Tranziție logaritmică. Logaritm

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Să explicăm mai ușor. De exemplu, \(\log_(2)(8)\) este egal cu puterea \(2\) care trebuie ridicată pentru a obține \(8\). Din aceasta rezultă clar că \(\log_(2)(8)=3\).

Exemple:

\(\log_(5)(25)=2\)

deoarece \(5^(2)=25\)

\(\log_(3)(81)=4\)

deoarece \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

deoarece \(2^(-5)=\)\(\frac(1)(32)\)

Argumentul și baza logaritmului

Orice logaritm are următoarea „anatomie”:

Argumentul logaritmului este de obicei scris la nivelul său, iar baza este scrisă în indice mai aproape de semnul logaritmului. Și această intrare se citește astfel: „logaritmul lui douăzeci și cinci la baza lui cinci”.

Cum se calculează logaritmul?

Pentru a calcula logaritmul, trebuie să răspundeți la întrebarea: în ce măsură ar trebui ridicată baza pentru a obține argumentul?

de exemplu, calculați logaritmul: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\) sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) La ce putere trebuie ridicat \(4\) pentru a obține \(16\)? Evident, al doilea. Asa de:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) La ce putere trebuie ridicată \(\sqrt(5)\) pentru a obține \(1\)? Și ce grad face orice număr o unitate? Zero, desigur!

\(\log_(\sqrt(5))(1)=0\)

d) La ce putere trebuie ridicată \(\sqrt(7)\) pentru a obține \(\sqrt(7)\)? În primul - orice număr din primul grad este egal cu el însuși.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) La ce putere trebuie ridicată \(3\) pentru a obține \(\sqrt(3)\)? Din știm că este o putere fracțională și, prin urmare, rădăcina pătrată este puterea lui \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Exemplu : Calculați logaritmul \(\log_(4\sqrt(2))(8)\)

Decizie :

\(\log_(4\sqrt(2))(8)=x\)

Trebuie să găsim valoarea logaritmului, să o notăm cu x. Acum să folosim definiția logaritmului:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Ce legături leagă \(4\sqrt(2)\) și \(8\)? Doi, deoarece ambele numere pot fi reprezentate prin doi:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

În stânga, folosim proprietățile gradului: \(a^(m)\cdot a^(n)=a^(m+n)\) și \((a^(m))^(n)=a ^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Bazele sunt egale, trecem la egalitatea indicatorilor

\(\frac(5x)(2)\) \(=3\)


Înmulțiți ambele părți ale ecuației cu \(\frac(2)(5)\)


Rădăcina rezultată este valoarea logaritmului

Răspuns : \(\log_(4\sqrt(2))(8)=1,2\)

De ce a fost inventat logaritmul?

Pentru a înțelege acest lucru, să rezolvăm ecuația: \(3^(x)=9\). Doar potriviți \(x\) pentru ca egalitatea să funcționeze. Desigur, \(x=2\).

Acum rezolvați ecuația: \(3^(x)=8\). Cu ce ​​este x egal? Acesta este ideea.

Cel mai ingenios va spune: „X este puțin mai puțin de doi”. Cum anume trebuie scris acest număr? Pentru a răspunde la această întrebare, au venit cu logaritmul. Datorită lui, răspunsul de aici poate fi scris ca \(x=\log_(3)(8)\).

Vreau să subliniez faptul că \(\log_(3)(8)\), precum și orice logaritm este doar un număr. Da, pare neobișnuit, dar este scurt. Pentru că dacă am vrea să-l scriem ca zecimală, ar arăta astfel: \(1.892789260714.....\)

Exemplu : Rezolvați ecuația \(4^(5x-4)=10\)

Decizie :

\(4^(5x-4)=10\)

\(4^(5x-4)\) și \(10\) nu pot fi reduse la aceeași bază. Deci aici nu poți să faci fără logaritm.

Să folosim definiția logaritmului:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Întoarceți ecuația astfel încât x să fie în stânga

\(5x-4=\log_(4)(10)\)

Înaintea noastră. Deplasați \(4\) la dreapta.

Și nu vă fie teamă de logaritm, tratați-l ca pe un număr obișnuit.

\(5x=\log_(4)(10)+4\)

Împărțiți ecuația la 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Aici este rădăcina noastră. Da, pare neobișnuit, dar răspunsul nu este ales.

Răspuns : \(\frac(\log_(4)(10)+4)(5)\)

Logaritmi zecimali și naturali

După cum se precizează în definiția logaritmului, baza sa poate fi orice număr pozitiv, cu excepția unuia \((a>0, a\neq1)\). Și dintre toate bazele posibile, există două care apar atât de des încât a fost inventată o notație scurtă specială pentru logaritmi cu ele:

Logaritm natural: un logaritm a cărui bază este numărul Euler \(e\) (egal cu aproximativ \(2,7182818…\)), iar logaritmul se scrie ca \(\ln(a)\).

adica \(\ln(a)\) este același cu \(\log_(e)(a)\)

Logaritm zecimal: Un logaritm a cărui bază este 10 se scrie \(\lg(a)\).

adica \(\lg(a)\) este același cu \(\log_(10)(a)\), unde \(a\) este un număr.

Identitatea logaritmică de bază

Logaritmii au multe proprietăți. Una dintre ele se numește „Identitatea logaritmică de bază” și arată astfel:

\(a^(\log_(a)(c))=c\)

Această proprietate decurge direct din definiție. Să vedem cum a apărut această formulă.

Reamintim scurta definiție a logaritmului:

dacă \(a^(b)=c\), atunci \(\log_(a)(c)=b\)

Adică, \(b\) este același cu \(\log_(a)(c)\). Atunci putem scrie \(\log_(a)(c)\) în loc de \(b\) în formula \(a^(b)=c\) . Sa dovedit \(a^(\log_(a)(c))=c\) - principala identitate logaritmică.

Puteți găsi restul proprietăților logaritmilor. Cu ajutorul lor, puteți simplifica și calcula valorile expresiilor cu logaritmi, care sunt dificil de calculat direct.

Exemplu : Găsiți valoarea expresiei \(36^(\log_(6)(5))\)

Decizie :

Răspuns : \(25\)

Cum se scrie un număr ca logaritm?

După cum am menționat mai sus, orice logaritm este doar un număr. Este adevărat și invers: orice număr poate fi scris ca logaritm. De exemplu, știm că \(\log_(2)(4)\) este egal cu doi. Apoi puteți scrie \(\log_(2)(4)\) în loc de două.

Dar \(\log_(3)(9)\) este, de asemenea, egal cu \(2\), deci puteți scrie și \(2=\log_(3)(9)\) . În mod similar cu \(\log_(5)(25)\), și cu \(\log_(9)(81)\), etc. Adică se dovedește

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Astfel, dacă avem nevoie, le putem scrie pe cele două ca un logaritm cu orice bază oriunde (chiar și într-o ecuație, chiar și într-o expresie, chiar și într-o inegalitate) - doar scrieți baza pătrată ca argument.

Este același lucru cu un triplu - poate fi scris ca \(\log_(2)(8)\), sau ca \(\log_(3)(27)\), sau ca \(\log_(4)( 64) \) ... Aici scriem baza în cub ca argument:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

Și cu patru:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

Și cu minus unu:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\)\(...\)

Și cu o treime:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Orice număr \(a\) poate fi reprezentat ca un logaritm cu baza \(b\): \(a=\log_(b)(b^(a))\)

Exemplu : Găsiți valoarea unei expresii \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Decizie :

Răspuns : \(1\)

Confidențialitatea dumneavoastră este importantă pentru noi. Din acest motiv, am dezvoltat o Politică de confidențialitate care descrie modul în care folosim și stocăm informațiile dumneavoastră. Vă rugăm să citiți politica noastră de confidențialitate și să ne spuneți dacă aveți întrebări.

Colectarea și utilizarea informațiilor personale

Informațiile personale se referă la date care pot fi folosite pentru a identifica sau contacta o anumită persoană.

Vi se poate cere să furnizați informațiile dumneavoastră personale în orice moment când ne contactați.

Următoarele sunt câteva exemple de tipuri de informații personale pe care le putem colecta și modul în care putem folosi aceste informații.

Ce informații personale colectăm:

  • Când trimiteți o cerere pe site, este posibil să colectăm diverse informații, inclusiv numele, numărul de telefon, adresa de e-mail etc.

Cum folosim informațiile dumneavoastră personale:

  • Informațiile personale pe care le colectăm ne permit să vă contactăm și să vă informăm despre oferte unice, promoții și alte evenimente și evenimente viitoare.
  • Din când în când, putem folosi informațiile dumneavoastră personale pentru a vă trimite notificări și comunicări importante.
  • De asemenea, putem folosi informații personale în scopuri interne, cum ar fi efectuarea de audituri, analize de date și diverse cercetări pentru a îmbunătăți serviciile pe care le oferim și pentru a vă oferi recomandări cu privire la serviciile noastre.
  • Dacă participați la o tragere la sorți, un concurs sau un stimulent similar, este posibil să folosim informațiile pe care le furnizați pentru a administra astfel de programe.

Dezvăluirea către terți

Nu dezvăluim informațiile primite de la dumneavoastră către terți.

Excepții:

  • În cazul în care este necesar - în conformitate cu legea, ordinea judiciară, în cadrul procedurilor judiciare și/sau pe baza solicitărilor publice sau a solicitărilor din partea organelor de stat de pe teritoriul Federației Ruse - dezvăluiți informațiile dumneavoastră personale. De asemenea, putem dezvălui informații despre dumneavoastră dacă stabilim că o astfel de dezvăluire este necesară sau adecvată din motive de securitate, aplicarea legii sau alte motive de interes public.
  • În cazul unei reorganizări, fuziuni sau vânzări, putem transfera informațiile personale pe care le colectăm către succesorul terț relevant.

Protecția informațiilor personale

Luăm măsuri de precauție - inclusiv administrative, tehnice și fizice - pentru a vă proteja informațiile personale împotriva pierderii, furtului și utilizării greșite, precum și împotriva accesului, dezvăluirii, modificării și distrugerii neautorizate.

Menținerea confidențialității la nivelul companiei

Pentru a ne asigura că informațiile dumneavoastră personale sunt în siguranță, comunicăm angajaților noștri practicile de confidențialitate și securitate și aplicăm strict practicile de confidențialitate.

Logaritmii, ca orice număr, pot fi adunați, scăzuți și convertiți în orice mod posibil. Dar, deoarece logaritmii nu sunt numere obișnuite, aici există reguli care sunt numite proprietăți de bază.

Aceste reguli trebuie cunoscute - nicio problemă logaritmică serioasă nu poate fi rezolvată fără ele. În plus, sunt foarte puține dintre ele - totul poate fi învățat într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceeași bază: log A Xși log A y. Apoi pot fi adăugate și scăzute și:

  1. Buturuga A X+jurnal A y= jurnal A (X · y);
  2. Buturuga A X−log A y= jurnal A (X : y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este - aceleași temeiuri. Dacă bazele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați expresia logaritmică chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

log 6 4 + log 6 9.

Deoarece bazele logaritmilor sunt aceleași, folosim formula sumei:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Sarcină. Aflați valoarea expresiei: log 2 48 − log 2 3.

Bazele sunt aceleași, folosim formula diferenței:
log 2 48 - log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Sarcină. Aflați valoarea expresiei: log 3 135 − log 3 5.

Din nou, bazele sunt aceleași, deci avem:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt considerați separat. Dar după transformări apar numere destul de normale. Multe teste se bazează pe acest fapt. Da, control - expresii similare cu toată seriozitatea (uneori - practic fără modificări) sunt oferite la examen.

Eliminarea exponentului din logaritm

Acum să complicăm puțin sarcina. Ce se întâmplă dacă există un grad în baza sau argumentul logaritmului? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă logaritmul ODZ: A > 0, A ≠ 1, X> 0. Si inca ceva: invata sa aplici toate formulele nu numai de la stanga la dreapta, ci si invers, i.e. puteți introduce numerele dinaintea semnului logaritmului în logaritmul însuși. Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log 7 49 6 .

Să scăpăm de gradul din argument conform primei formule:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Sarcină. Aflați valoarea expresiei:

[Figura]

Rețineți că numitorul este un logaritm a cărui bază și argument sunt puteri exacte: 16 = 2 4 ; 49 = 72. Noi avem:

[Figura]

Cred că ultimul exemplu trebuie clarificat. Unde s-au dus logaritmii? Până în ultimul moment, lucrăm doar cu numitorul. Ei au prezentat baza și argumentul logaritmului aflat acolo sub formă de grade și au scos indicatorii - au obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul au același număr: log 2 7. Deoarece log 2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne la numitor. Conform regulilor de aritmetică, cele patru pot fi transferate la numărător, ceea ce a fost făcut. Rezultatul este răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă bazele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă bază vin în ajutor. Le formulăm sub forma unei teoreme:

Lăsați logaritmul să se înregistreze A X. Apoi pentru orice număr c astfel încât c> 0 și c≠ 1, egalitatea este adevărată:

[Figura]

În special, dacă punem c = X, primim:

[Figura]

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar întreaga expresie este „întoarsă”, adică. logaritmul este la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea doar atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există sarcini care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să luăm în considerare câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log 5 16 log 2 25.

Rețineți că argumentele ambilor logaritmi sunt exponenți exacti. Să scoatem indicatorii: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Acum să inversăm al doilea logaritm:

[Figura]

Deoarece produsul nu se schimbă din permutarea factorilor, am înmulțit cu calm patru și doi, apoi am dat seama de logaritmi.

Sarcină. Aflați valoarea expresiei: log 9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să-l notăm și să scăpăm de indicatorii:

[Figura]

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

[Figura]

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, formulele ne vor ajuta:

În primul caz, numărul n devine exponentul argumentului. Număr n poate fi absolut orice, pentru că este doar valoarea logaritmului.

A doua formulă este de fapt o definiție parafrazată. Se numește identitatea logaritmică de bază.

Într-adevăr, ce se va întâmpla dacă numărul b ridică la putere astfel încât bîn această măsură dă un număr A? Așa este: acesta este același număr A. Citiți din nou acest paragraf cu atenție - mulți oameni „atârnă” de el.

La fel ca noile formule de conversie de bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Aflați valoarea expresiei:

[Figura]

Rețineți că log 25 64 = log 5 8 - tocmai a scos pătratul de la bază și argumentul logaritmului. Având în vedere regulile de înmulțire a puterilor cu aceeași bază, obținem:

[Figura]

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examen :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care sunt greu de numit proprietăți - mai degrabă, acestea sunt consecințe din definiția logaritmului. Se găsesc constant în probleme și, în mod surprinzător, creează probleme chiar și elevilor „avansați”.

  1. Buturuga A A= 1 este unitatea logaritmică. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze A din această bază în sine este egală cu unu.
  2. Buturuga A 1 = 0 este zero logaritmic. Baza A poate fi orice, dar dacă argumentul este unul, logaritmul este zero! deoarece A 0 = 1 este o consecință directă a definiției.

Acestea sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat sheet la începutul lecției, imprimați-o și rezolvați problemele.

Sunt date principalele proprietăți ale logaritmului natural, graficul, domeniul de definiție, mulțimea de valori, formulele de bază, derivata, integrala, expansiunea într-o serie de puteri și reprezentarea funcției ln x prin intermediul numerelor complexe.

Definiție

logaritmul natural este funcția y = ln x, invers exponentului, x \u003d e y , și care este logaritmul la baza numărului e: ln x = log e x.

Logaritmul natural este utilizat pe scară largă în matematică, deoarece derivata sa are cea mai simplă formă: (ln x)′ = 1/ x.

Bazat definiții, baza logaritmului natural este numărul e:
e ≅ 2,718281828459045...;
.

Graficul funcției y = ln x.

Graficul logaritmului natural (funcțiile y = ln x) se obţine din graficul exponentului prin reflexie în oglindă în jurul dreptei y = x .

Logaritmul natural este definit pentru valorile pozitive ale lui x. Ea crește monoton pe domeniul său de definire.

Ca x → 0 limita logaritmului natural este minus infinitul ( - ∞ ).

Ca x → + ∞, limita logaritmului natural este plus infinitul ( + ∞ ). Pentru x mare, logaritmul crește destul de lent. Orice funcție de putere x a cu exponent pozitiv a crește mai repede decât logaritmul.

Proprietățile logaritmului natural

Domeniu de definire, set de valori, extrema, crestere, scadere

Logaritmul natural este o funcție crescătoare monoton, deci nu are extreme. Principalele proprietăți ale logaritmului natural sunt prezentate în tabel.

ln x valori

log 1 = 0

Formule de bază pentru logaritmi naturali

Formule care rezultă din definiția funcției inverse:

Principala proprietate a logaritmilor și consecințele acesteia

Formula de înlocuire a bazei

Orice logaritm poate fi exprimat în termeni de logaritmi naturali folosind formula de schimbare a bazei:

Demonstrațiile acestor formule sunt prezentate în secțiunea „Logaritm”.

Funcție inversă

Reciproca logaritmului natural este exponentul.

Daca atunci

Daca atunci .

Derivată ln x

Derivată a logaritmului natural:
.
Derivată a logaritmului natural al modulo x:
.
Derivată de ordinul al n-lea:
.
Derivarea formulelor > > >

Integral

Integrala se calculează prin integrare pe părți:
.
Asa de,

Expresii în termeni de numere complexe

Să considerăm o funcție a unei variabile complexe z:
.
Să exprimăm variabila complexă z prin modul rși argumentare φ :
.
Folosind proprietățile logaritmului, avem:
.
Sau
.
Argumentul φ nu este definit în mod unic. Dacă punem
, unde n este un număr întreg,
atunci va fi același număr pentru n diferit.

Prin urmare, logaritmul natural, în funcție de o variabilă complexă, nu este o funcție cu o singură valoare.

Extinderea seriei de putere

Pentru , expansiunea are loc:

Referinte:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți ai instituțiilor de învățământ superior, Lan, 2009.

Ce este un logaritm?

Atenţie!
Sunt suplimentare
material în secțiunea specială 555.
Pentru cei care puternic „nu foarte...”
Și pentru cei care „foarte mult...”)

Ce este un logaritm? Cum se rezolvă logaritmii? Aceste întrebări îi încurcă pe mulți absolvenți. În mod tradițional, subiectul logaritmilor este considerat complex, de neînțeles și înfricoșător. Mai ales - ecuații cu logaritmi.

Acest lucru nu este absolut adevărat. Absolut! Nu crezi? Bun. Acum, timp de aproximativ 10 - 20 de minute:

1. Înțelegeți ce este un logaritm.

2. Învață să rezolvi o întreagă clasă de ecuații exponențiale. Chiar dacă nu ai auzit de ei.

3. Învață să calculezi logaritmi simpli.

Mai mult, pentru aceasta, va trebui să cunoașteți doar tabla înmulțirii și cum se ridică un număr la o putere...

Simt că te îndoiești... Ei bine, ține timpul! Merge!

Mai întâi, rezolvă următoarea ecuație în minte:

Daca va place acest site...

Apropo, mai am câteva site-uri interesante pentru tine.)

Puteți exersa rezolvarea exemplelor și puteți afla nivelul dvs. Testare cu verificare instantanee. Învățarea - cu interes!)

vă puteți familiariza cu funcțiile și derivatele.