическом обществе большую разностороннюю работу.

В 1851 году был опубликован фундаментальный труд Эмилия Ленца «Физическая география», который в дальнейшем неоднократно переиздавался в России и за рубежом. Ленц рассмотрел строение земной коры, происхождение и перемещение образующих ее пород и показал, что она непрерывно изменяется и что этот процесс влияет на рельеф материков. Он отметил три важнейших фактора, вызывающих непрерывное изменение поверхности суши: «вулканические силы, влияние вод при содействии атмосферы и, наконец, органические существа». Ленц убедительно показал, что для установления законов, управляющих атмосферными процессами, необходимы продолжительные метеорологические наблюдения в различных районах, производимые точными приборами по единой методике. Он открыл важные закономерности суточного и годового хода температуры и давления воздуха, ветровой деятельности, испарения воды, конденсации водяного пара и образования облаков, электрических и оптических явлений в атмосфере: объяснил происхождение голубого цвета неба, радуги, кругов около Солнца и Луны и ряда редких атмосферных явлений.

Русский ученый установил причину небольшого повышения температуры воды с глубиной в зоне к югу от 51 градуса южной широты и отметил, что подобная инверсия этой характеристики должна иметь место и в Северном Ледовитом океане. Тем самым он предвосхитил выдающееся открытие Ф. Нансена, обнаружившего во время экспедиции в 1893--1896 годах теплые атлантические воды в глубинных слоях Арктического бассейна. Эмилий Ленц установил, что соленость воды мало изменяется с глубиной, а в верхнем слое уменьшается с широтой. Однако наибольшая соленость наблюдается не в экваториальной зоне, а в районах близ тропиков, вследствие сильного испарения в этих районах. Плотность воды возрастает с широтой и с глубиной. Главная причина такого ее изменения заключается в Уменьшении температуры воды в этих направлениях.

Эмилий Ленц пришел к выводу, что из-за увеличения плотности воды с широтой в Мировом океане наряду с течениями, вызываемыми ветром и наклоном уровня, должно существовать общее и не менее сильное движение поверхностных вод из тропической зоны в области высоких широт и движение глубинных вод из этих областей в тропическую зону. Такая циркуляция, существование которой было подтверждено всеми последующими наблюдениями, представляет собой одну из важнейших причин водообмена между низкими и высокими широтами. Она, в частности, и обусловливает поступление холодных вод из Южного, а также из Северного Ледовитого океанов в глубинные слои умеренных и низких широт. Ленц дал ценные методические указания для определения скоростей течений навигационным способом, впервые высказал мысль о том, что орбиты частиц в ветровых ваннах представляют собой эллипсы. Огромное значение для развития науки о Земле имеет положение Ленца, согласно которому главной причиной процессов, происходящих в атмосфере, является солнечная радиация.

Исследования, начатые Ленцем, позднее были продолжены А.П. Военковым, М.П. Миланковичем и другими учеными. Они занимают одно из центральных мест в современной климатологии.

Эмилий Ленц заключил, что наибольшая часть солнечной радиации поглощается Мировым океаном. Эта энергия расходуется в основном на испарение воды, вызывая ее кругообращение в эпигеосфере. Поэтому океаны, огромные резервуары тепла и влаги, играют гигантскую роль в формировании климата Земли. Ленц показал важность исследования процессов в Мировом океане во взаимной связи с процессами в других частях эпигеосферы. Наряду с американским ученым М.Ф. Мори, он был основоположником учения о взаимодействии океана с атмосферой.

Книга Ленца сыграла очень большую роль в развитии наук о Земле, в утверждении материалистического взгляда на природу. Сразу после выхода она получила высокую оценку в журналах «Современник» и «Отечественные записки». Выдающиеся географы С.О. Макаров, М.А. Рыкачев, Ю.М. Шокальский, Л.С. Берг и другие неоднократно отмечали точность океанографических наблюдений, достоверность и большое значение научных результатов, полученных Ленцем.

«Наблюдения Ленца не только первые в хронологическом отношении, но первые и в качественном, и я ставлю их выше своих наблюдений и выше наблюдений «Челленджера», -- писал адмирал Макаров. «Таким образом, труды Коцебу и Ленца, -- отмечал Ю.М. Шокальский, -- представляют во многих отношениях не только важный вклад в науку, но и действительное начало точных наблюдений в океанографии, чем русский флот и русская наука могут гордиться».

Закон Ленца

ленц тепловой поляризация закон

В развитии современных средств связи основополагающую роль сыграли открытия в области электромагнетизма, сделанные в XIX в. учеными разных стран - М. Фарадеем, Д.К. Максвеллом, Г. Герцем.

После открытия Фарадея многие явления, связанные с электромагнитной индукцией, оставались недостаточно ясными. Не существовало точных приборов и методов измерения электрических и магнитных величин, в частности индуктированных токов. Не было закона о направлении этих токов, не были установлены и количественные характеристики явления электромагнитной индукции.

Эти и другие сложные физические проблемы были успешно разрешены выдающимся отечественным физиком, петербургским академиком Э.Х. Ленцем.

Имя Э.Х. Ленца, как и имена выдающихся ученых М. Фарадея, А.М. Ампера, Г.С. Ома, известно каждому образованному человеку еще со школьной скамьи. Фундаментальные исследования Ленца в области физики и электромагнетизма принесли ему мировую славу. Он по праву считается одним из основателей учения об электрических и магнитных явлениях.

Открытие закона Ленца

Несмотря на то что первые научные исследования Ленца относились в основном к области геофизики, его наиболее выдающиеся открытия связаны с изучением электромагнитных явлений. Особый интерес к этим явлениям объясняется, видимо, заметной активизацией научных исследований в области электромагнетизма, связанной с обнаружением электродинамических явлений, открытием важнейших законов Ампером и Омом. Будучи незаурядным экспериментатором, Ленц не мог не убедиться в справедливости открытых законов, тем более что еще не существовало точных приборов и методов измерений электрических и магнитных величин, не было также общепризнанных единиц измерения и эталонов и даже закон Ома многими физиками ставился под сомнение.

Имея немалый опыт работы с крутильными весами Кулона, которые использовались в процессе экспериментов, уже в ноябре 1832 года Ленц подтвердил справедливость закона Ома, что способствовало признанию этого закона физиками разных стран. Первым важнейшим изобретением Ленца была разработка баллистического метода измерений для изучения законов индукции. В 1832 г., узнав об открытии Фарадеем явления электромагнитной индукции, Ленц приступил к экспериментам с целью установления количественных законов индукции. Он считал, что «сила мгновенного тока индукции» действует подобно удару, причем сила этого удара может быть измерена по скорости, сообщаемой стрелке мультипликатора - единственного в то время индикатора электрического тока.

Схема установки Ленца состояла в следующем. На столе укреплялся постоянный магнит М с якорем А, имеющим обмотку, электрически соединенную с мультипликатором В. Показания мультипликатора можно было наблюдать через оптическую трубу Т с помощью зеркала С.

Баллистический метод измерения Ленца лежит в основе современного баллистического гальванометра, прибора для измерения переменных токов - электродинамометра Вебера, что позволило Ленцу еще в 30-х годах сделать ряд важнейших открытий.

В результате тщательного анализа экспериментов Ленц сделал ряд обобщений и выводов, которые позднее получили всеобщее признание и дальнейшее развитие, в частности в трудах Максвелла.

Он установил, что возникновение индуктированного тока зависит от скорости «отрывания» катушки от магнита; что электродвижущая сила, возбуждаемая в катушке, пропорциональна числу витков и равна сумме электродвижущих сил, возбуждаемых в каждом витке; при этом она не зависит от материала и диаметра обмотки якоря. Закономерности, впервые установленные Ленцем, явились важными количественными характеристиками явления электромагнитной индукции. Он первым использовал свои выводы для практических целей: вывел формулу для расчета обмотки электромагнитного генератора.

Заметим, что издатель известного в те годы журнала «Poggеndorff"s Annalen» не рискнул опубликовать столь необычные и смелые выводы Ленца, они были напечатаны в мемуарах Академии наук (1833).

Но наиболее выдающимся открытием Ленца стал закон о направлении индуктированного тока, носящий его имя (именно «закон», а не «правило», как иногда его называют).

После открытия М. Фарадеем явления электромагнитной индукции он и ряд других ученых предложили мнемонические и довольно сложные «правила», позволяющие в частных случаях определять направление индуктированного тока.

Внимательно изучив все работы в этой области, Ленц в 1832 г. поставил ряд оригинальных опытов, а в ноябре 1833-го выступил в Академии наук с докладом «Об определении направления гальванических токов, возбуждаемых электродинамической индукцией». «Если металлический проводник движется вблизи электрического тока или магнита, то в нем возбуждается гальванический ток такого направления, что он мог бы обусловить, в случае неподвижности данного проводника, его перемещение в противоположную сторону».

В этой работе Ленц писал: «По прочтении статьи Фарадея я пришел к мысли, что все опыты по электродинамической индукции могут быть легко сведены к законам электродинамических движений, так что если эти последние считать известными, то будут определены и первые; это мое представление оправдалось на ряде опытов».

Заслуга Ленца заключается не только в том, что он сформулировал общий закон о направлении индуктированного тока, но и - что не менее важно - убедительно доказал справедливость закона сохранения и превращения энергии при взаимных превращениях механической и электромагнитной энергии. (Термин «энергия» впервые был введен в 1853 г. английским ученым Ренкиным.)

Действительно, если перемещать под действием внешней силы магнит или проводник с током вблизи замкнутого проводника кинетическая энергия перемещения магнита или проводника с током превращается в электромагнитную энергию тока индукции.

И главное: по закону Ленца направление индуктированного тока таково, что вызываемая им сила препятствует движению, которым он был вызван, т. е. в присутствии магнита или проводника с током требуется большая затрата энергии, чем в их отсутствие. И эта часть механической энергии переходит в электромагнитную энергию индуктированного тока.

Закон Ленца был установлен за восемь лет до опубликования первой работы немецкого ученого Р. Майера, который считается одним из основоположников закона сохранения и превращения энергии. Поэтому Ленцу принадлежит заслуга в закладке основ этого фундаментального закона природы. В 1845 г. немецкий физик Ф. Нейман впервые математически сформулировал теорию индукции и предложил выражение для электродвижущей силы индукции, подтверждающее закон Ленца.

В истории науки и техники не так уж часто встречаются примеры, когда одному ученому удается осуществить не только фундаментальные теоретические исследования, но и указать пути их практического применения.

Таким ученым был Э.Х. Ленц. На основе открытого закона он впервые формулирует принцип обратимости электрических машин (1833), а в 1838 г. экспериментально подтверждает его с помощью генератора, обращенного им в двигатель.

Только четверть века спустя это открытие Ленца получило практическое применение и явилось одним из поворотных этапов в развитии электротехники и электромеханики. Заметим, что в отдельных источниках неверно указывается, будто обратимость электрических машин Ленц установил при совместной работе с Б.С. Якоби. Это удалось сделать еще за четыре года до приезда Якоби в Петербург.

Выдающиеся заслуги Э.Х. Ленца в области геофизики и электродинамики получили всеобщее признание и высокую оценку Академии наук: в сентябре 1834 года он избирается в число ординарных академиков по физике.

Труды Ленца, печатавшиеся в отечественных и зарубежных изданиях, были широко известны среди физиков всего мира. С ними был хорошо знаком и Б.С. Якоби, еще до приезда в Россию построивший оригинальную модель электродвигателя.

По предложению Ленца и других русских ученых Б.С. Якоби получил правительственное приглашение в Петербург для продолжения исследований в области электромагнетизма и практического применения изобретенного им электродвигателя. Ленц помог опубликовать сообщение о работах Якоби в трудах Академии наук.

Закон теплового действия тока

При пропускании через металлический проводник электрического тока происходит столкновение электронов либо с нейтральными молекулами, либо с молекулами, которые потеряли электроны. Таким образом, движущийся электрон либо становится частью молекулы, которая потеряла свой электрон и образует нейтральную молекулу, либо вышибает из нейтральной молекулы электрон, затрачивая собственную кинетическую энергию, и образовав новый положительный ион. Во время столкновения молекул проводника с электронами расходуется энергия, именно она превращается в тепло. На любое движение, для осуществления которого требуется преодолеть сопротивление, затрачивается определенная энергия. Так, к примеру, чтобы переместить какое-либо тело нужно преодолеть сопротивление трения, а работа, которая затрачивается на это действие, превращается в тепло. Собственно, электрическое сопротивление проводника можно сравнить с сопротивлением трению, поскольку оно играет такую же роль. Таким образом, чтобы провести ток через проводник источнику тока требуется затратить некоторую энергию, она-то и превращается в тепло. Такой переход электроэнергии в тепловую нашел свое отражение в законе теплового действия тока, получившем название: закон Джоуля-Ленца.

Еще в 1832-1833 гг. Ленц обратил внимание на то, что при нагревании металлических проводников их проводимость существенно изменяется. Это осложняло расчет электрических цепей. Определить количественную зависимость между током и выделяемой им теплотой было невозможно, так как не было ни точных приборов для измерения тока, ни источника постоянной электродвижущей силы, ни надежного метода измерения сопротивления. Ленц использовал свои собственные или усовершенствованные им измерительные приборы и его «схема была собрана по последнему слову техники того времени».

Ленц предложил «свои» единицы тока и напряжения. Он же сконструировал прибор-сосуд для измерения количества выделяемого в проволоке тепла. В сосуд заливался разбавленный спирт, обладающий значительно меньшей электропроводностью, чем вода, использованная в опытах Джоуля. Через платиновую проволоку пропускался ток. Ученый провел большую серию опытов, при которых измерялось время, необходимое для нагревания жидкости на 10°C.

Джоуль опубликовал открытый им аналогичный закон в 1841 г. Реакция Ленца была по-научному корректной. Он подчеркнул, что, хотя его результаты «в основном совпадают с результатами Джоуля, они свободны от тех обоснованных возражений, которые вызывают работы Джоуля». Джоуль выполнил значительно меньше измерений и пользовался прибором, дававшим ряд погрешностей. Поэтому закон о тепловом действии тока благодаря исключительной точности и обстоятельности измерений Ленца вошел в историю науки под названием «закон Джоуля-Ленца».

Так или иначе, оба ученых исследовали явление нагревания проводников электрическим током, они установили опытным путём следующую закономерность: количество теплоты, которое выделяется в проводнике с током, прямо пропорционально сопротивлению проводника, квадрату силы тока и времени прохождения тока.

Позже дополнительные исследования выявили, что данное утверждение справедливо для всех проводников: жидких, твёрдых и даже газообразных. В связи с этим открытая закономерность стала законом.

Итак, рассмотрим сам закон Джоуля-Ленца и его формулу, которая выглядит так:

Закон Джоуля-Ленца

Где: Q - количество теплоты, выделяемое током (Дж); I - сила тока, проходящего по проводнику (А); R - это сопротивление, оказываемое проводником (Ом); t - время, затрачиваемое на прохождение тока (с)

Подтверждение закона Джоуля-Ленца.

Теперь подробнее рассмотрим схему установки, с помощью которой на практике можно подтвердить закон Джоуля-Ленца, она представлена на рисунке слева.

Сопротивление проводника вычисляется с помощью формуле:

В формуле напряжение U делится на силу тока I. Термометром измеряется повышение температуры воды в экспериментальном сосуде. Используя формулы:

вычисляются количество теплоты, которые должны совпадать по результатам опыта.

Заметим также, что закон Джоуля-Ленца подтверждается не только с помощью эксперимента, но и выводится теоретическим путём, так, как это сделано ниже:

Заметьте, что полученная формула очень похожа на математическую формулу закона Джоуля-Ленца, но в её левой части стоит не количество теплоты, а работа тока А. Даёт ли это нам право считать, что данные величины равны? Для этого воспользуемся первым законом термодинамики и выразим работу из него:

А это значит, .

Где: Q - это количество теплоты, которое было отдано проводником (на что указывает знак «-» впереди); ДU - изменение внутренней энергии того или иного проводника, нагреваемого током; A - совершённая над проводником работа.

Хотя сам проводник остается неподвижным, но внутри него постоянно движутся электроны, которые наталкиваются на ионы в кристаллической решётке проводника и передают им часть кинетической энергии. И, для получения устойчивого результата поток электронов не должен ослабевать, для этого силы электрического поля, которое создаёт источник электроэнергии, постоянно совершают над ними работу. Поэтому A - это ни что иное, как работа сил электрического поля для перемещения внутри проводника электронов.

Закон Джоуля-Ленца в интегральной и дифференциальной формах

Теперь подробнее обсудим величину ДU (которая представляет в расчетах изменение внутренней энергии) применительно к проводнику, по которому начинает течь ток.

Постепенно, выбранный проводник будет нагреваться, а это значит, что будет увеличиваться его внутренняя энергия. По мере нагрева разность между температурой проводника и окружающей его средой будет увеличиваться. Согласно закономерности Ньютона, вместе с этим возрастать будет и мощность теплоотдачи проводника. Таким образом, через какое-то время температура проводника, достигнув определенного значения, перестанет увеличиваться. В этот момент величина ДU будет равной нулю, и перестанет изменяться внутренняя энергия проводника.

Тогда для этого состояния первый закон термодинамики будет выглядеть так:

То есть когда не меняется внутренняя энергия проводника, работа тока целиком превращается в теплоту. Используя этот вывод, можем записать все три рассмотренные формулы для расчета работы тока в несколько ином виде:

Закон Джоуля-Ленца в дифференциальной форме выглядит совершенно по-иному, рассмотрим только общий вариант, без дополнительных выведений и вычислений, который выглядит так:

Закон Джоуля-Ленца в дифференциальной форме

Где: щ -мощность тепла, выделяемого в единице объёма; j-плотность электрического тока; E-напряжённость электрического поля; -проводимость выбранной среды.

Закон Джоуля-Ленца в интегральной форме выглядит так:

Где - сила тока, R-сопротивление, dt- промежуток времени от t 1 до t 2

Так в общих чертах выглядит закон Джоуля-Ленца и его интегральная и дифференциальная формы. Хотя, если проводить дальнейшие вычисления, то закон может принимать и другие формы.

Другие достижения

Мастерство Ленца как блестящего экспериментатора проявилось и при убедительной проверке справедливости экспериментов французского физика Пельтье, открывшего в 1834 г. новое явление, названное впоследствии «эффектом Пельтье». Если через спай двух разнородных металлов пропустить электрический ток, то в спае происходит либо выделение, либо поглощение тепла в зависимости от направления тока. Собственными экспериментами Ленц подтвердил выводы Пельтье. Пропустив ток через спай висмута и сурьмы, он заморозил воду, окружавшую спай.

Исследования Ленца затронули также электрохимические явления: он изучал, в частности, поляризацию электродов. Ему удалось установить зависимость ЭДС поляризации от материала электродов и соприкасающейся с ними жидкости.

ЛИТЕРАТУРА

Ржонсницкий Б. Н. Выдающийся русский учёный. (150 лет со дня рождения физика Э. Х. Ленца). -- Вечерний Ленинград. 24 февраля 1954 года

Ржонсницкий Б. Н. Выдающийся русский океанограф (к 150-летию Э. Х. Ленца). -- Водный транспорт. 25 февраля 1954 года

Ржонсницкий Б. Н. Академик Э. Х. Ленц и физическая география. -- Известия АН СССР. № 2. 1954. С. 61

Ржонсницкий Б. Н. Эмилий Христианович Ленц. -- М.: Мысль, 1987. (Замечательные географы и путешественники).

Храмов Ю. А. Ленц Эмилий Христианович // Физики: Биографический справочник / Под ред. А. И. Ахиезера. -- Изд. 2-е, испр. и дополн. -- М.: Наука, 1983. -- С. 161. -- 400 с. -- 200 000 экз. (в пер.)

Ржонсницкий Б. Н. Эмилий Христианович Ленц. (1804--1865). -- М.-Л.: 1952. (со

Размещено на Allbest.ru

...

Подобные документы

    Причины электрического тока. Закон Ома для неоднородного участка цепи. Закон Ома в дифференциальной форме. Работа и мощность. Закон Джоуля–Ленца. Плотность тока, уравнение непрерывности. КПД источника тока. Распределение напряженности и потенциала.

    презентация , добавлен 13.02.2016

    Значение деятельности Э. Ленца в развитии учения об электричестве. Дополнение Ленцем закона об электромагнитной индукции, лежащего в основе современной электротехники. Главнейшие результаты исследований Ленца, которые излагаются во всех учебниках физики.

    презентация , добавлен 06.01.2012

    Ток и плотность тока проводимости. Закон Ома в дифференциальной форме. Стороннее электрическое поле. Законы Кирхгофа в дифференциальной форме. Уравнение Лапласа для электрического поля в проводящей среде. Дифференциальная форма закона Джоуля-Ленца.

    презентация , добавлен 13.08.2013

    Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

    презентация , добавлен 15.05.2009

    Явище електризації тіл і закон збереження заряду, взаємодії заряджених тіл і закон Кулона, електричного струму і закон Ома, теплової дії електричного струму і закон Ленца–Джоуля. Електричне коло і його елементи. Розрахункова схема електричного кола.

    лекция , добавлен 25.02.2011

    Провідники й ізолятори. Умови існування струму. Закон Джоуля-Ленца в інтегральній формі. Опір провідників, потужність струму, закони Ома для ділянки кола, неоднорідної ділянки кола і замкнутого кола. Закони Ома й Джоуля-Ленца в диференціальній формі.

    учебное пособие , добавлен 06.04.2009

    Основные величины электрического тока и принципы его измерения: закон Ома, Джоуля-Ленца, электромагнитной индукции. Электрические цепи и формы их построения: последовательное и параллельное соединение в цепи, катушка индуктивности и конденсатор.

    реферат , добавлен 23.03.2012

    Тепловое действие электрического тока. Сущность закона Джоуля-Ленца. Понятие теплицы и парника. Эффективность использования тепловентиляторов и кабельного обогрева грунта теплиц. Тепловое воздействие электрического тока в устройстве инкубаторов.

    презентация , добавлен 26.11.2013

    Понятие теплообмена как физического процесса передачи тепловой энергии от более горячего тела к холодному либо непосредственно, либо через разделяющую (тела или среды) перегородку из какого-либо материала. Первый закон термодинамики. Закон Джоуля–Ленца.

    презентация , добавлен 10.09.2014

    Величины, характеризующие синусоидальные ток. Мгновенное значение величины. Диапазон частот, применяемых на практике синусоидальных токов и напряжений. Явление электромагнитной индукции. Закон Джоуля-Ленца, формула Эйлера. Модули комплексных чисел.

Эмилий Христианович Ленц (1804-1865)

Эмилий Христианович Ленц сыграл весьма важную роль в развитии учения об электричестве. Он существенно дополнил законы электромагнитной индукции, лёгшие в основу современной электротехники. Через год после их опубликования Э. X. Ленц установил закон, однозначно определяющий направление индуктированных токов во всех возможных случаях, указал на тесное взаимоотношение магнитно-электрических и электромагнитных явлений, а также изучил условия, от которых зависит сила всякого индуктированного тока. Всё это сделано и изложено Э. X. Ленцем с предельной ясностью и простотой в то время, когда представления большинства физиков о "гальваническом токе" и его отношении к "электрическим явлениям" были ещё чрезвычайно сумбурны и противоречивы. Известный русский учёный-электротехник и популяризатор В. К. Лебединский следующими словами оценивал в 1895 г. значение работ Э. X. Ленца в области учения об электричестве: "Напрашивается невольно сравнение с бессмертным Фарадеем. Опыты этих двух физиков раскрыли явления индукции и в то время, как теории Ампера и Вебера заменяются новыми, истинное опытов Фарадея и Ленца останется навсегда".

Эмилий Христианович Ленц родился 12 февраля 1804 года в г. Юрьеве (ныне Тарту) в Эстонии. Образование получил в родном городе и изучал в Юрьевском университете сперва теологию (богословие) и филологию, а затем естественные науки. Ещё до окончания университетского курса Э. X. Ленц, благодаря своим выдающимся способностям, был приглашён участвовать в качестве физика в кругосветном плавании Коцебу. Плавание продолжалось с 1823 по 1826 г. Работа в экспедиции предопределила на следующие годы направление научной деятельности Э. X. Ленца. Примерно до 1830 г. он работал над вопросами физической географии и приобрёл в этой области широкую известность. За это время он участвовал в экспедиции на Кавказ в окрестности Эльбруса, в 1829 г. ездил в г. Николаев для участия в наблюдениях качания маятника в этой точке земного шара, а также провёл некоторое время в Баку, на берегу Каспийского моря, где производил гидрологические наблюдения. В 1828 г. Э. X. Ленц был избран адъюнктом Петербургской академии наук и доложил там свой первый мемуар "О солёности морской воды и о температуре её в океанах на поверхности и в глубине". В этом мемуаре Э. X. Ленц подводил итоги работ, проведённых им во время кругосветного плавания. В 1830 г. Э. X. Ленц был избран экстраординарным, а ещё через четыре года - в 1834 г.- ординарным академиком. С 1830 г. в его заведывание перешёл собранный его предшественником по академии В. В. Петровым хорошо обставленный физический кабинет, который Э. X. Ленц продолжал пополнять. В конце 1835 г. или в самом начале 1836 г. Эмилий Христианович был приглашён профессором физики и физической географии в Петербургский университет. В университете он также усиленно занялся приведением в порядок и пополнением физического кабинета. В те времена широко был распространён обычай читать лекции по какому-либо иностранному учебнику с небольшими дополнениями, о чём так прямо и объявлялось в учебном плане. Ленц читал лекции "по собственным запискам". Такой порядок кажется нам теперь естественным и необходимым, но в те времена такое чтение курса являлось большой заслугой и большим достоинством лектора. Лекции Э. X. Ленца отличались строгим, критическим и систематическим изложением и всегда сопровождались опытами, к которым он приготовлялся заранее и которые потому всегда бывали удачны. Эксперименту Э. X. Ленц вообще придавал очень большое значение и, пока физический кабинет университета ещё не был в достаточной степени оборудован, допускал студентов к занятиям в физическом кабинете Академии наук и даже разрешал, под свою личную ответственность, брать приборы для производства опытов на дом. Э. X. Ленц в течение ряда лет был деканом физико-математического факультета. После утверждения университетского устава 1863 г. он был избран ректором университета, но в этой должности ему пришлось пробыть недолго. В августе 1864 г. он получил заграничный отпуск для лечения хронического заболевания глаз. 10 февраля 1865 года Эмилий Христианович Ленц скоропостижно скончался в Риме.

Вице-президент Академии наук В. Л. Буняковский говорил на соединённом заседании физико-математического и филологического отделений Академии 21 февраля 1865 г. после получения известия о смерти Ленца: "...Все мы постоянно видели в нём образец прямодушия, беспристрастия и правдивости. Всем, знавшим Эмилия Христиановича, известна его независимость мнений и поступков от всяких внешних влияний и отношений, против которых так трудно бывает устоять... Одарённый умом светлым и проницательным, он нередко разрешал сомнения, встречавшиеся при обсуждении каких-либо щекотливых или затруднительных вопросов... Академия весьма часто назначала Эмилия Христиановича в члены комиссий по таким предметам, которые требовали особенной опытности и сообразительности... Молодым людям, занимавшимся наукой, он всегда с готовностью оказывал возможное содействие и помощь...". Буняковский вспоминает и о беседах с Ленцем, "которые так поучительно умел он воодушевлять своим светлым воззрением на разнообразные вопросы жизни и науки".

Чтобы оценить по достоинству всё сделанное Э. X. Ленцем в области электромагнетизма, необходимо полнее представить себе положение дел и широко распространённые в то время воззрения в учении об "электрических" и "гальванических" явлениях.

Физики имели дело, с одной стороны, с электрическими зарядами, получаемыми путём трения, с процессами распространения этих зарядов по поверхности проводников, с зарядкой и разрядкой конденсаторов, - словом, со всеми теми явлениями, которые тогда называли электрическими и которые ещё и теперь не совсем правильно относят к области электростатики. С другой стороны, были известны явления электрического тока, источниками которого были различные гальванические элементы. Эти явления называли "гальваническими". Только очень немногие физики склонялись к тому, что в "электричестве" и "гальванизме" они имеют дело с одними и теми же явлениями природы. То было время, когда в физике господствовали представления о "невесомых жидкостях": теплороде, светоносной жидкости и т. д., наличием которых и переходом их из одного тела в другое хотели объяснить все физические явления. Явления электричества и гальванизма имели между собой коренные различия, вызываемые, как мы теперь знаем, большой "разницей потенциалов" и малыми "количествами электричества" в случае электрических явлений и, наоборот, малой разницей потенциалов (малым "напряжением") и большим количеством протекающих по проводу электрических зарядов ("большой силой тока") в случае гальванических явлений. Физикам того времени, в дополнение к предоставлениям о существовании большого числа различных невесомых жидкостей или флюидов, нетрудно было представить себе существование ещё двух различных флюидов - "электрического" и "гальванического". В то время казалось твёрдо установленным, что излучения различных источников света производят различное действие: в случае одних источников преобладали так называемые "химические" (ультрафиолетовые) лучи, в случае других - "тепловые" (инфракрасные), в случае третьих - собственно световые лучи, видимые глазом. По аналогии казалось естественным, что различные источники электрического тока, в том числе даже гальванические элементы, могут давать токи различного свойства. Поэтому вовсе не было очевидным, что к токам, полученным путём фарадеевской индукции, должны быть приложимы те же самые законы, что и к токам от гальванических элементов. Подтверждение противоположному заключению находили в ряде неправильно поставленных или неправильно истолкованных опытов. Так, вторично индуктированные переменные токи не могли сообщать магнитной стрелке постоянное отклонение, не могли быть применены для получения явлений электролиза в чистом виде и т. д. Всеобщий характер закона Ома не понимали, придавая этому закону только ограниченное каждым отдельным случаем той или иной электрической цепи значение. При таком широком распространении ошибочных воззрений делать глубокие обобщения и искать общие законы явлений электрического тока представлялось трудным и смелым делом. Надо было не только установить общие положения путём гениальной индукции, основанной на чрезвычайно ясном- понимании всех отдельных фактов, но и предварительно ещё весьма строго и критически охватить умственным взором весь "фактический материал". Нужно было понять ошибки, допущенные рядом экспериментаторов, и не только проникнуться идеей об единой природе и единых законах электрического тока, но и подтвердить это единство экспериментально. Великая заслуга Э. X. Ленца заключается в том, что, несмотря на противоречивые экспериментальные данные, он твёрдо верил в единую природу электрического тока, каково бы ни было происхождение последнего; в том, что он путём безукоризненно поставленных экспериментов показал, что сила индуктированного тока определяется количественно точно теми же условиями и тем же законом Ома, что и сила любого другого тока. Тотчас же после опубликования М. Фарадеем мемуара, описывающего явления индукции электрических токов, Э. X. Ленц приступил к экспериментам, которые привели его к следующим выводам: сила индуктированного тока определяется электродвижущей силой, возникающей во вторичном контуре, и сопротивлением этого контура; индуктированная электродвижущая сила пропорциональна числу витков вторичной обмотки и не зависит ни от радиуса витков, ни от поперечного сечения проводника, ни от вещества последней.

"Эти результаты Ленца, - говорит В. К. Лебединский в статье, написанной 50 лет тому назад, - не носят теперь название законов; они все вытекают из нашего представления о магнитном поле. Но в своё время они были первым шагом в разборе чудесных явлений индукции". Насколько эти совершенно правильные выводы противоречили широко распространённым воззрениям, видно из того факта, что издатель журнала "Анналы физики и химии" - известный физик Поггендорф - далеко не сразу решился поместить их в своём журнале. Хотя эти результаты были получены Э. X. Ленцем в 1832 г., его мемуар появился в "Анналах" лишь в 1835 г. - только через год после следующей его статьи, доложенной в Академии наук 29 ноября 1833 г. и содержащей изложение и экспериментальное обоснование того обобщённого закона индукции, который теперь носит название "правила Ленца". В этой статье Э. X. Ленц говорит, что Фарадей для каждого отдельно рассматриваемого случая индукции даёт специальное указание для определения направления индуктированного тока. Эти указания нельзя обобщить, и, более того, некоторые случаи индукции токов остаются непредусмотренными. "Тотчас же после прочтения мемуара Фарадея мне показалось, что все случаи индуктированных токов могут быть сведены очень простым способом к законам электродинамических движений", - говорит Э. X. Ленц и высказывает следующее, совершенно общее и пригодное для всех случаев индукции электрических токов, положение:

"Если металлический проводник передвигается вблизи гальванического тока или вблизи магнита, то в нём возбуждается гальванический ток такого направления, которое вызвало бы движение покоящегося провода в направлении, прямо противоположном направлению движения, навязанному здесь проводу извне, в предположении, что находящийся в покое провод может двигаться только в направлении этого последнего движения или в прямо противоположном".

Это положение Э. X. Ленц обосновывает многочисленными примерами, взятыми как из чужих, так и из собственных опытов. Анализируя физическую сущность высказанного положения, Э. X. Ленц приходит ещё к следующему обобщению: "Если мы хорошо уясним себе приведённый выше закон, то мы сможем вывести заключение, что каждому явлению движения под действием электромагнитных сил должен соответствовать определённый случай электромагнитной индукции", или, выражаясь короче: каждому электромагнитному явлению соответствует определённое магнитно-электрическое явление. Это обобщение естественно приводит к следующему: при передвижении проводника в магнитном поле и возбуждении в нём тока (магнитно-электрическое явление) мы преодолеваем действие какой-то силы; эта сила не что иное, как та, которая приводит в движение проводник при соответствующем электромагнитном явлении. Таков был, повидимому, ход мысли, приведший Э. X. Ленца к его "правилу".

Современное теоретическое обоснование закона Ленца зиждется на законе сохранения энергии и близко к указанному ходу мыслей. Но закон сохранения энергии был окончательно сформулирован лишь в 1847 г., т. е. 14 лет спустя после доклада Э. X. Ленца в Академии наук. Это показывает, что Эмилий Христианович был в числе тех физиков, которые, хотя и неясно, но "предчувствовали" существование закона сохранения энергии. Весьма интересно, что в том же томе "Анналов" некто физик Ричи, из чисто умозрительного сопоставления движения проводника с током в магнитном поле и явлений индукции Фарадея, но без деятельного сличения с опытом, приходит к ошибочному выводу, прямо противоположному закону Ленца.

Другой общеизвестный закон физики, с которым связано имя Э. X. Ленца, это закон Джоуля-Ленца, выведенный Э. X. Ленцем в 1844 г., независимо от работы Джоуля, путём более точно поставленных экспериментов, чем опыты Джоуля. Закон Джоуля-Ленца устанавливает, что количество тепла, выделяющееся в проводнике при прохождении тока, прямо пропорционально сопротивлению проводника и квадрату силы тока.

Мы не имеем возможности остановиться на всех работах Э. X. Ленца в области электромагнетизма. Скажем только, что Э. X. Ленд и Б. С. Якоби установили условия, от которых зависит подъёмная сила магнита. Их выводы опять вполне согласуются с законом сохранения энергии и разбивают несбыточные мечты некоторых фантазёров. Э. X. Ленц использовал своё глубокое понимание законов электродинамики для рассмотрения явлений в динамомашине. Он показал, что необходимо учитывать не только токи, индуцируемые во вращающемся якоре машины магнитным полем полюсов машины, но и самоиндукцией обмотки якоря; эта самоиндукция приводит к очень существенному а работе электрической машины явлению, носящему название "реакции якоря"; Э. X. Ленц объяснил, таким образом, почему, например, первые попытки применить генераторы постоянного тока для гальванопластики потерпели неудачу и почему положение "щёток" машины должно быть сдвинуто на некоторый угол по сравнению с тем наивыгоднейшим положением, которое указывает первоначальная теория машины, не учитывающая реакции якоря.

Исследования Э. X. Ленца легли в основу грандиозного здания современного учения об электричестве и важнейших разделов практической электротехники.

Главнейшие труды Э. X. Ленца: работы, помещённые в "Poggendorfs Annalen" (в скобках указаны год и том): О правиле, по которому происходит сведение магнитоэлектрических явлений на электро-магнитные (правило Ленца) (1834, 31); Об опытах с индуктированными токами (1835, 34); Мемуар, в котором даётся критический разбор работ де-ла-Рива об особенных свойствах индукционных токов (1839, 48); Исследования над динамомашинами (1842, 57); Работа, в которой устанавливается закон, известный как закон Джоуля-Ленца (1844, 61); О значении скорости вращения на индукционный ток, возбуждённый магнитно-электрической машиной (1849, 76); на русском языке: Физическая география, Спб., 1851 (3 изд. - 1858); Руководство к физике, Спб., 1839 (б изд.-1864); Руководство к физике для военно-учебных заведений, Спб., 1855.

О Э. X. Ленце: Савельев А., О трудах акад. Ленца в магнито-электричестве, "Журн. Министерства нар. просв.", 1854, №8, 9; Лебединский В., Ленц, как один из основателей науки об электромагнетизме, "Электричество", 1895, № 11-12; Очерк работ русских по электротехнике с 1800 по 1900 год, Спб., 1900.