Rezolvarea derivatelor complexe cu o soluție. Derivată de funcție

Dacă urmărim definiția, atunci derivata unei funcții într-un punct este limita raportului de creștere a funcției Δ y la incrementul argumentului Δ X:

Totul pare a fi clar. Dar încercați să calculați prin această formulă, să zicem, derivata funcției f(X) = X 2 + (2X+ 3) · e X păcat X. Dacă faci totul prin definiție, atunci după câteva pagini de calcule vei adormi pur și simplu. Prin urmare, există modalități mai simple și mai eficiente.

Pentru început, observăm că așa-numitele funcții elementare pot fi distinse de întreaga varietate de funcții. Acestea sunt expresii relativ simple, ale căror derivate au fost mult timp calculate și introduse în tabel. Astfel de funcții sunt destul de ușor de reținut, împreună cu derivatele lor.

Derivate ale funcţiilor elementare

Funcțiile elementare sunt toate enumerate mai jos. Derivatele acestor funcții trebuie cunoscute pe de rost. Mai mult, nu este greu să le memorezi - de aceea sunt elementare.

Deci, derivatele funcțiilor elementare:

Nume Funcţie Derivat
Constant f(X) = C, CR 0 (da, da, zero!)
Gradul cu exponent rațional f(X) = X n n · X n − 1
Sinusul f(X) = păcat X cos X
Cosinus f(X) = cos X − păcat X(minus sinus)
Tangentă f(X) = tg X 1/cos 2 X
Cotangentă f(X) = ctg X − 1/sin2 X
logaritmul natural f(X) = jurnal X 1/X
Logaritmul arbitrar f(X) = jurnal A X 1/(X ln A)
Functie exponentiala f(X) = e X e X(Nimic nu s-a schimbat)

Dacă o funcție elementară este înmulțită cu o constantă arbitrară, atunci derivata noii funcție este de asemenea ușor de calculată:

(C · f)’ = C · f ’.

În general, constantele pot fi scoase din semnul derivatei. De exemplu:

(2X 3)' = 2 ( X 3)' = 2 3 X 2 = 6X 2 .

Evident, funcțiile elementare pot fi adăugate între ele, multiplicate, împărțite și multe altele. Așa vor apărea funcții noi, nu prea elementare, dar și diferențiabile după anumite reguli. Aceste reguli sunt discutate mai jos.

Derivată a sumei și diferenței

Lasă funcțiile f(X) și g(X), ale căror derivate ne sunt cunoscute. De exemplu, puteți lua funcțiile elementare discutate mai sus. Apoi puteți găsi derivata sumei și diferenței acestor funcții:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Deci, derivata sumei (diferența) a două funcții este egală cu suma (diferența) derivatelor. Pot exista mai mulți termeni. De exemplu, ( f + g + h)’ = f ’ + g ’ + h ’.

Strict vorbind, nu există un concept de „scădere” în algebră. Există un concept de „element negativ”. Prin urmare, diferența fg poate fi rescris ca o sumă f+ (−1) g, iar apoi rămâne o singură formulă - derivata sumei.

f(X) = X 2 + sinx; g(X) = X 4 + 2X 2 − 3.

Funcţie f(X) este suma a două funcții elementare, deci:

f ’(X) = (X 2+ păcat X)’ = (X 2)' + (păcat X)’ = 2X+ cosx;

Argumentăm în mod similar pentru funcție g(X). Numai că există deja trei termeni (din punct de vedere al algebrei):

g ’(X) = (X 4 + 2X 2 − 3)’ = (X 4 + 2X 2 + (−3))’ = (X 4)’ + (2X 2)’ + (−3)’ = 4X 3 + 4X + 0 = 4X · ( X 2 + 1).

Răspuns:
f ’(X) = 2X+ cosx;
g ’(X) = 4X · ( X 2 + 1).

Derivat al unui produs

Matematica este o știință logică, așa că mulți oameni cred că, dacă derivata sumei este egală cu suma derivatelor, atunci derivata produsului grevă„\u003e egal cu produsul derivatelor. Dar smochine pentru tine! Derivatul produsului este calculat folosind o formulă complet diferită. Și anume:

(f · g) ’ = f ’ · g + f · g

Formula este simplă, dar adesea uitată. Și nu numai școlari, ci și elevi. Rezultatul este probleme rezolvate incorect.

Sarcină. Găsiți derivate ale funcțiilor: f(X) = X 3 cosx; g(X) = (X 2 + 7X− 7) · e X .

Funcţie f(X) este un produs al două funcții elementare, deci totul este simplu:

f ’(X) = (X 3 cos X)’ = (X 3)' cos X + X 3 (cos X)’ = 3X 2 cos X + X 3 (−sin X) = X 2 (3cos XX păcat X)

Funcţie g(X) primul multiplicator este puțin mai complicat, dar schema generală nu se schimbă de la aceasta. Evident, primul multiplicator al funcției g(X) este un polinom, iar derivata sa este derivata sumei. Noi avem:

g ’(X) = ((X 2 + 7X− 7) · e X)’ = (X 2 + 7X− 7)' · e X + (X 2 + 7X− 7) ( e X)’ = (2X+ 7) · e X + (X 2 + 7X− 7) · e X = e X(2 X + 7 + X 2 + 7X −7) = (X 2 + 9X) · e X = X(X+ 9) · e X .

Răspuns:
f ’(X) = X 2 (3cos XX păcat X);
g ’(X) = X(X+ 9) · e X .

Rețineți că în ultimul pas, derivata este factorizată. Formal, acest lucru nu este necesar, dar majoritatea derivatelor nu sunt calculate singure, ci pentru a explora funcția. Aceasta înseamnă că în continuare derivata va fi egalată cu zero, semnele sale vor fi găsite și așa mai departe. Pentru un astfel de caz, este mai bine să aveți o expresie descompusă în factori.

Dacă există două funcții f(X) și g(X), și g(X) ≠ 0 pe mulțimea care ne interesează, putem defini o nouă funcție h(X) = f(X)/g(X). Pentru o astfel de funcție, puteți găsi și derivata:

Nu slab, nu? De unde a venit minusul? De ce g 2? Dar așa! Aceasta este una dintre cele mai complexe formule - nu vă puteți da seama fără o sticlă. Prin urmare, este mai bine să-l studiați cu exemple specifice.

Sarcină. Găsiți derivate ale funcțiilor:

Există funcții elementare în numărătorul și numitorul fiecărei fracții, deci tot ce ne trebuie este formula pentru derivata coeficientului:


Prin tradiție, factorăm numărătorul în factori - acest lucru va simplifica foarte mult răspunsul:

O funcție complexă nu este neapărat o formulă lungă de jumătate de kilometru. De exemplu, este suficient să luăm funcția f(X) = păcat Xși înlocuiți variabila X, să zicem, pe X 2+ln X. Se dovedește f(X) = păcat ( X 2+ln X) este o funcție complexă. Ea are și un derivat, dar nu va funcționa să-l găsești conform regulilor discutate mai sus.

Cum să fii? În astfel de cazuri, înlocuirea unei variabile și formula pentru derivata unei funcții complexe ajută:

f ’(X) = f ’(t) · t', dacă X este înlocuit cu t(X).

De regulă, situația cu înțelegerea acestei formule este și mai tristă decât cu derivata coeficientului. Prin urmare, este mai bine să-l explicați cu exemple specifice, cu o descriere detaliată a fiecărui pas.

Sarcină. Găsiți derivate ale funcțiilor: f(X) = e 2X + 3 ; g(X) = păcat ( X 2+ln X)

Rețineți că dacă în funcție f(X) în loc de expresia 2 X+ 3 va fi ușor X, atunci obținem o funcție elementară f(X) = e X. Prin urmare, facem o substituție: fie 2 X + 3 = t, f(X) = f(t) = e t. Căutăm derivata unei funcții complexe prin formula:

f ’(X) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Și acum - atenție! Efectuarea unei înlocuiri inverse: t = 2X+ 3. Obținem:

f ’(X) = e t · t ’ = e 2X+ 3 (2 X + 3)’ = e 2X+ 3 2 = 2 e 2X + 3

Acum să ne uităm la funcție g(X). Evident că trebuie înlocuit. X 2+ln X = t. Noi avem:

g ’(X) = g ’(t) · t' = (păcat t)’ · t' = cos t · t

Înlocuire inversă: t = X 2+ln X. Apoi:

g ’(X) = cos( X 2+ln X) · ( X 2+ln X)' = cos ( X 2+ln X) · (2 X + 1/X).

Asta e tot! După cum se poate observa din ultima expresie, întreaga problemă a fost redusă la calcularea derivatei sumei.

Răspuns:
f ’(X) = 2 e 2X + 3 ;
g ’(X) = (2X + 1/X) cos ( X 2+ln X).

Foarte des în lecțiile mele, în locul termenului „derivat”, folosesc cuvântul „accident vascular cerebral”. De exemplu, cursa sumei este egală cu suma curselor. Este mai clar? Asta e bine.

Astfel, calculul derivatei se rezumă la a scăpa chiar de aceste lovituri conform regulilor discutate mai sus. Ca exemplu final, să revenim la puterea derivată cu un exponent rațional:

(X n)’ = n · X n − 1

Puțini știu asta în rol n poate fi un număr fracționar. De exemplu, rădăcina este X 0,5 . Dar dacă există ceva complicat sub rădăcină? Din nou, se va dovedi o funcție complexă - le place să ofere astfel de construcții în teste și examene.

Sarcină. Aflați derivata unei funcții:

Mai întâi, să rescriem rădăcina ca o putere cu un exponent rațional:

f(X) = (X 2 + 8X − 7) 0,5 .

Acum facem o înlocuire: let X 2 + 8X − 7 = t. Găsim derivata prin formula:

f ’(X) = f ’(t) · t ’ = (t 0,5)' t' = 0,5 t−0,5 t ’.

Facem o substituție inversă: t = X 2 + 8X− 7. Avem:

f ’(X) = 0,5 ( X 2 + 8X− 7) −0,5 ( X 2 + 8X− 7)' = 0,5 (2 X+ 8) ( X 2 + 8X − 7) −0,5 .

În sfârșit, înapoi la rădăcini:

Funcțiile complexe nu se potrivesc întotdeauna cu definiția unei funcții complexe. Dacă există o funcție de forma y \u003d sin x - (2 - 3) a r c t g x x 5 7 x 10 - 17 x 3 + x - 11, atunci nu poate fi considerată complexă, spre deosebire de y \u003d sin 2 x.

Acest articol va arăta conceptul de funcție complexă și identificarea acesteia. Să lucrăm cu formule pentru găsirea derivatei cu exemple de soluții în concluzie. Utilizarea tabelului de derivate și a regulilor de diferențiere reduc semnificativ timpul de găsire a derivatei.

Definiții de bază

Definiția 1

O funcție complexă este o funcție al cărei argument este și o funcție.

Se notează astfel: f (g (x)) . Avem că funcția g (x) este considerată un argument f (g (x)) .

Definiția 2

Dacă există o funcție f și este o funcție cotangentă, atunci g(x) = ln x este funcția logaritmului natural. Obținem că funcția complexă f (g (x)) va fi scrisă ca arctg (lnx). Sau o funcție f, care este o funcție ridicată la a 4-a putere, unde g (x) \u003d x 2 + 2 x - 3 este considerată o funcție rațională întreagă, obținem că f (g (x)) \u003d (x 2 + 2 x - 3) 4 .

Evident, g(x) poate fi complicat. Din exemplul y \u003d sin 2 x + 1 x 3 - 5, se poate observa că valoarea lui g are o rădăcină cubă cu o fracție. Această expresie poate fi notată ca y = f (f 1 (f 2 (x))) . De unde avem că f este o funcție sinus, iar f 1 este o funcție situată sub rădăcina pătrată, f 2 (x) \u003d 2 x + 1 x 3 - 5 este o funcție rațională fracțională.

Definiția 3

Gradul de cuibărit este definit de orice număr natural și se scrie ca y = f (f 1 (f 2 (f 3 (. . . . (f n (x)))))) .

Definiția 4

Conceptul de compoziție a funcției se referă la numărul de funcții imbricate conform enunțului problemei. Pentru soluție, formula pentru găsirea derivatei unei funcții complexe a formei

(f(g(x)))"=f"(g(x)) g"(x)

Exemple

Exemplul 1

Aflați derivata unei funcții complexe de forma y = (2 x + 1) 2 .

Decizie

Prin convenție, f este o funcție la pătrat, iar g(x) = 2 x + 1 este considerată o funcție liniară.

Aplicam formula derivata pentru o functie complexa si scriem:

f "(g (x)) = ((g (x)) 2) " = 2 (g (x)) 2 - 1 = 2 g (x) = 2 (2 x + 1) ; g "(x) = (2x + 1)" = (2x)" + 1" = 2 x" + 0 = 2 1 x 1 - 1 = 2 ⇒ (f(g(x))) "=f" ( g(x)) g"(x) = 2 (2x + 1) 2 = 8x + 4

Este necesar să găsiți o derivată cu o formă inițială simplificată a funcției. Primim:

y = (2x + 1) 2 = 4x2 + 4x + 1

Prin urmare, avem asta

y"=(4x2+4x+1)"=(4x2)"+(4x)"+1"=4(x2)"+4(x)"+0==4 2 x 2 - 1 + 4 1 x 1 - 1 = 8 x + 4

Rezultatele s-au potrivit.

Atunci când rezolvăm probleme de acest fel, este important să înțelegem unde va fi localizată funcția formei f și g (x).

Exemplul 2

Ar trebui să găsiți derivatele funcțiilor complexe de forma y \u003d sin 2 x și y \u003d sin x 2.

Decizie

Prima intrare a funcției spune că f este funcția de pătrat și g(x) este funcția sinus. Atunci obținem asta

y "= (sin 2 x)" = 2 sin 2 - 1 x (sin x)" = 2 sin x cos x

A doua intrare arată că f este o funcție sinus, iar g (x) = x 2 denotă funcția de putere. Rezultă că produsul unei funcții complexe poate fi scris ca

y " \u003d (sin x 2) " \u003d cos (x 2) (x 2) " \u003d cos (x 2) 2 x 2 - 1 \u003d 2 x cos (x 2)

Formula pentru derivata y \u003d f (f 1 (f 2 (f 3 (. . . (f n (x)))))) va fi scrisă ca y "= f" (f 1 (f 2 (f 3) (. . . . ( f n (x))))) f 1 "(f 2 (f 3 (. . . (f n (x))))) f 2 " (f 3 (. . . (f n (x)) )) )) . . . f n "(x)

Exemplul 3

Aflați derivata funcției y = sin (ln 3 a r c t g (2 x)) .

Decizie

Acest exemplu arată complexitatea scrierii și determinării locației funcțiilor. Atunci y \u003d f (f 1 (f 2 (f 3 (f 4 (x))))) indică, unde f , f 1 , f 2 , f 3 , f 4 (x) este funcția sinus, funcția de ridicare la 3 grade, o funcție cu un logaritm și baza e, o funcție de arc tangente și una liniară.

Din formula pentru definirea unei funcții complexe, avem că

y "= f" (f 1 (f 2 (f 3 (f 4 (x))))) f 1 "(f 2 (f 3 (f 4 (x)))) f 2 "(f 3 (f) 4 (x))) f 3 "(f 4 (x)) f 4" (x)

Obține ce să găsești

  1. f "(f 1 (f 2 (f 3 (f 4 (x))))) ca derivată a sinusului în tabelul derivatelor, apoi f "(f 1 (f 2 (f 3 (f 4 (x) ))))) ) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 "(f 2 (f 3 (f 4 (x)))) ca derivată a unei funcții de putere, apoi f 1 "(f 2 (f 3 (f 4 (x)))) = 3 ln 3 - 1 a r c t g (2 x) = 3 ln 2 a r c t g (2 x) .
  3. f 2 "(f 3 (f 4 (x))) ca derivată logaritmică, apoi f 2 "(f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 "(f 4 (x)) ca derivată a arc-tangentei, apoi f 3 "(f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2.
  5. Când găsiți derivata f 4 (x) \u003d 2 x, scoateți 2 din semnul derivatei folosind formula pentru derivata funcției de putere cu un exponent care este 1, apoi f 4 "(x) \u003d ( 2 x)" \u003d 2 x "\u003d 2 · 1 · x 1 - 1 = 2 .

Combinăm rezultatele intermediare și obținem asta

y "= f" (f 1 (f 2 (f 3 (f 4 (x))))) f 1 "(f 2 (f 3 (f 4 (x)))) f 2 "(f 3 (f) 4 (x))) f 3 "(f 4 (x)) f 4" (x) = = cos (ln 3 a r c t g (2 x)) 3 ln 2 a r c t g (2 x) 1 a r c t g (2 x) 1 1 + 4 x 2 2 = = 6 cos (ln 3 a r c t g (2 x)) ln 2 a r c t g (2 x) a r c t g (2 x) (1 + 4 x 2)

Analiza unor astfel de funcții seamănă cu păpușile de cuib. Regulile de diferențiere nu pot fi întotdeauna aplicate explicit folosind un tabel derivat. Adesea trebuie să aplicați formula pentru găsirea derivatelor funcțiilor complexe.

Există unele diferențe între o vedere complexă și o funcție complexă. Cu o capacitate clară de a distinge acest lucru, găsirea derivatelor va fi deosebit de ușoară.

Exemplul 4

Este necesar să luăm în considerare aducerea unui astfel de exemplu. Dacă există o funcție de forma y = t g 2 x + 3 t g x + 1 , atunci poate fi considerată ca o funcție complexă de forma g (x) = t g x , f (g) = g 2 + 3 g + 1 . Evident, este necesar să se aplice formula pentru derivatul complex:

f "(g (x)) \u003d (g 2 (x) + 3 g (x) + 1) " \u003d (g 2 (x)) " + (3 g (x)) " + 1 " == 2 g 2 - 1 (x) + 3 g "(x) + 0 \u003d 2 g (x) + 3 1 g 1 - 1 (x) \u003d \u003d 2 g (x) + 3 \u003d 2 t g x + 3; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f " (g (x)) g " (x) = (2 t g x + 3 ) 1 cos 2 x = 2 t g x + 3 cos 2 x

O funcție de forma y = t g x 2 + 3 t g x + 1 nu este considerată complexă, deoarece are suma t g x 2 , 3 t g x și 1 . Cu toate acestea, t g x 2 este considerată o funcție complexă, atunci obținem o funcție de putere de forma g (x) \u003d x 2 și f, care este o funcție a tangentei. Pentru a face acest lucru, trebuie să faceți diferența în funcție de cantitate. Înțelegem asta

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Să trecem la găsirea derivatei unei funcții complexe (t g x 2) ":

f „(g (x)) = (t g (g (x)))” = 1 cos 2 g (x) = 1 cos 2 (x 2) g „(x) = (x 2)” = 2 x 2 - 1 \u003d 2 x ⇒ (t g x 2) " \u003d f " (g (x)) g " (x) \u003d 2 x cos 2 (x 2)

Obținem că y "= (t g x 2 + 3 t g x + 1)" = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Funcțiile complexe pot fi incluse în funcții complexe, iar funcțiile complexe în sine pot fi funcții complexe ale formei complexe.

Exemplul 5

De exemplu, să considerăm o funcție complexă de forma y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1)

Această funcție poate fi reprezentată ca y = f (g (x)), unde valoarea lui f este o funcție a logaritmului de bază 3, iar g (x) este considerată suma a două funcții de forma h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 și k (x) = ln 2 x (x 2 + 1) . Evident, y = f (h (x) + k (x)) .

Se consideră funcția h(x) . Acesta este raportul dintre l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 la m (x) = e x 2 + 3 3

Avem că l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) este suma a două funcții n (x) = x 2 + 7 și p ( x) \u003d 3 cos 3 (2 x + 1) , unde p (x) \u003d 3 p 1 (p 2 (p 3 (x))) este o funcție complexă cu un coeficient numeric de 3, iar p 1 este o funcție cub, p 2 funcție cosinus, p 3 (x) = 2 x + 1 - funcție liniară.

Am constatat că m (x) = e x 2 + 3 3 = q (x) + r (x) este suma a două funcții q (x) = e x 2 și r (x) = 3 3 , unde q (x) = q 1 (q 2 (x)) este o funcție complexă, q 1 este o funcție cu exponent, q 2 (x) = x 2 este o funcție de putere.

Aceasta arată că h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 p 1 (p 2 ( p 3) (x))) q 1 (q 2 (x)) + r (x)

Când treceți la o expresie de forma k (x) \u003d ln 2 x (x 2 + 1) \u003d s (x) t (x), este clar că funcția este reprezentată ca un complex s (x) \ u003d ln 2 x \u003d s 1 ( s 2 (x)) cu întreg rațional t (x) = x 2 + 1, unde s 1 este funcția de pătrat și s 2 (x) = ln x este logaritmică cu baza e .

Rezultă că expresia va lua forma k (x) = s (x) t (x) = s 1 (s 2 (x)) t (x) .

Atunci obținem asta

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) = = f n (x) + 3 p 1 (p 2 (p 3 ( x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) t (x)

Conform structurilor funcției, a devenit clar cum și ce formule trebuie aplicate pentru a simplifica expresia atunci când este diferențiată. Pentru a vă familiariza cu astfel de probleme și pentru a înțelege soluția lor, este necesar să ne referim la punctul diferențierii unei funcții, adică găsirea derivatei acesteia.

Dacă observați o greșeală în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

Și teorema asupra derivatei unei funcții complexe, a cărei formulare este următoarea:

Fie 1) funcția $u=\varphi (x)$ are o derivată $u_(x)"=\varphi"(x_0)$ la un moment dat $x_0$, 2) funcția $y=f(u)$ are în punctul corespunzător $u_0=\varphi (x_0)$ derivata $y_(u)"=f"(u)$. Atunci funcția complexă $y=f\left(\varphi (x) \right)$ la punctul menționat va avea și o derivată egală cu produsul derivatelor funcțiilor $f(u)$ și $\varphi ( x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

sau, într-o notație mai scurtă: $y_(x)"=y_(u)"\cdot u_(x)"$.

În exemplele acestei secțiuni, toate funcțiile au forma $y=f(x)$ (adică, considerăm doar funcțiile unei variabile $x$). În consecință, în toate exemplele, derivata $y"$ este luată în raport cu variabila $x$. Pentru a sublinia faptul că derivata este luată în raport cu variabila $x$, se scrie adesea $y"_x$ în loc de $ y"$.

Exemplele #1, #2 și #3 oferă un proces detaliat pentru găsirea derivatei funcțiilor complexe. Exemplul nr. 4 este destinat pentru o înțelegere mai completă a tabelului derivatelor și este logic să vă familiarizați cu acesta.

Este recomandabil, după studierea materialului din exemplele nr. 1-3, să se treacă la rezolvarea independentă a exemplelor nr. 5, nr. 6 și nr. 7. Exemplele #5, #6 și #7 conțin o soluție scurtă, astfel încât cititorul să poată verifica corectitudinea rezultatului său.

Exemplul #1

Aflați derivata funcției $y=e^(\cos x)$.

Trebuie să găsim derivata funcției complexe $y"$. Deoarece $y=e^(\cos x)$, atunci $y"=\left(e^(\cos x)\right)"$. Pentru găsiți derivata $ \left(e^(\cos x)\right)"$ utilizați formula #6 din tabelul derivatelor. Pentru a utiliza formula nr. 6, trebuie să țineți cont de faptul că în cazul nostru $u=\cos x$. Soluția ulterioară constă într-o înlocuire banală a expresiei $\cos x$ în loc de $u$ în formula nr. 6:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Acum trebuie să găsim valoarea expresiei $(\cos x)"$. Ne întoarcem din nou la tabelul derivatelor, alegând formula nr. 10 din el. Înlocuind $u=x$ în formula nr. 10, avem : $(\cos x)"=-\ sin x\cdot x"$. Acum continuăm egalitatea (1.1), completând-o cu rezultatul găsit:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Deoarece $x"=1$, continuăm egalitatea (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Deci, din egalitatea (1.3) avem: $y"=-\sin x\cdot e^(\cos x)$. Desigur, explicațiile și egalitățile intermediare sunt de obicei sărite, scriind derivata pe o singură linie, ca în egalitate. ( 1.3) Deci, derivata funcției complexe a fost găsită, rămâne doar să notăm răspunsul.

Răspuns: $y"=-\sin x\cdot e^(\cos x)$.

Exemplul #2

Aflați derivata funcției $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

Trebuie să calculăm derivata $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Pentru început, observăm că constanta (adică numărul 9) poate fi scoasă din semnul derivatei:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Acum să trecem la expresia $\left(\arctg^(12)(4\cdot \ln x) \right)"$. Pentru a facilita selectarea formulei dorite din tabelul de derivate, voi prezenta expresia în cauză în această formă: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Acum este clar că este necesar să se folosească formula nr. 2, adică. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Înlocuiți $u=\arctg(4\cdot \ln x)$ și $\alpha=12$ în această formulă:

Completând egalitatea (2.1) cu rezultatul obținut, avem:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

În această situație, se face adesea o greșeală atunci când rezolvatorul de la primul pas alege formula $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ în locul formulei $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Ideea este că derivata funcției externe trebuie găsită mai întâi. Pentru a înțelege ce funcție va fi externă expresiei $\arctg^(12)(4\cdot 5^x)$, imaginați-vă că numărați valoarea expresiei $\arctg^(12)(4\cdot 5^ x)$ pentru o valoare de $x$. Mai întâi calculați valoarea de $5^x$, apoi înmulțiți rezultatul cu 4 pentru a obține $4\cdot 5^x$. Acum luăm arctangenta din acest rezultat, obținând $\arctg(4\cdot 5^x)$. Apoi ridicăm numărul rezultat la puterea a douăsprezecea, obținând $\arctg^(12)(4\cdot 5^x)$. Ultima acțiune, adică ridicarea la puterea de 12, - și va fi o funcție externă. Și de aici ar trebui să începem să găsim derivata, care a fost făcută în egalitate (2.2).

Acum trebuie să găsim $(\arctg(4\cdot \ln x))"$. Folosim formula nr. 19 din tabelul derivatelor, înlocuind $u=4\cdot \ln x$ în ea:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Să simplificăm puțin expresia rezultată, ținând cont de $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Egalitatea (2.2) va deveni acum:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Rămâne să găsim $(4\cdot \ln x)"$. Luăm constanta (adică 4) din semnul derivatei: $(4\cdot \ln x)"=4\cdot (\ln x )"$. Pentru a găsi $(\ln x)"$, folosim formula nr. 8, substituind $u=x$ în ea: $(\ln x)"=\frac(1)(x) \cdot x"$. Deoarece $x"=1$, atunci $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x ) $ Inlocuind rezultatul obtinut in formula (2.3), obtinem:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)).$ $

Permiteți-mi să vă reamintesc că derivata unei funcții complexe este cel mai adesea într-o singură linie, așa cum este scrisă în ultima egalitate. Prin urmare, atunci când faceți calcule sau teste standard, nu este deloc necesar să pictați soluția în același detaliu.

Răspuns: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Exemplul #3

Găsiți $y"$ a funcției $y=\sqrt(\sin^3(5\cdot9^x))$.

Mai întâi, să transformăm ușor funcția $y$ exprimând radicalul (rădăcină) ca putere: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9) ^x) \right)^(\frac(3)(7))$. Acum să începem să găsim derivata. Deoarece $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, atunci:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Folosim formula nr. 2 din tabelul derivatelor, substituind $u=\sin(5\cdot 9^x)$ și $\alpha=\frac(3)(7)$ în ea:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Continuăm egalitatea (3.1) folosind rezultatul obținut:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Acum trebuie să găsim $(\sin(5\cdot 9^x))"$. Pentru aceasta, folosim formula nr. 9 din tabelul de derivate, înlocuind $u=5\cdot 9^x$ în ea:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Completând egalitatea (3.2) cu rezultatul obținut, avem:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Rămâne să găsim $(5\cdot 9^x)"$. În primul rând, luăm constanta (numărul $5$) din semnul derivatei, adică $(5\cdot 9^x)"=5\ cdot (9^x) "$. Pentru a găsi derivata $(9^x)"$, aplicăm formula nr. 5 din tabelul de derivate, înlocuind în ea $a=9$ și $u=x$: $ (9^x)"=9^x\cdot \ ln9\cdot x"$. Deoarece $x"=1$, atunci $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Acum putem continua egalitatea (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Puteți reveni de la puteri la radicali (adică rădăcini) din nou scriind $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ ca $\frac(1 )(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\ cdot 9^) x)))$. Apoi derivata va fi scrisă sub următoarea formă:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))). $$

Răspuns: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

Exemplul #4

Arătați că formulele nr. 3 și nr. 4 din tabelul derivatelor sunt un caz special al formulei nr. 2 din acest tabel.

In formula nr.2 din tabelul derivatelor se scrie derivata functiei $u^\alpha$. Înlocuind $\alpha=-1$ în formula #2, obținem:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Deoarece $u^(-1)=\frac(1)(u)$ și $u^(-2)=\frac(1)(u^2)$, egalitatea (4.1) poate fi rescrisă după cum urmează: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Aceasta este formula numărul 3 din tabelul derivatelor.

Să revenim din nou la formula nr. 2 din tabelul derivatelor. Înlocuiți $\alpha=\frac(1)(2)$ în el:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Deoarece $u^(\frac(1)(2))=\sqrt(u)$ și $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1) )(2)))=\frac(1)(\sqrt(u))$, atunci egalitatea (4.2) poate fi rescrisă după cum urmează:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Egalitatea rezultată $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ este formula nr. 4 din tabelul derivatelor. După cum puteți vedea, formulele nr. 3 și nr. 4 din tabelul derivatelor sunt obținute din formula nr. 2 prin înlocuirea valorii corespunzătoare a $\alpha$.

Sunt date exemple de calculare a derivatelor folosind formula pentru derivata unei funcții complexe.

Conţinut

Vezi si: Dovada formulei pentru derivata unei funcții complexe

Formule de bază

Aici oferim exemple de calculare a derivatelor următoarelor funcții:
; ; ; ; .

Dacă o funcție poate fi reprezentată ca o funcție complexă în următoarea formă:
,
atunci derivata sa este determinată de formula:
.
În exemplele de mai jos, vom scrie această formulă în următoarea formă:
.
Unde .
Aici, indicele sau , situate sub semnul derivatei, denotă variabila în raport cu care se realizează diferențierea.

De obicei, în tabelele de derivate sunt date derivatele funcțiilor din variabila x. Cu toate acestea, x este un parametru formal. Variabila x poate fi înlocuită cu orice altă variabilă. Prin urmare, la diferențierea unei funcții de o variabilă , pur și simplu schimbăm, în tabelul derivatelor, variabila x în variabila u .

Exemple simple

Exemplul 1

Aflați derivata unei funcții complexe
.

Scriem funcția dată într-o formă echivalentă:
.
În tabelul derivatelor găsim:
;
.

Conform formulei pentru derivata unei funcții complexe, avem:
.
Aici .

Exemplul 2

Găsiți derivată
.

Scoatem constanta 5 dincolo de semnul derivatei și din tabelul derivatelor găsim:
.


.
Aici .

Exemplul 3

Găsiți derivata
.

Scoatem constanta -1 pentru semnul derivatei și din tabelul derivatelor găsim:
;
Din tabelul derivatelor găsim:
.

Aplicam formula pentru derivata unei functii complexe:
.
Aici .

Exemple mai complexe

În exemple mai complexe, aplicăm de mai multe ori regula de diferențiere a funcției compuse. Făcând acest lucru, calculăm derivata de la final. Adică, împărțim funcția în părțile sale componente și găsim derivatele celor mai simple părți folosind tabel de derivate. Aplicam si noi reguli de diferențiere a sumei, produse si fractii . Apoi facem substituții și aplicăm formula pentru derivata unei funcții complexe.

Exemplul 4

Găsiți derivata
.

Selectăm cea mai simplă parte a formulei și găsim derivata acesteia. .



.
Aici am folosit notația
.

Găsim derivata următoarei părți a funcției originale, aplicând rezultatele obținute. Aplicam regula de diferentiere a sumei:
.

Încă o dată, aplicăm regula diferențierii unei funcții complexe.

.
Aici .

Exemplul 5

Aflați derivata unei funcții
.

Selectăm cea mai simplă parte a formulei și găsim derivata acesteia din tabelul cu derivate. .

Aplicam regula de diferentiere a unei functii complexe.
.
Aici
.

Diferențiem partea următoare, aplicând rezultatele obținute.
.
Aici
.

Să diferențiem următoarea parte.

.
Aici
.

Acum găsim derivata funcției dorite.

.
Aici
.

Vezi si:

În această lecție, vom învăța cum să găsim derivata unei functii complexe. Lecția este o continuare logică a lecției Cum să găsesc derivatul?, pe care am analizat cele mai simple derivate și, de asemenea, ne-am familiarizat cu regulile de diferențiere și unele metode tehnice de găsire a derivatelor. Astfel, dacă nu ești foarte bun cu derivatele de funcții sau unele puncte din acest articol nu sunt în totalitate clare, atunci citește mai întâi lecția de mai sus. Vă rugăm să acordați o dispoziție serioasă - materialul nu este ușor, dar voi încerca totuși să îl prezint simplu și clar.

În practică, trebuie să te ocupi de derivata unei funcții complexe foarte des, chiar aș spune aproape întotdeauna, când ți se dau sarcini să găsești derivate.

Ne uităm în tabel la regula (nr. 5) pentru diferențierea unei funcții complexe:

Noi înțelegem. În primul rând, să aruncăm o privire asupra notației. Aici avem două funcții - și , iar funcția, la figurat vorbind, este imbricată în funcția . O funcție de acest fel (când o funcție este imbricată în alta) se numește funcție complexă.

Voi apela funcția functie externa, și funcția – funcție interioară (sau imbricată)..

! Aceste definiții nu sunt teoretice și nu ar trebui să apară în proiectarea finală a sarcinilor. Folosesc expresiile informale „funcție externă”, funcție „internă” doar pentru a vă facilita înțelegerea materialului.

Pentru a clarifica situația, luați în considerare:

Exemplul 1

Aflați derivata unei funcții

Sub sinus, nu avem doar litera „x”, ci întreaga expresie, deci găsirea imediată a derivatei din tabel nu va funcționa. De asemenea, observăm că este imposibil să aplicați primele patru reguli aici, pare să existe o diferență, dar adevărul este că este imposibil să „sfiți” sinusul:

În acest exemplu, deja din explicațiile mele, este intuitiv clar că funcția este o funcție complexă, iar polinomul este o funcție internă (încorporare) și o funcție externă.

Primul pas, care trebuie efectuată atunci când găsirea derivatei unei funcții complexe este să înțelegeți ce funcție este internă și care este externă.

În cazul exemplelor simple, pare clar că un polinom este imbricat sub sinus. Dar dacă nu este evident? Cum să determinați exact ce funcție este externă și care este internă? Pentru a face acest lucru, vă propun să folosiți următoarea tehnică, care poate fi efectuată mental sau pe ciornă.

Să ne imaginăm că trebuie să calculăm valoarea expresiei cu un calculator (în loc de unul, poate exista orice număr).

Ce calculăm mai întâi? în primul rând va trebui să efectuați următoarea acțiune: , deci polinomul va fi o funcție internă:

În al doilea rând va trebui să găsiți, deci sinusul - va fi o funcție externă:

După ce noi A INTELEGE Cu funcții interioare și exterioare, este timpul să aplici regula de diferențiere a funcției compuse.

Începem să decidem. De la lecție Cum să găsesc derivatul? ne amintim că proiectarea soluției oricărei derivate începe întotdeauna astfel - includem expresia între paranteze și punem o contur în dreapta sus:

La început găsim derivata funcției externe (sinus), ne uităm la tabelul derivatelor funcțiilor elementare și observăm că . Toate formulele tabelare sunt aplicabile chiar dacă „x” este înlocuit cu o expresie complexă, în acest caz:

Rețineți că funcția interioară nu s-a schimbat, nu o atingem.

Ei bine, este destul de evident că

Rezultatul final al aplicării formulei arată astfel:

Factorul constant este de obicei plasat la începutul expresiei:

Dacă există vreo neînțelegere, notați decizia pe hârtie și citiți din nou explicațiile.

Exemplul 2

Aflați derivata unei funcții

Exemplul 3

Aflați derivata unei funcții

Ca întotdeauna, scriem:

Ne dăm seama unde avem o funcție externă și unde este una internă. Pentru a face acest lucru, încercăm (mental sau pe o schiță) să calculăm valoarea expresiei pentru . Ce trebuie făcut mai întâi? În primul rând, trebuie să calculați cu ce baza este egală:, ceea ce înseamnă că polinomul este funcția internă:

Și, numai atunci se realizează exponențiarea, prin urmare, funcția de putere este o funcție externă:

Conform formulei, mai întâi trebuie să găsiți derivata funcției externe, în acest caz, gradul. Căutăm formula dorită în tabel:. Repetăm ​​din nou: orice formulă tabelară este valabilă nu numai pentru „x”, ci și pentru o expresie complexă. Astfel, rezultatul aplicării regulii de diferențiere a unei funcții complexe este următorul:

Subliniez din nou că atunci când luăm derivata funcției exterioare, funcția interioară nu se modifică:

Acum rămâne să găsiți o derivată foarte simplă a funcției interioare și să „pieptănați” puțin rezultatul:

Exemplul 4

Aflați derivata unei funcții

Acesta este un exemplu de auto-rezolvare (răspuns la sfârșitul lecției).

Pentru a consolida înțelegerea derivatei unei funcții complexe, voi da un exemplu fără comentarii, încercați să vă dați seama singur, raționați, unde este externul și unde este funcția internă, de ce sarcinile sunt rezolvate astfel?

Exemplul 5

a) Aflați derivata unei funcții

b) Aflați derivata funcției

Exemplul 6

Aflați derivata unei funcții

Aici avem o rădăcină, iar pentru a diferenția rădăcina, aceasta trebuie reprezentată ca un grad. Astfel, mai întâi aducem funcția în forma potrivită pentru diferențiere:

Analizând funcția, ajungem la concluzia că suma a trei termeni este o funcție internă, iar exponențiația este o funcție externă. Aplicam regula de diferentiere a unei functii complexe:

Gradul este din nou reprezentat ca un radical (rădăcină), iar pentru derivata funcției interne, aplicăm o regulă simplă de diferențiere a sumei:

Gata. De asemenea, puteți aduce expresia la un numitor comun între paranteze și scrieți totul ca o fracție. Este frumos, desigur, dar atunci când se obțin derivate lungi greoaie, este mai bine să nu faci acest lucru (este ușor să te confuzi, să faci o greșeală inutilă și profesorul va fi incomod să verifice).

Exemplul 7

Aflați derivata unei funcții

Acesta este un exemplu de auto-rezolvare (răspuns la sfârșitul lecției).

Este interesant de observat că uneori, în loc de regula de diferențiere a unei funcții complexe, se poate folosi regula de diferențiere a unui coeficient. , dar o astfel de soluție ar arăta ca o perversiune amuzantă. Iată un exemplu tipic:

Exemplul 8

Aflați derivata unei funcții

Aici puteți folosi regula de diferențiere a coeficientului , dar este mult mai profitabil să găsim derivata prin regula de diferențiere a unei funcții complexe:

Pregătim funcția pentru diferențiere - scoatem semnul minus al derivatei și ridicăm cosinusul la numărător:

Cosinusul este o funcție internă, exponențiația este o funcție externă.
Să folosim regula noastră:

Găsim derivata funcției interioare, resetăm cosinusul înapoi în jos:

Gata. În exemplul luat în considerare, este important să nu vă confundați în semne. Apropo, încercați să o rezolvați cu regula , răspunsurile trebuie să se potrivească.

Exemplul 9

Aflați derivata unei funcții

Acesta este un exemplu de auto-rezolvare (răspuns la sfârșitul lecției).

Până acum, am luat în considerare cazurile în care am avut un singur cuib într-o funcție complexă. În sarcinile practice, puteți găsi adesea derivate, în care, precum păpușile de cuibărit, una în cealaltă, 3 sau chiar 4-5 funcții sunt imbricate deodată.

Exemplul 10

Aflați derivata unei funcții

Înțelegem atașamentele acestei funcții. Încercăm să evaluăm expresia folosind valoarea experimentală. Cum am conta pe un calculator?

Mai întâi trebuie să găsiți, ceea ce înseamnă că arcsinusul este cel mai adânc cuib:

Acest arcsinus al unității ar trebui apoi să fie la pătrat:

Și, în sfârșit, îi ridicăm pe cei șapte la putere:

Adică, în acest exemplu avem trei funcții diferite și două imbricare, în timp ce funcția cea mai interioară este arcsinus, iar funcția cea mai exterioară este funcția exponențială.

Începem să decidem

Conform regulii, mai întâi trebuie să luați derivata funcției externe. Ne uităm la tabelul de derivate și aflăm derivata funcției exponențiale: Singura diferență este că în loc de „x” avem o expresie complexă, care nu anulează validitatea acestei formule. Deci, rezultatul aplicării regulii de diferențiere a unei funcții complexe este următorul:

Sub liniuță, avem din nou o funcție dificilă! Dar deja este mai ușor. Este ușor de observat că funcția interioară este arcsinus și funcția exterioară este gradul. Conform regulii de diferențiere a unei funcții complexe, mai întâi trebuie să luați derivata gradului.