Soluții reale ale unei ecuații pătratice. Ecuații cuadratice

Cu acest program de matematică poți rezolva ecuația pătratică.

Programul nu numai că oferă răspunsul la problemă, dar afișează și procesul de rezolvare în două moduri:
- folosirea discriminantului
- folosind teorema Vieta (dacă este posibil).

Mai mult, răspunsul este afișat exact, nu aproximativ.
De exemplu, pentru ecuația \(81x^2-16x-1=0\), răspunsul este afișat sub această formă:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ în loc de aceasta: \(x_1 = 0,247; \ quad x_2 = -0,05 \)

Acest program poate fi util elevilor de liceu în pregătirea pentru teste și examene, la testarea cunoștințelor înainte de Examenul Unificat de Stat, pentru ca părinții să controleze rezolvarea multor probleme de matematică și algebră. Sau poate este prea scump pentru tine să angajezi un tutor sau să cumperi noi manuale? Sau vrei doar să-ți faci temele de matematică sau algebră cât mai repede posibil? În acest caz, puteți folosi și programele noastre cu o soluție detaliată.

În acest fel, vă puteți conduce propria pregătire și/sau formarea fraților sau surorilor mai mici, în timp ce nivelul de educație în domeniul sarcinilor de rezolvat este crescut.

Dacă nu sunteți familiarizat cu regulile de introducere a unui polinom pătrat, vă recomandăm să vă familiarizați cu ele.

Reguli pentru introducerea unui polinom pătrat

Orice literă latină poate acționa ca o variabilă.
De exemplu: \(x, y, z, a, b, c, o, p, q \) etc.

Numerele pot fi introduse ca numere întregi sau fracții.
În plus, numerele fracționale pot fi introduse nu numai sub formă de zecimală, ci și sub forma unei fracții obișnuite.

Reguli pentru introducerea fracțiilor zecimale.
În fracțiile zecimale, partea fracțională din întreg poate fi separată fie prin punct, fie prin virgulă.
De exemplu, puteți introduce zecimale astfel: 2,5x - 3,5x^2

Reguli pentru introducerea fracțiilor obișnuite.
Doar un număr întreg poate acționa ca numărător, numitor și parte întreagă a unei fracții.

Numitorul nu poate fi negativ.

Când introduceți o fracție numerică, numărătorul este separat de numitor printr-un semn de împărțire: /
Partea întreagă este separată de fracție printr-un ampersand: &
Intrare: 3&1/3 - 5&6/5z +1/7z^2
Rezultat: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2 \)

La introducerea unei expresii puteți folosi paranteze. În acest caz, la rezolvarea unei ecuații pătratice, expresia introdusă este mai întâi simplificată.
De exemplu: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Decide

S-a constatat că unele scripturi necesare pentru a rezolva această sarcină nu au fost încărcate și este posibil ca programul să nu funcționeze.
Este posibil să aveți AdBlock activat.
În acest caz, dezactivați-l și reîmprospătați pagina.

Aveți JavaScript dezactivat în browser.
JavaScript trebuie să fie activat pentru ca soluția să apară.
Iată instrucțiuni despre cum să activați JavaScript în browser.

pentru că Sunt o mulțime de oameni care doresc să rezolve problema, cererea ta este pusă în coadă.
După câteva secunde, soluția va apărea mai jos.
Asteapta te rog sec...


daca tu am observat o eroare în soluție, apoi puteți scrie despre asta în Formularul de feedback .
Nu uita indicați ce sarcină tu decizi ce intra in campuri.



Jocurile, puzzle-urile, emulatorii noștri:

Un pic de teorie.

Ecuația pătratică și rădăcinile ei. Ecuații patratice incomplete

Fiecare dintre ecuații
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
are forma
\(ax^2+bx+c=0, \)
unde x este o variabilă, a, b și c sunt numere.
În prima ecuație a = -1, b = 6 și c = 1,4, în a doua a = 8, b = -7 și c = 0, în a treia a = 1, b = 0 și c = 4/9. Astfel de ecuații se numesc ecuații pătratice.

Definiție.
ecuație pătratică se numește o ecuație de forma ax 2 +bx+c=0, unde x este o variabilă, a, b și c sunt niște numere și \(a \neq 0 \).

Numerele a, b și c sunt coeficienții ecuației pătratice. Numărul a se numește primul coeficient, numărul b este al doilea coeficient și numărul c este intersecția.

În fiecare dintre ecuațiile de forma ax 2 +bx+c=0, unde \(a \neq 0 \), cea mai mare putere a variabilei x este un pătrat. De aici și numele: ecuație pătratică.

Rețineți că o ecuație pătratică se mai numește și ecuație de gradul doi, deoarece partea stângă este un polinom de gradul doi.

Se numește o ecuație pătratică în care coeficientul la x 2 este 1 ecuație pătratică redusă. De exemplu, ecuațiile pătratice date sunt ecuațiile
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Dacă în ecuația pătratică ax 2 +bx+c=0 cel puțin unul dintre coeficienții b sau c este egal cu zero, atunci o astfel de ecuație se numește ecuație pătratică incompletă. Deci, ecuațiile -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 sunt ecuații patratice incomplete. În primul dintre ele b=0, în al doilea c=0, în al treilea b=0 și c=0.

Ecuațiile patratice incomplete sunt de trei tipuri:
1) ax 2 +c=0, unde \(c \neq 0 \);
2) ax 2 +bx=0, unde \(b \neq 0 \);
3) ax2=0.

Luați în considerare soluția ecuațiilor fiecăruia dintre aceste tipuri.

Pentru a rezolva o ecuație pătratică incompletă de forma ax 2 +c=0 pentru \(c \neq 0 \), termenul său liber este transferat în partea dreaptă și ambele părți ale ecuației sunt împărțite la a:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

Deoarece \(c \neq 0 \), atunci \(-\frac(c)(a) \neq 0 \)

Dacă \(-\frac(c)(a)>0 \), atunci ecuația are două rădăcini.

Dacă \(-\frac(c)(a) Pentru a rezolva o ecuație pătratică incompletă de forma ax 2 +bx=0 pentru \(b \neq 0 \) factorizați partea stângă și obțineți ecuația
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (matrice)(l) x=0 \\ x=-\frac(b)(a) \end(matrice) \right. \)

Prin urmare, o ecuație pătratică incompletă de forma ax 2 +bx=0 pentru \(b \neq 0 \) are întotdeauna două rădăcini.

O ecuație pătratică incompletă de forma ax 2 \u003d 0 este echivalentă cu ecuația x 2 \u003d 0 și, prin urmare, are o singură rădăcină 0.

Formula pentru rădăcinile unei ecuații pătratice

Să considerăm acum cum se rezolvă ecuațiile pătratice în care ambii coeficienți ai necunoscutelor și termenul liber sunt nenuli.

Rezolvăm ecuația pătratică în formă generală și ca rezultat obținem formula rădăcinilor. Apoi această formulă poate fi aplicată pentru a rezolva orice ecuație pătratică.

Rezolvați ecuația pătratică ax 2 +bx+c=0

Împărțind ambele părți cu a, obținem ecuația pătratică redusă echivalentă
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

Transformăm această ecuație prin evidențierea pătratului binomului:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Rightarrow \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b) )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2) -4ac) )(2a) \Rightarrow \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

Expresia rădăcină se numește discriminant al unei ecuații pătratice ax 2 +bx+c=0 („discriminant” în latină - distinctor). Este notat cu litera D, i.e.
\(D = b^2-4ac\)

Acum, folosind notația discriminantului, rescriem formula pentru rădăcinile ecuației pătratice:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), unde \(D= b^2-4ac \)

Este evident ca:
1) Dacă D>0, atunci ecuația pătratică are două rădăcini.
2) Dacă D=0, atunci ecuația pătratică are o rădăcină \(x=-\frac(b)(2a)\).
3) Dacă D Astfel, în funcție de valoarea discriminantului, ecuația pătratică poate avea două rădăcini (pentru D > 0), o rădăcină (pentru D = 0) sau fără rădăcini (pentru D Când se rezolvă o ecuație pătratică folosind această formulă , este recomandabil să procedați în felul următor:
1) calculați discriminantul și comparați-l cu zero;
2) dacă discriminantul este pozitiv sau egal cu zero, atunci utilizați formula rădăcinii, dacă discriminantul este negativ, atunci scrieți că nu există rădăcini.

teorema lui Vieta

Ecuația pătratică dată ax 2 -7x+10=0 are rădăcinile 2 și 5. Suma rădăcinilor este 7, iar produsul este 10. Vedem că suma rădăcinilor este egală cu al doilea coeficient, luat cu semn opus, iar produsul rădăcinilor este egal cu termenul liber. Orice ecuație pătratică redusă care are rădăcini are această proprietate.

Suma rădăcinilor ecuației pătratice date este egală cu al doilea coeficient, luat cu semnul opus, iar produsul rădăcinilor este egal cu termenul liber.

Acestea. Teorema lui Vieta afirmă că rădăcinile x 1 și x 2 ale ecuației pătratice reduse x 2 +px+q=0 au proprietatea:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

Sper că, după ce ați studiat acest articol, veți învăța cum să găsiți rădăcinile unei ecuații pătratice complete.

Cu ajutorul discriminantului se rezolvă doar ecuații pătratice complete; pentru rezolvarea ecuațiilor pătratice incomplete se folosesc alte metode, pe care le veți găsi în articolul „Rezolvarea ecuațiilor pătratice incomplete”.

Ce ecuații pătratice se numesc complete? Aceasta este ecuații de forma ax 2 + b x + c = 0, unde coeficienții a, b și c nu sunt egali cu zero. Deci, pentru a rezolva ecuația pătratică completă, trebuie să calculați discriminantul D.

D \u003d b 2 - 4ac.

În funcție de ce valoare are discriminantul, vom nota răspunsul.

Dacă discriminantul este un număr negativ (D< 0),то корней нет.

Dacă discriminantul este zero, atunci x \u003d (-b) / 2a. Când discriminantul este un număr pozitiv (D > 0),

atunci x 1 = (-b - √D)/2a și x 2 = (-b + √D)/2a.

De exemplu. rezolva ecuatia x 2– 4x + 4= 0.

D \u003d 4 2 - 4 4 \u003d 0

x = (- (-4))/2 = 2

Raspuns: 2.

Rezolvați ecuația 2 x 2 + x + 3 = 0.

D \u003d 1 2 - 4 2 3 \u003d - 23

Răspuns: fără rădăcini.

Rezolvați ecuația 2 x 2 + 5x - 7 = 0.

D \u003d 5 2 - 4 2 (-7) \u003d 81

x 1 \u003d (-5 - √81) / (2 2) \u003d (-5 - 9) / 4 \u003d - 3,5

x 2 \u003d (-5 + √81) / (2 2) \u003d (-5 + 9) / 4 \u003d 1

Răspuns: - 3,5; unu.

Deci, să ne imaginăm soluția ecuațiilor pătratice complete după schema din figura 1.

Aceste formule pot fi folosite pentru a rezolva orice ecuație pătratică completă. Trebuie doar să fii atent ecuația a fost scrisă ca un polinom de formă standard

A x 2 + bx + c, altfel poti face o greseala. De exemplu, scriind ecuația x + 3 + 2x 2 = 0, puteți decide în mod eronat că

a = 1, b = 3 și c = 2. Atunci

D \u003d 3 2 - 4 1 2 \u003d 1 și atunci ecuația are două rădăcini. Și acest lucru nu este adevărat. (Vezi exemplul 2 soluția de mai sus).

Prin urmare, dacă ecuația nu este scrisă ca un polinom al formei standard, mai întâi trebuie scrisă ecuația pătratică completă ca un polinom al formei standard (monomul cu cel mai mare exponent ar trebui să fie pe primul loc, adică A x 2 , apoi cu mai putin bx, iar apoi termenul liber cu.

La rezolvarea ecuației pătratice de mai sus și a ecuației pătratice cu un coeficient par pentru al doilea termen, pot fi folosite și alte formule. Să facem cunoștință cu aceste formule. Dacă în ecuația pătratică completă cu al doilea termen coeficientul este par (b = 2k), atunci ecuația poate fi rezolvată folosind formulele prezentate în diagrama din figura 2.

O ecuație pătratică completă se numește redusă dacă coeficientul la x 2 este egal cu unitatea și ecuația ia forma x 2 + px + q = 0. O astfel de ecuație poate fi dată de rezolvat sau se obține prin împărțirea tuturor coeficienților ecuației la coeficient A stând la x 2 .

Figura 3 prezintă o diagramă a soluției pătratului redus
ecuații. Luați în considerare exemplul aplicării formulelor discutate în acest articol.

Exemplu. rezolva ecuatia

3x 2 + 6x - 6 = 0.

Să rezolvăm această ecuație folosind formulele prezentate în figura 1.

D \u003d 6 2 - 4 3 (- 6) \u003d 36 + 72 \u003d 108

√D = √108 = √(36 3) = 6√3

x 1 \u003d (-6 - 6 √ 3) / (2 3) \u003d (6 (-1- √ (3))) / 6 \u003d -1 - √ 3

x 2 \u003d (-6 + 6 √ 3) / (2 3) \u003d (6 (-1 + √ (3))) / 6 \u003d -1 + √ 3

Răspuns: -1 - √3; –1 + √3

Puteți vedea că coeficientul de la x din această ecuație este un număr par, adică b \u003d 6 sau b \u003d 2k, de unde k \u003d 3. Apoi, să încercăm să rezolvăm ecuația folosind formulele prezentate în diagrama figură D 1 \u003d 3 2 - 3 (- 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 \u003d (-3 - 3√3) / 3 \u003d (3 (-1 - √ (3))) / 3 \u003d - 1 - √3

x 2 \u003d (-3 + 3√3) / 3 \u003d (3 (-1 + √ (3))) / 3 \u003d - 1 + √3

Răspuns: -1 - √3; –1 + √3. Observând că toți coeficienții din această ecuație pătratică sunt divizibili cu 3 și împărțind, obținem ecuația pătratică redusă x 2 + 2x - 2 = 0 Rezolvăm această ecuație folosind formulele pentru ecuația pătratică redusă.
ecuații figura 3.

D 2 \u003d 2 2 - 4 (- 2) \u003d 4 + 8 \u003d 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 \u003d (-2 - 2√3) / 2 \u003d (2 (-1 - √ (3))) / 2 \u003d - 1 - √3

x 2 \u003d (-2 + 2 √ 3) / 2 \u003d (2 (-1 + √ (3))) / 2 \u003d - 1 + √ 3

Răspuns: -1 - √3; –1 + √3.

După cum puteți vedea, atunci când rezolvăm această ecuație folosind formule diferite, am primit același răspuns. Prin urmare, stăpânind bine formulele prezentate în diagrama din figura 1, puteți rezolva oricând orice ecuație pătratică completă.

blog.site, cu copierea integrală sau parțială a materialului, este necesar un link către sursă.

Formule pentru rădăcinile unei ecuații pătratice. Sunt luate în considerare cazurile de rădăcini reale, multiple și complexe. Factorizarea unui trinom pătrat. Interpretare geometrică. Exemple de determinare a rădăcinilor și factorizării.

Formule de bază

Luați în considerare ecuația pătratică:
(1) .
Rădăcinile unei ecuații pătratice(1) sunt determinate de formulele:
; .
Aceste formule pot fi combinate astfel:
.
Când rădăcinile ecuației pătratice sunt cunoscute, atunci polinomul de gradul doi poate fi reprezentat ca produs de factori (factorizați):
.

În plus, presupunem că sunt numere reale.
Considera discriminant al unei ecuații pătratice:
.
Dacă discriminantul este pozitiv, atunci ecuația pătratică (1) are două rădăcini reale diferite:
; .
Atunci factorizarea trinomului pătrat are forma:
.
Dacă discriminantul este zero, atunci ecuația pătratică (1) are două rădăcini reale multiple (egale):
.
Factorizare:
.
Dacă discriminantul este negativ, atunci ecuația pătratică (1) are două rădăcini conjugate complexe:
;
.
Iată unitatea imaginară, ;
și sunt părțile reale și imaginare ale rădăcinilor:
; .
Apoi

.

Interpretare grafică

Dacă reprezentăm grafic funcția
,
care este o parabolă, atunci punctele de intersecție ale graficului cu axa vor fi rădăcinile ecuației
.
Când , graficul intersectează axa (axa) absciselor în două puncte.
Când , graficul atinge axa x la un moment dat.
Când , graficul nu traversează axa x.

Mai jos sunt exemple de astfel de grafice.

Formule utile legate de ecuația cuadratică

(f.1) ;
(f.2) ;
(f.3) .

Derivarea formulei pentru rădăcinile unei ecuații pătratice

Efectuăm transformări și aplicăm formulele (f.1) și (f.3):




,
Unde
; .

Deci, am obținut formula pentru polinomul de gradul doi sub forma:
.
Din aceasta se poate observa că ecuația

efectuat la
și .
Adică și sunt rădăcinile ecuației pătratice
.

Exemple de determinare a rădăcinilor unei ecuații pătratice

Exemplul 1


(1.1) .

Decizie


.
Comparând cu ecuația noastră (1.1), găsim valorile coeficienților:
.
Găsirea discriminantului:
.
Deoarece discriminantul este pozitiv, ecuația are două rădăcini reale:
;
;
.

De aici obținem descompunerea trinomului pătrat în factori:

.

Graficul funcției y = 2 x 2 + 7 x + 3 traversează axa x în două puncte.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Acesta traversează axa x (axa) în două puncte:
și .
Aceste puncte sunt rădăcinile ecuației inițiale (1.1).

Răspuns

;
;
.

Exemplul 2

Găsiți rădăcinile unei ecuații pătratice:
(2.1) .

Decizie

Scriem ecuația pătratică în formă generală:
.
Comparând cu ecuația inițială (2.1), găsim valorile coeficienților:
.
Găsirea discriminantului:
.
Deoarece discriminantul este zero, ecuația are două rădăcini multiple (egale):
;
.

Atunci factorizarea trinomului are forma:
.

Graficul funcției y = x 2 - 4 x + 4 atinge axa x la un moment dat.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Atinge axa x (axa) la un moment dat:
.
Acest punct este rădăcina ecuației inițiale (2.1). Deoarece această rădăcină este factorizată de două ori:
,
atunci o astfel de rădăcină se numește multiplu. Adică, ei consideră că există două rădăcini egale:
.

Răspuns

;
.

Exemplul 3

Găsiți rădăcinile unei ecuații pătratice:
(3.1) .

Decizie

Scriem ecuația pătratică în formă generală:
(1) .
Să rescriem ecuația inițială (3.1):
.
Comparând cu (1), găsim valorile coeficienților:
.
Găsirea discriminantului:
.
Discriminantul este negativ, . Prin urmare, nu există rădăcini reale.

Puteți găsi rădăcini complexe:
;
;
.

Apoi


.

Graficul funcției nu traversează axa x. Nu există rădăcini reale.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Nu traversează abscisa (axa). Prin urmare, nu există rădăcini reale.

Răspuns

Nu există rădăcini reale. Rădăcini complexe:
;
;
.

Școala secundară rurală Kopyevskaya

10 moduri de a rezolva ecuații cuadratice

Șef: Patrikeeva Galina Anatolyevna,

profesor de matematică

s.Kopievo, 2007

1. Istoria dezvoltării ecuațiilor pătratice

1.1 Ecuații cuadratice în Babilonul antic

1.2 Cum a compilat și a rezolvat Diofantul ecuațiile pătratice

1.3 Ecuații cuadratice în India

1.4 Ecuații cuadratice în al-Khwarizmi

1.5 Ecuații cuadratice în Europa secolele XIII - XVII

1.6 Despre teorema lui Vieta

2. Metode de rezolvare a ecuaţiilor pătratice

Concluzie

Literatură

1. Istoria dezvoltării ecuațiilor pătratice

1.1 Ecuații cuadratice în Babilonul antic

Necesitatea rezolvării ecuațiilor nu doar de gradul I, ci și de gradul II în antichitate a fost cauzată de necesitatea rezolvării problemelor legate de găsirea zonelor de pământ și de terasamente cu caracter militar, precum și de dezvoltarea astronomiei și matematica în sine. Ecuațiile cuadratice au putut să rezolve aproximativ 2000 î.Hr. e. babilonienii.

Folosind notația algebrică modernă, putem spune că în textele lor cuneiforme, pe lângă cele incomplete, există, de exemplu, ecuații patratice complete:

X 2 + X = ¾; X 2 - X = 14,5

Regula de rezolvare a acestor ecuații, enunțată în textele babiloniene, coincide în esență cu cea modernă, dar nu se știe cum au ajuns babilonienii la această regulă. Aproape toate textele cuneiforme găsite până acum dau doar probleme cu soluțiile enunțate sub formă de rețete, fără nicio indicație despre cum au fost găsite.

În ciuda nivelului ridicat de dezvoltare al algebrei în Babilon, textelor cuneiforme le lipsește conceptul de număr negativ și metode generale de rezolvare a ecuațiilor pătratice.

1.2 Cum a compilat și a rezolvat Diofantul ecuațiile pătratice.

Aritmetica lui Diofant nu conține o expunere sistematică a algebrei, dar conține o serie sistematică de probleme, însoțite de explicații și rezolvate prin formularea de ecuații de diferite grade.

La compilarea ecuațiilor, Diophantus alege cu pricepere necunoscutele pentru a simplifica soluția.

Iată, de exemplu, una dintre sarcinile lui.

Sarcina 11.„Găsiți două numere știind că suma lor este 20 și produsul lor este 96”

Diophantus argumentează astfel: din condiția problemei rezultă că numerele dorite nu sunt egale, deoarece dacă ar fi egale, atunci produsul lor ar fi egal nu cu 96, ci cu 100. Astfel, unul dintre ele va fi mai mult decât jumătate din suma lor, adică . 10+x, celălalt este mai mic, adică. anii 10. Diferența dintre ele 2x .

De aici ecuația:

(10 + x)(10 - x) = 96

100 - x 2 = 96

x 2 - 4 = 0 (1)

De aici x = 2. Unul dintre numerele dorite este 12 , alte 8 . Decizie x = -2 căci Diofantul nu există, deoarece matematica greacă nu cunoștea decât numere pozitive.

Dacă rezolvăm această problemă alegând unul dintre numerele dorite ca necunoscut, atunci vom ajunge la soluția ecuației

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Este clar că, alegând jumătate de diferență a numerelor dorite ca necunoscută, Diophantus simplifică soluția; el reuşeşte să reducă problema la rezolvarea unei ecuaţii pătratice incomplete (1).

1.3 Ecuații cuadratice în India

Probleme pentru ecuațiile pătratice se găsesc deja în tractul astronomic „Aryabhattam”, compilat în 499 de matematicianul și astronomul indian Aryabhatta. Un alt om de știință indian, Brahmagupta (secolul al VII-lea), a subliniat regula generală pentru rezolvarea ecuațiilor pătratice reduse la o singură formă canonică:

ah 2+ b x = c, a > 0. (1)

În ecuația (1), coeficienții, cu excepția A, poate fi și negativ. Regula lui Brahmagupta coincide în esență cu a noastră.

În India antică, competițiile publice pentru rezolvarea problemelor dificile erau obișnuite. Într-una dintre cărțile vechi indiene, despre astfel de competiții se spune următoarele: „Așa cum soarele strălucește stelele cu strălucirea sa, tot așa o persoană învățată va eclipsa gloria altuia în adunările publice, propunând și rezolvând probleme algebrice”. Sarcinile erau adesea îmbrăcate în formă poetică.

Iată una dintre problemele celebrului matematician indian din secolul al XII-lea. Bhaskara.

Sarcina 13.

„O turmă plină de maimuțe și douăsprezece în viță de vie...

După ce am mâncat putere, m-am distrat. Au început să sară, atârnând...

Partea a opta dintre ei într-un pătrat Câte maimuțe erau acolo,

Să te distrezi pe pajiște. Îmi spui, în turma asta?

Soluția lui Bhaskara indică faptul că el știa despre două valori ale rădăcinilor ecuațiilor pătratice (Fig. 3).

Ecuația corespunzătoare problemei 13 este:

( X /8) 2 + 12 = X

Bhaskara scrie sub pretextul:

x 2 - 64x = -768

și, pentru a completa partea stângă a acestei ecuații la un pătrat, el adaugă la ambele părți 32 2 , obtinand atunci:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Ecuații cuadratice în al-Khorezmi

Tratatul de algebric al lui Al-Khorezmi oferă o clasificare a ecuațiilor liniare și pătratice. Autorul enumeră 6 tipuri de ecuații, exprimându-le astfel:

1) „Pătratele sunt egale cu rădăcinile”, adică ax 2 + c = b X.

2) „Pătratele sunt egale cu numărul”, adică ax 2 = s.

3) „Rădăcinile sunt egale cu numărul”, adică. ah = s.

4) „Pătratele și numerele sunt egale cu rădăcinile”, adică. ax 2 + c = b X.

5) „Pătratele și rădăcinile sunt egale cu numărul”, i.e. ah 2+ bx = s.

6) „Rădăcinile și numerele sunt egale cu pătratele”, adică bx + c \u003d ax 2.

Pentru al-Khwarizmi, care a evitat utilizarea numerelor negative, termenii fiecăreia dintre aceste ecuații sunt adunări, nu scăderi. În acest caz, ecuațiile care nu au soluții pozitive, evident, nu sunt luate în considerare. Autorul conturează metodele de rezolvare a acestor ecuații, folosind metodele lui al-jabr și al-muqabala. Deciziile lui, desigur, nu coincid complet cu ale noastre. Ca să nu mai vorbim de faptul că este pur retoric, trebuie remarcat, de exemplu, că la rezolvarea unei ecuații pătratice incomplete de primul tip

al-Khorezmi, ca toți matematicienii dinainte de secolul al XVII-lea, nu ține cont de soluția zero, probabil pentru că nu contează în probleme practice specifice. Atunci când rezolvă ecuații patratice complete, al-Khorezmi stabilește regulile de rezolvare și apoi dovezi geometrice, folosind exemple numerice particulare.

Sarcina 14.„Pătratul și numărul 21 sunt egale cu 10 rădăcini. Găsiți rădăcina" (presupunând rădăcina ecuației x 2 + 21 = 10x).

Soluția autorului este cam așa: împărțiți numărul de rădăcini la jumătate, obțineți 5, înmulțiți 5 cu el însuși, scădeți 21 din produs, rămâne 4. Luați rădăcina lui 4, obțineți 2. Scădeți 2 din 5, voi obțineți 3, aceasta va fi rădăcina dorită. Sau adăugați 2 la 5, ceea ce va da 7, aceasta este și o rădăcină.

Tratatul al - Khorezmi este prima carte care a ajuns la noi, în care clasificarea ecuațiilor pătratice este formulată sistematic și sunt date formule pentru rezolvarea lor.

1.5 Ecuații cuadratice în Europa XIII - XVII secole

Formulele pentru rezolvarea ecuațiilor pătratice pe modelul lui al - Khorezmi în Europa au fost expuse pentru prima dată în „Cartea Abacului”, scrisă în 1202 de matematicianul italian Leonardo Fibonacci. Această lucrare voluminoasă, care reflectă influența matematicii, atât în ​​țările islamului, cât și în Grecia antică, se distinge atât prin completitudine, cât și prin claritatea prezentării. Autorul a dezvoltat în mod independent câteva exemple algebrice noi de rezolvare a problemelor și a fost primul din Europa care a abordat introducerea numerelor negative. Cartea sa a contribuit la răspândirea cunoștințelor algebrice nu numai în Italia, ci și în Germania, Franța și alte țări europene. Multe sarcini din „Cartea Abacului” au trecut în aproape toate manualele europene din secolele XVI-XVII. și parțial XVIII.

Regula generală pentru rezolvarea ecuațiilor pătratice reduse la o singură formă canonică:

x 2+ bx = cu,

pentru toate combinațiile posibile de semne ale coeficienților b , cu a fost formulată în Europa abia în 1544 de M. Stiefel.

Vieta are o derivație generală a formulei de rezolvare a unei ecuații pătratice, dar Vieta a recunoscut doar rădăcini pozitive. Matematicienii italieni Tartaglia, Cardano, Bombelli au fost printre primii în secolul al XVI-lea. Luați în considerare, pe lângă rădăcinile pozitive și negative. Abia în secolul al XVII-lea. Datorită muncii lui Girard, Descartes, Newton și alți oameni de știință, modul de rezolvare a ecuațiilor pătratice capătă un aspect modern.

1.6 Despre teorema lui Vieta

Teorema care exprimă relația dintre coeficienții unei ecuații pătratice și rădăcinile acesteia, purtând numele de Vieta, a fost formulată de acesta pentru prima dată în 1591 astfel: „Dacă B + Dînmulțit cu A - A 2 , egal BD, apoi A egală LA si egali D ».

Pentru a înțelege Vieta, trebuie să ne amintim asta DAR, ca orice vocală, a însemnat pentru el necunoscutul (nostru X), vocalele LA, D- coeficienți pentru necunoscut. În limbajul algebrei moderne, formularea lui Vieta de mai sus înseamnă: dacă

(a + b )x - x 2 = ab ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Exprimând relația dintre rădăcinile și coeficienții ecuațiilor prin formule generale scrise cu ajutorul simbolurilor, Viet a stabilit uniformitate în metodele de rezolvare a ecuațiilor. Cu toate acestea, simbolismul Vietei este încă departe de forma sa modernă. El nu a recunoscut numerele negative și, prin urmare, la rezolvarea ecuațiilor, a luat în considerare doar cazurile în care toate rădăcinile sunt pozitive.

2. Metode de rezolvare a ecuaţiilor pătratice

Ecuațiile cuadratice sunt fundația pe care se sprijină maiestuosul edificiu al algebrei. Ecuațiile pătratice sunt utilizate pe scară largă în rezolvarea ecuațiilor și inegalităților trigonometrice, exponențiale, logaritmice, iraționale și transcendentale. Cu toții știm să rezolvăm ecuații patratice de la școală (clasa a 8-a) până la absolvire.

Sper că, după ce ați studiat acest articol, veți învăța cum să găsiți rădăcinile unei ecuații pătratice complete.

Cu ajutorul discriminantului se rezolvă doar ecuații pătratice complete; pentru rezolvarea ecuațiilor pătratice incomplete se folosesc alte metode, pe care le veți găsi în articolul „Rezolvarea ecuațiilor pătratice incomplete”.

Ce ecuații pătratice se numesc complete? Aceasta este ecuații de forma ax 2 + b x + c = 0, unde coeficienții a, b și c nu sunt egali cu zero. Deci, pentru a rezolva ecuația pătratică completă, trebuie să calculați discriminantul D.

D \u003d b 2 - 4ac.

În funcție de ce valoare are discriminantul, vom nota răspunsul.

Dacă discriminantul este un număr negativ (D< 0),то корней нет.

Dacă discriminantul este zero, atunci x \u003d (-b) / 2a. Când discriminantul este un număr pozitiv (D > 0),

atunci x 1 = (-b - √D)/2a și x 2 = (-b + √D)/2a.

De exemplu. rezolva ecuatia x 2– 4x + 4= 0.

D \u003d 4 2 - 4 4 \u003d 0

x = (- (-4))/2 = 2

Raspuns: 2.

Rezolvați ecuația 2 x 2 + x + 3 = 0.

D \u003d 1 2 - 4 2 3 \u003d - 23

Răspuns: fără rădăcini.

Rezolvați ecuația 2 x 2 + 5x - 7 = 0.

D \u003d 5 2 - 4 2 (-7) \u003d 81

x 1 \u003d (-5 - √81) / (2 2) \u003d (-5 - 9) / 4 \u003d - 3,5

x 2 \u003d (-5 + √81) / (2 2) \u003d (-5 + 9) / 4 \u003d 1

Răspuns: - 3,5; unu.

Deci, să ne imaginăm soluția ecuațiilor pătratice complete după schema din figura 1.

Aceste formule pot fi folosite pentru a rezolva orice ecuație pătratică completă. Trebuie doar să fii atent ecuația a fost scrisă ca un polinom de formă standard

A x 2 + bx + c, altfel poti face o greseala. De exemplu, scriind ecuația x + 3 + 2x 2 = 0, puteți decide în mod eronat că

a = 1, b = 3 și c = 2. Atunci

D \u003d 3 2 - 4 1 2 \u003d 1 și atunci ecuația are două rădăcini. Și acest lucru nu este adevărat. (Vezi exemplul 2 soluția de mai sus).

Prin urmare, dacă ecuația nu este scrisă ca un polinom al formei standard, mai întâi trebuie scrisă ecuația pătratică completă ca un polinom al formei standard (monomul cu cel mai mare exponent ar trebui să fie pe primul loc, adică A x 2 , apoi cu mai putin bx, iar apoi termenul liber cu.

La rezolvarea ecuației pătratice de mai sus și a ecuației pătratice cu un coeficient par pentru al doilea termen, pot fi folosite și alte formule. Să facem cunoștință cu aceste formule. Dacă în ecuația pătratică completă cu al doilea termen coeficientul este par (b = 2k), atunci ecuația poate fi rezolvată folosind formulele prezentate în diagrama din figura 2.

O ecuație pătratică completă se numește redusă dacă coeficientul la x 2 este egal cu unitatea și ecuația ia forma x 2 + px + q = 0. O astfel de ecuație poate fi dată de rezolvat sau se obține prin împărțirea tuturor coeficienților ecuației la coeficient A stând la x 2 .

Figura 3 prezintă o diagramă a soluției pătratului redus
ecuații. Luați în considerare exemplul aplicării formulelor discutate în acest articol.

Exemplu. rezolva ecuatia

3x 2 + 6x - 6 = 0.

Să rezolvăm această ecuație folosind formulele prezentate în figura 1.

D \u003d 6 2 - 4 3 (- 6) \u003d 36 + 72 \u003d 108

√D = √108 = √(36 3) = 6√3

x 1 \u003d (-6 - 6 √ 3) / (2 3) \u003d (6 (-1- √ (3))) / 6 \u003d -1 - √ 3

x 2 \u003d (-6 + 6 √ 3) / (2 3) \u003d (6 (-1 + √ (3))) / 6 \u003d -1 + √ 3

Răspuns: -1 - √3; –1 + √3

Puteți vedea că coeficientul de la x din această ecuație este un număr par, adică b \u003d 6 sau b \u003d 2k, de unde k \u003d 3. Apoi, să încercăm să rezolvăm ecuația folosind formulele prezentate în diagrama figură D 1 \u003d 3 2 - 3 (- 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 \u003d (-3 - 3√3) / 3 \u003d (3 (-1 - √ (3))) / 3 \u003d - 1 - √3

x 2 \u003d (-3 + 3√3) / 3 \u003d (3 (-1 + √ (3))) / 3 \u003d - 1 + √3

Răspuns: -1 - √3; –1 + √3. Observând că toți coeficienții din această ecuație pătratică sunt divizibili cu 3 și împărțind, obținem ecuația pătratică redusă x 2 + 2x - 2 = 0 Rezolvăm această ecuație folosind formulele pentru ecuația pătratică redusă.
ecuații figura 3.

D 2 \u003d 2 2 - 4 (- 2) \u003d 4 + 8 \u003d 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 \u003d (-2 - 2√3) / 2 \u003d (2 (-1 - √ (3))) / 2 \u003d - 1 - √3

x 2 \u003d (-2 + 2 √ 3) / 2 \u003d (2 (-1 + √ (3))) / 2 \u003d - 1 + √ 3

Răspuns: -1 - √3; –1 + √3.

După cum puteți vedea, atunci când rezolvăm această ecuație folosind formule diferite, am primit același răspuns. Prin urmare, stăpânind bine formulele prezentate în diagrama din figura 1, puteți rezolva oricând orice ecuație pătratică completă.

site, cu copierea integrală sau parțială a materialului, este necesară un link către sursă.