Creșterea într-un grad complex. Ridicarea unui număr la o putere naturală

Confidențialitatea dumneavoastră este importantă pentru noi. Din acest motiv, am dezvoltat o Politică de confidențialitate care descrie modul în care folosim și stocăm informațiile dumneavoastră. Vă rugăm să citiți politica noastră de confidențialitate și să ne spuneți dacă aveți întrebări.

Colectarea și utilizarea informațiilor personale

Informațiile personale se referă la date care pot fi folosite pentru a identifica sau contacta o anumită persoană.

Vi se poate cere să furnizați informațiile dumneavoastră personale în orice moment când ne contactați.

Următoarele sunt câteva exemple de tipuri de informații personale pe care le putem colecta și modul în care putem folosi aceste informații.

Ce informații personale colectăm:

  • Când trimiteți o cerere pe site, este posibil să colectăm diverse informații, inclusiv numele, numărul de telefon, adresa de e-mail etc.

Cum folosim informațiile dumneavoastră personale:

  • Informațiile personale pe care le colectăm ne permit să vă contactăm și să vă informăm despre oferte unice, promoții și alte evenimente și evenimente viitoare.
  • Din când în când, putem folosi informațiile dumneavoastră personale pentru a vă trimite notificări și comunicări importante.
  • De asemenea, putem folosi informații personale în scopuri interne, cum ar fi efectuarea de audituri, analize de date și diverse cercetări pentru a îmbunătăți serviciile pe care le oferim și pentru a vă oferi recomandări cu privire la serviciile noastre.
  • Dacă participați la o tragere la sorți, un concurs sau un stimulent similar, este posibil să folosim informațiile pe care le furnizați pentru a administra astfel de programe.

Dezvăluirea către terți

Nu dezvăluim informațiile primite de la dumneavoastră către terți.

Excepții:

  • În cazul în care este necesar - în conformitate cu legea, ordinea judiciară, în cadrul procedurilor judiciare și/sau în baza cererilor publice sau a solicitărilor din partea organelor de stat de pe teritoriul Federației Ruse - dezvăluiți informațiile dumneavoastră personale. De asemenea, putem dezvălui informații despre dumneavoastră dacă stabilim că o astfel de dezvăluire este necesară sau adecvată din motive de securitate, aplicarea legii sau alte motive de interes public.
  • În cazul unei reorganizări, fuziuni sau vânzări, putem transfera informațiile personale pe care le colectăm către succesorul terț relevant.

Protecția informațiilor personale

Luăm măsuri de precauție - inclusiv administrative, tehnice și fizice - pentru a vă proteja informațiile personale împotriva pierderii, furtului și utilizării greșite, precum și împotriva accesului, dezvăluirii, modificării și distrugerii neautorizate.

Menținerea confidențialității la nivelul companiei

Pentru a ne asigura că informațiile dumneavoastră personale sunt în siguranță, comunicăm angajaților noștri practicile de confidențialitate și securitate și aplicăm strict practicile de confidențialitate.

Formule de putere utilizat în procesul de reducere și simplificare a expresiilor complexe, în rezolvarea ecuațiilor și inegalităților.

Număr c este o n-a-a putere a unui număr A când:

Operații cu grade.

1. Înmulțind grade cu aceeași bază, indicatorii lor se adună:

a ma n = a m + n .

2. În împărțirea gradelor cu aceeași bază, indicatorii acestora se scad:

3. Gradul produsului a 2 sau mai mulți factori este egal cu produsul gradelor acestor factori:

(abc…) n = a n b n c n …

4. Gradul unei fracții este egal cu raportul dintre gradele dividendului și divizorului:

(a/b) n = a n / b n .

5. Ridicarea unei puteri la o putere, exponenții se înmulțesc:

(am) n = a m n .

Fiecare formulă de mai sus este corectă în direcțiile de la stânga la dreapta și invers.

de exemplu. (2 3 5/15)² = 2² 3² 5²/15² = 900/225 = 4.

Operații cu rădăcini.

1. Rădăcina produsului mai multor factori este egală cu produsul rădăcinilor acestor factori:

2. Rădăcina raportului este egală cu raportul dintre dividend și divizorul rădăcinilor:

3. Când ridicați o rădăcină la o putere, este suficient să ridicați numărul rădăcinii la această putere:

4. Dacă creștem gradul rădăcinii în n o dată şi în acelaşi timp ridică la n Puterea este un număr de rădăcină, atunci valoarea rădăcinii nu se va schimba:

5. Dacă scădem gradul rădăcinii în n rădăcină în același timp n gradul de la numărul radical, atunci valoarea rădăcinii nu se va schimba:

Gradul cu exponent negativ. Gradul unui anumit număr cu un exponent nepozitiv (întreg) este definit ca unul împărțit la gradul aceluiași număr cu un exponent egal cu valoarea absolută a exponentului nepozitiv:

Formulă a m:a n = a m - n poate fi folosit nu numai pentru m> n, dar și la m< n.

de exemplu. A4:a 7 = a 4 - 7 = a -3.

Pentru a formula a m:a n = a m - n a devenit corect la m=n, aveți nevoie de prezența gradului zero.

Gradul cu exponent zero. Puterea oricărui număr diferit de zero cu exponent zero este egală cu unu.

de exemplu. 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Un grad cu un exponent fracționar. Pentru a ridica un număr real Aîntr-o măsură m/n, trebuie să extrageți rădăcina n gradul de m puterea acestui număr A.


În acest articol, vom înțelege ce este gradul de. Aici vom da definiții ale gradului unui număr, luând în considerare în detaliu toți exponenții posibili ai gradului, începând cu un exponent natural, terminând cu unul irațional. În material veți găsi o mulțime de exemple de grade care acoperă toate subtilitățile care apar.

Navigare în pagină.

Gradul cu exponent natural, pătratul unui număr, cubul unui număr

Sa incepem cu . Privind în viitor, să presupunem că definiția gradului a cu exponent natural n este dată pentru a , pe care o vom numi baza gradului, și n , pe care le vom numi exponent. De asemenea, menționăm că gradul cu indicator natural este determinat prin produs, așa că pentru a înțelege materialul de mai jos, trebuie să aveți o idee despre înmulțirea numerelor.

Definiție.

Puterea numărului a cu exponent natural n este o expresie de forma a n , a cărei valoare este egală cu produsul a n factori, fiecare dintre care este egal cu a , adică .
În special, gradul unui număr a cu exponentul 1 este numărul a însuși, adică a 1 =a.

Imediat merită menționat regulile de citire a gradelor. Modul universal de a citi intrarea a n este: „a la puterea lui n”. În unele cazuri, sunt acceptabile și astfel de opțiuni: „a la a n-a putere” și „a n-a putere a numărului a”. De exemplu, să luăm gradul 8 12, acesta este „opt la puterea a doisprezece”, sau „opt la puterea a douăsprezecea”, sau „puterea a douăsprezecea a opt”.

A doua putere a unui număr, precum și a treia putere a unui număr, au propriile nume. Se numește a doua putere a unui număr pătratul unui număr, de exemplu, 7 2 se citește ca „șapte pătrat” sau „pătrat al numărului șapte”. Se numește a treia putere a unui număr numărul cubului, de exemplu, 5 3 poate fi citit ca „cinci cuburi” sau spune „cubul numărului 5”.

E timpul să aduci exemple de grade cu indicatori fizici. Să începem cu puterea lui 5 7 , unde 5 este baza puterii și 7 este exponentul. Să dăm un alt exemplu: 4,32 este baza, iar numărul natural 9 este exponentul (4,32) 9 .

Vă rugăm să rețineți că în ultimul exemplu, baza gradului 4,32 este scrisă între paranteze: pentru a evita discrepanțe, vom lua între paranteze toate bazele gradului care sunt diferite de numerele naturale. Ca exemplu, oferim următoarele grade cu indicatori naturali , bazele lor nu sunt numere naturale, deci sunt scrise între paranteze. Ei bine, pentru o claritate completă în acest punct, vom arăta diferența conținută în înregistrările de forma (−2) 3 și −2 3 . Expresia (−2) 3 este puterea lui −2 cu exponent natural 3, iar expresia −2 3 (se poate scrie ca −(2 3) ) corespunde numărului, valoarea puterii 2 3 .

Rețineți că există o notație pentru gradul lui a cu un exponent n de forma a^n . Mai mult, dacă n este un număr natural cu mai multe valori, atunci exponentul este luat între paranteze. De exemplu, 4^9 este o altă notație pentru puterea lui 4 9 . Și aici sunt mai multe exemple de scriere a grade folosind simbolul „^”: 14^(21) , (−2,1)^(155) . În cele ce urmează, vom folosi în principal notația gradului formei a n .

Una dintre probleme, inversul exponențiației cu un exponent natural, este problema găsirii bazei gradului dintr-o valoare cunoscută a gradului și un exponent cunoscut. Această sarcină duce la .

Se știe că mulțimea numerelor raționale este formată din numere întregi și numere fracționale, iar fiecare număr fracționar poate fi reprezentat ca o fracție ordinară pozitivă sau negativă. Am definit gradul cu un exponent întreg în paragraful anterior, prin urmare, pentru a completa definiția gradului cu un exponent rațional, trebuie să dăm semnificația gradului numărului a cu un exponent fracționar m / n, unde m este un număr întreg și n este un număr natural. S-o facem.

Să considerăm un grad cu un exponent fracționar de forma . Pentru ca proprietatea de grad într-un grad să rămână valabilă, egalitatea trebuie să fie valabilă . Dacă luăm în considerare egalitatea rezultată și modul în care am definit , atunci este logic să acceptăm, cu condiția ca pentru m, n și a dat expresia să aibă sens.

Este ușor de verificat că toate proprietățile unui grad cu un exponent întreg sunt valabile pentru ca (acest lucru se face în secțiunea despre proprietățile unui grad cu un exponent rațional).

Raționamentul de mai sus ne permite să facem următoarele concluzie: dacă pentru m, n și a dat expresia are sens, atunci puterea numărului a cu exponent fracționar m / n se numește rădăcina gradului al n-lea de la a la puterea m.

Această afirmație ne aduce aproape de definiția unui grad cu exponent fracționar. Rămâne doar să descriem pentru care m, n și a expresia are sens. În funcție de restricțiile impuse asupra m , n și a, există două abordări principale.

    Cel mai simplu mod de a constrânge a este să presupunem a≥0 pentru m pozitiv și a>0 pentru m negativ (deoarece m≤0 nu are o putere de 0 m). Apoi obținem următoarea definiție a gradului cu un exponent fracționar.

    Definiție.

    Puterea unui număr pozitiv a cu exponent fracționar m/n, unde m este un număr întreg și n este un număr natural, se numește rădăcină a n-a a numărului a la puterea lui m, adică .

    Gradul fracționar de zero este, de asemenea, definit cu singura avertizare că exponentul trebuie să fie pozitiv.

    Definiție.

    Puterea lui zero cu exponent pozitiv fracționar m/n, unde m este un întreg pozitiv și n este un număr natural, este definit ca .
    Când gradul nu este definit, adică gradul numărului zero cu un exponent negativ fracționar nu are sens.

    De remarcat că, cu o astfel de definiție a gradului cu exponent fracționar, există o nuanță: pentru unele negative a și unele m și n, expresia are sens și am înlăturat aceste cazuri introducând condiția a≥0 . De exemplu, are sens să scrii sau , iar definiția de mai sus ne obligă să spunem că grade cu un exponent fracționar al formei sunt lipsite de sens, deoarece baza nu trebuie să fie negativă.

    O altă abordare pentru determinarea gradului cu un exponent fracționar m / n este de a lua în considerare separat exponenții pari și impari ai rădăcinii. Această abordare necesită o condiție suplimentară: gradul numărului a, al cărui exponent este , este considerat gradul numărului a, al cărui exponent este fracția ireductibilă corespunzătoare (importanța acestei condiții va fi explicată mai jos). Adică, dacă m/n este o fracție ireductibilă, atunci pentru orice număr natural k gradul este mai întâi înlocuit cu .

    Pentru n par și m pozitiv, expresia are sens pentru orice a nenegativ (rădăcina unui grad par dintr-un număr negativ nu are sens), pentru m negativ, numărul a trebuie să fie în continuare diferit de zero (altfel există va fi o împărțire cu zero). Și pentru n impar și m pozitiv, numărul a poate fi orice (rădăcina unui grad impar este definită pentru orice număr real), iar pentru m negativ, numărul a trebuie să fie diferit de zero (astfel încât să nu existe o împărțire cu zero).

    Raționamentul de mai sus ne conduce la o astfel de definiție a gradului cu exponent fracționar.

    Definiție.

    Fie m/n o fracție ireductibilă, m un număr întreg și n un număr natural. Pentru orice fracție ordinară reductibilă, gradul este înlocuit cu . Puterea lui a cu un exponent fracționar ireductibil m / n este pentru

    Să explicăm de ce un grad cu un exponent fracționar reductibil este mai întâi înlocuit cu un grad cu un exponent ireductibil. Dacă am defini pur și simplu gradul ca , și nu am face o rezervă cu privire la ireductibilitatea fracției m / n , atunci am întâlni situații similare cu următoarele: deoarece 6/10=3/5 , atunci egalitatea , dar , A .

Ne-am dat seama care este gradul unui număr în general. Acum trebuie să înțelegem cum să o calculăm corect, de exemplu. ridica numerele la puteri. În acest material, vom analiza regulile de bază pentru calcularea gradului în cazul unui exponent întreg, natural, fracționar, rațional și irațional. Toate definițiile vor fi ilustrate cu exemple.

Yandex.RTB R-A-339285-1

Conceptul de exponentiare

Să începem cu formularea definițiilor de bază.

Definiția 1

Exponentiație este calculul valorii puterii unui număr.

Adică cuvintele „calcul valorii gradului” și „exponențiație” înseamnă același lucru. Deci, dacă sarcina este „Ridicați numărul 0 , 5 la a cincea putere”, aceasta ar trebui înțeleasă ca „calculați valoarea puterii (0 , 5) 5 .

Acum oferim regulile de bază care trebuie urmate în astfel de calcule.

Amintiți-vă ce este o putere a unui număr cu exponent natural. Pentru o putere cu baza a și exponentul n, acesta va fi produsul celui de-al n-lea număr de factori, fiecare dintre care este egal cu a. Acesta poate fi scris astfel:

Pentru a calcula valoarea gradului, trebuie să efectuați operația de înmulțire, adică să înmulțiți bazele gradului de numărul specificat de ori. Însuși conceptul de diplomă cu un indicator natural se bazează pe capacitatea de a se înmulți rapid. Să dăm exemple.

Exemplul 1

Condiție: Ridicați - 2 la puterea de 4.

Decizie

Folosind definiția de mai sus, scriem: (− 2) 4 = (− 2) (− 2) (− 2) (− 2) . În continuare, trebuie doar să urmăm acești pași și să obținem 16 .

Să luăm un exemplu mai complicat.

Exemplul 2

Calculați valoarea 3 2 7 2

Decizie

Această intrare poate fi rescrisă ca 3 2 7 · 3 2 7 . Mai devreme, am analizat cum să înmulțim corect numerele mixte menționate în condiție.

Efectuați acești pași și obțineți răspunsul: 3 2 7 3 2 7 = 23 7 23 7 = 529 49 = 10 39 49

Dacă sarcina indică necesitatea de a ridica numerele iraționale la o putere naturală, va trebui mai întâi să le rotunjim bazele la o cifră care ne va permite să obținem un răspuns cu precizia dorită. Să luăm un exemplu.

Exemplul 3

Efectuați pătratul numărului π .

Decizie

Să o rotunjim mai întâi la sutimi. Atunci π 2 ≈ (3, 14) 2 = 9, 8596. Dacă π ≈ 3 . 14159, atunci vom obține un rezultat mai precis: π 2 ≈ (3, 14159) 2 = 9, 8695877281.

Rețineți că necesitatea de a calcula puterile numerelor iraționale în practică apare relativ rar. Putem apoi să scriem răspunsul ca puterea însăși (ln 6) 3 sau să convertim dacă este posibil: 5 7 = 125 5 .

Separat, trebuie indicat care este prima putere a unui număr. Aici vă puteți aminti că orice număr ridicat la prima putere va rămâne el însuși:

Acest lucru este clar din înregistrare. .

Nu depinde de baza gradului.

Exemplul 4

Deci, (− 9) 1 = − 9 , iar 7 3 ridicat la prima putere rămâne egal cu 7 3 .

Pentru comoditate, vom analiza trei cazuri separat: dacă exponentul este un întreg pozitiv, dacă este zero și dacă este un număr întreg negativ.

În primul caz, aceasta este același lucru cu ridicarea la o putere naturală: la urma urmei, numerele întregi pozitive aparțin mulțimii numerelor naturale. Am descris deja cum să lucrăm cu astfel de grade mai sus.

Acum să vedem cum să ridicăm corect la puterea zero. Cu o bază care este diferită de zero, acest calcul produce întotdeauna o ieșire de 1. Am explicat anterior că puterea 0 a lui a poate fi definită pentru orice număr real care nu este egal cu 0, iar a 0 = 1.

Exemplul 5

5 0 = 1 , (- 2 , 56) 0 = 1 2 3 0 = 1

0 0 - nedefinit.

Ne rămâne doar cazul unui grad cu exponent întreg negativ. Am discutat deja că astfel de grade pot fi scrise ca o fracție 1 a z, unde a este orice număr și z este un număr întreg negativ. Vedem că numitorul acestei fracții nu este altceva decât un grad obișnuit cu un întreg pozitiv și am învățat deja cum să-l calculăm. Să dăm exemple de sarcini.

Exemplul 6

Ridicați 3 la puterea -2.

Decizie

Folosind definiția de mai sus, scriem: 2 - 3 = 1 2 3

Calculăm numitorul acestei fracții și obținem 8: 2 3 \u003d 2 2 2 \u003d 8.

Atunci răspunsul este: 2 - 3 = 1 2 3 = 1 8

Exemplul 7

Ridicați 1, 43 la puterea -2.

Decizie

Reformulați: 1 , 43 - 2 = 1 (1 , 43) 2

Calculăm pătratul la numitor: 1,43 1,43. Decimalele pot fi înmulțite astfel:

Ca rezultat, am obținut (1, 43) - 2 = 1 (1, 43) 2 = 1 2 , 0449 . Rămâne să scriem acest rezultat sub forma unei fracții obișnuite, pentru care este necesar să-l înmulțim cu 10 mii (a se vedea materialul despre conversia fracțiilor).

Răspuns: (1, 43) - 2 = 10000 20449

Un caz separat este ridicarea unui număr la prima putere minus. Valoarea unui astfel de grad este egală cu numărul opus valorii inițiale a bazei: a - 1 \u003d 1 a 1 \u003d 1 a.

Exemplul 8

Exemplu: 3 − 1 = 1 / 3

9 13 - 1 = 13 9 6 4 - 1 = 1 6 4 .

Cum se ridică un număr la o putere fracțională

Pentru a efectua o astfel de operație, trebuie să ne amintim definiția de bază a unui grad cu un exponent fracționar: a m n \u003d a m n pentru orice a pozitiv, întreg m și n natural.

Definiția 2

Astfel, calculul unui grad fracționar trebuie efectuat în două etape: ridicarea la o putere întreagă și găsirea rădăcinii gradului al n-lea.

Avem egalitatea a m n = a m n , care, având în vedere proprietățile rădăcinilor, este de obicei folosită pentru a rezolva probleme sub forma a m n = a n m . Aceasta înseamnă că dacă ridicăm numărul a la o putere fracțională m / n, atunci mai întâi extragem rădăcina gradului al n-lea din a, apoi ridicăm rezultatul la o putere cu un exponent întreg m.

Să ilustrăm cu un exemplu.

Exemplul 9

Calculați 8 - 2 3 .

Decizie

Metoda 1. Conform definiției de bază, putem reprezenta aceasta ca: 8 - 2 3 \u003d 8 - 2 3

Acum să calculăm gradul sub rădăcină și să extragem a treia rădăcină din rezultat: 8 - 2 3 = 1 64 3 = 1 3 3 64 3 = 1 3 3 4 3 3 = 1 4

Metoda 2. Să transformăm egalitatea de bază: 8 - 2 3 \u003d 8 - 2 3 \u003d 8 3 - 2

După aceea, extragem rădăcina 8 3 - 2 = 2 3 3 - 2 = 2 - 2 și pătratăm rezultatul: 2 - 2 = 1 2 2 = 1 4

Vedem că soluțiile sunt identice. Puteți folosi în orice mod doriți.

Există cazuri când gradul are un indicator exprimat ca număr mixt sau fracție zecimală. Pentru ușurință de calcul, este mai bine să o înlocuiți cu o fracție obișnuită și să numărați așa cum este indicat mai sus.

Exemplul 10

Ridicați 44,89 la puterea de 2,5.

Decizie

Să convertim valoarea indicatorului într-o fracție obișnuită - 44, 89 2, 5 = 49, 89 5 2.

Și acum efectuăm toate acțiunile indicate mai sus în ordine: 44 , 89 5 2 = 44 , 89 5 = 44 , 89 5 = 4489 100 5 = 4489 100 5 = 67 2 10 2 5 = 67 10 5 = 100 50 = 100 50 13 501, 25107

Răspuns: 13501, 25107.

Dacă există numere mari în numărătorul și numitorul unui exponent fracționar, atunci calcularea unor astfel de exponenți cu exponenți raționali este o muncă destul de dificilă. De obicei necesită tehnologie computerizată.

Separat, ne oprim asupra gradului cu o bază zero și un exponent fracționar. O expresie de forma 0 m n i se poate da următorul sens: dacă m n > 0, atunci 0 m n = 0 m n = 0 ; dacă m n< 0 нуль остается не определен. Таким образом, возведение нуля в дробную положительную степень приводит к нулю: 0 7 12 = 0 , 0 3 2 5 = 0 , 0 0 , 024 = 0 , а в целую отрицательную - значения не имеет: 0 - 4 3 .

Cum să ridici un număr la o putere irațională

Necesitatea de a calcula valoarea gradului, în indicatorul căruia există un număr irațional, nu apare atât de des. În practică, sarcina este de obicei limitată la calcularea unei valori aproximative (până la un anumit număr de zecimale). Acest lucru este de obicei calculat pe un computer datorită complexității unor astfel de calcule, așa că nu ne vom opri în detaliu, ci vom indica doar principalele prevederi.

Dacă trebuie să calculăm valoarea gradului a cu un exponent irațional a , atunci luăm aproximarea zecimală a exponentului și numărăm din acesta. Rezultatul va fi un răspuns aproximativ. Cu cât aproximarea zecimală luată este mai precisă, cu atât răspunsul este mai precis. Să arătăm cu un exemplu:

Exemplul 11

Calculați o valoare aproximativă de 21 , 174367 ....

Decizie

Ne restrângem la aproximarea zecimală a n = 1 , 17 . Să facem calculele folosind acest număr: 2 1 , 17 ≈ 2 , 250116 . Dacă luăm, de exemplu, aproximarea a n = 1 , 1743 , atunci răspunsul va fi puțin mai precis: 2 1 , 174367 . . . ≈ 2 1 . 1743 ≈ 2 . 256833 .

Dacă observați o greșeală în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter


În continuarea conversației despre gradul unui număr, este logic să ne ocupăm de găsirea valorii gradului. Acest proces a fost numit exponentiare. În acest articol, vom studia doar modul în care se realizează exponențiarea, în timp ce vom atinge toți exponenții posibili - naturali, întregi, raționali și iraționali. Și prin tradiție, vom lua în considerare în detaliu soluțiile la exemple de creștere a numerelor în diferite grade.

Navigare în pagină.

Ce înseamnă „exponentiație”?

Să începem prin a explica ceea ce se numește exponențiere. Iată definiția relevantă.

Definiție.

Exponentiație este de a afla valoarea puterii unui număr.

Astfel, găsirea valorii puterii lui a cu exponentul r și ridicarea numărului a la puterea lui r este același lucru. De exemplu, dacă sarcina este „calculați valoarea puterii (0,5) 5”, atunci poate fi reformulată după cum urmează: „Ridicați numărul 0,5 la puterea lui 5”.

Acum puteți merge direct la regulile prin care se realizează exponentiarea.

Ridicarea unui număr la o putere naturală

În practică, egalitatea bazată pe se aplică de obicei sub forma . Adică, atunci când se ridică numărul a la o putere fracțională m / n, se extrage mai întâi rădăcina gradului al n-lea din numărul a, după care rezultatul este ridicat la o putere întreagă m.

Luați în considerare soluții la exemple de ridicare la o putere fracțională.

Exemplu.

Calculați valoarea gradului.

Decizie.

Vă prezentăm două soluții.

Prima cale. Prin definiția gradului cu exponent fracționar. Calculăm valoarea gradului sub semnul rădăcinii, după care extragem rădăcina cubă: .

A doua cale. Prin definiția unui grad cu exponent fracționar și pe baza proprietăților rădăcinilor, egalitățile sunt adevărate . Acum extrageți rădăcina În cele din urmă, ridicăm la o putere întreagă .

Evident, rezultatele obținute ale ridicării la o putere fracțională coincid.

Răspuns:

Rețineți că exponentul fracționar poate fi scris ca o fracție zecimală sau un număr mixt, în aceste cazuri ar trebui înlocuit cu fracția obișnuită corespunzătoare, iar apoi trebuie efectuată exponențiarea.

Exemplu.

Calculați (44,89) 2,5 .

Decizie.

Scriem exponentul sub forma unei fracții obișnuite (dacă este necesar, vezi articolul): . Acum efectuăm ridicarea la o putere fracțională:

Răspuns:

(44,89) 2,5 =13 501,25107 .

De asemenea, trebuie spus că ridicarea numerelor la puteri raționale este un proces destul de laborios (mai ales atunci când numărătorul și numitorul exponentului fracționar sunt numere destul de mari), care se realizează de obicei folosind tehnologia computerizată.

În încheierea acestui paragraf, ne vom opri asupra construcției numărului zero într-o putere fracțională. Am dat următorul sens gradului fracționar de zero al formei: căci avem , în timp ce zero la puterea m/n nu este definit. Deci, zero la o putere fracțională pozitivă este zero, de exemplu, . Și zero într-o putere negativă fracțională nu are sens, de exemplu, expresiile și 0 -4,3 nu au sens.

Ridicarea la o putere irațională

Uneori devine necesar să se afle valoarea gradului unui număr cu un exponent irațional. În acest caz, în scopuri practice, de obicei este suficientă obținerea valorii gradului până la un anumit semn. Observăm imediat că, în practică, această valoare este calculată folosind tehnologia de calcul electronică, deoarece ridicarea manuală la o putere irațională necesită un număr mare de calcule greoaie. Dar cu toate acestea vom descrie în termeni generali esența acțiunilor.

Pentru a obține o valoare aproximativă a exponentului lui a cu un exponent irațional, se ia o aproximare zecimală a exponentului și se calculează valoarea exponentului. Această valoare este valoarea aproximativă a gradului numărului a cu un exponent irațional. Cu cât este mai precisă aproximarea zecimală a numărului inițial, cu atât mai precisă va fi valoarea gradului în final.

Ca exemplu, să calculăm valoarea aproximativă a puterii lui 2 1,174367... . Să luăm următoarea aproximare zecimală a unui indicator irațional: . Acum ridicăm 2 la o putere rațională de 1,17 (am descris esența acestui proces în paragraful anterior), obținem 2 1,17 ≈ 2,250116. Prin urmare, 2 1,174367... ≈2 1,17 ≈2,250116 . Dacă luăm o aproximare zecimală mai precisă a unui exponent irațional, de exemplu, , atunci obținem o valoare mai precisă a gradului inițial: 2 1,174367... ≈2 1,1743 ≈2,256833 .

Bibliografie.

  • Vilenkin N.Ya., Zhokhov V.I., Chesnokov A.S., Shvartsburd S.I. Manual de matematică Zh pentru 5 celule. institutii de invatamant.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebră: un manual pentru 7 celule. institutii de invatamant.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebră: manual pentru 8 celule. institutii de invatamant.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebră: un manual pentru 9 celule. institutii de invatamant.
  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. şi alţii.Algebra şi începuturile analizei: un manual pentru clasele 10-11 ale instituţiilor de învăţământ general.
  • Gusev V.A., Mordkovich A.G. Matematică (un manual pentru solicitanții la școlile tehnice).