Scăderea fracțiilor ordinare: reguli, exemple, soluții. Exemple de scădere a fracțiilor ai căror numitori sunt aceiași

Una dintre cele mai importante științe, a cărei aplicare poate fi văzută în discipline precum chimia, fizica și chiar biologia, este matematica. Studiul acestei științe vă permite să dezvoltați unele calități mentale, să îmbunătățiți capacitatea de concentrare. Una dintre subiectele care merită o atenție deosebită la cursul „Matematică” este adunarea și scăderea fracțiilor. Mulți studenți le este greu să studieze. Poate că articolul nostru vă va ajuta să înțelegeți mai bine acest subiect.

Cum să scadă fracțiile ai căror numitori sunt aceiași

Fracțiile sunt aceleași numere cu care puteți efectua diverse acțiuni. Diferența lor față de numerele întregi constă în prezența unui numitor. De aceea, atunci când efectuați acțiuni cu fracții, trebuie să studiați unele dintre caracteristicile și regulile acestora. Cel mai simplu caz este scăderea fracțiilor obișnuite, ai căror numitori sunt reprezentați ca același număr. Nu va fi dificil să efectuați această acțiune dacă cunoașteți o regulă simplă:

  • Pentru a scădea al doilea dintr-o fracție, este necesar să se scadă numărătorul fracției de scăzut din numărătorul fracției reduse. Scriem acest număr în numărătorul diferenței și lăsăm numitorul același: k / m - b / m = (k-b) / m.

Exemple de scădere a fracțiilor ai căror numitori sunt aceiași

7/19 - 3/19 = (7 - 3)/19 = 4/19.

Din numărătorul fracției reduse „7” scădem numărătorul fracției reduse „3”, obținem „4”. Scriem acest număr în numărătorul răspunsului și punem la numitor același număr care a fost în numitorii primei și a doua fracții - „19”.

Imaginea de mai jos arată câteva astfel de exemple.

Luați în considerare un exemplu mai complex în care se scad fracțiile cu aceiași numitori:

29/47 - 3/47 - 8/47 - 2/47 - 7/47 = (29 - 3 - 8 - 2 - 7)/47 = 9/47.

Din numărătorul fracției reduse „29” prin scăderea pe rând a numărătorilor tuturor fracțiilor ulterioare - „3”, „8”, „2”, „7”. Ca urmare, obținem rezultatul „9”, pe care îl scriem la numărătorul răspunsului, iar la numitor scriem numărul care se află în numitorii tuturor acestor fracții - „47”.

Adunarea fracțiilor cu același numitor

Adunarea și scăderea fracțiilor obișnuite se efectuează după același principiu.

  • Pentru a adăuga fracții cu aceiași numitori, trebuie să adăugați numărătorii. Numărul rezultat este numărătorul sumei, iar numitorul rămâne același: k/m + b/m = (k + b)/m.

Să vedem cum arată într-un exemplu:

1/4 + 2/4 = 3/4.

La numărătorul primului termen al fracției - "1" - adăugăm numărătorul celui de-al doilea termen al fracției - "2". Rezultatul - „3” - este scris în numărătorul sumei, iar numitorul este lăsat același cu cel care a fost prezent în fracțiile - „4”.

Fracții cu numitori diferiți și scăderea lor

Am luat în considerare deja acțiunea cu fracții care au același numitor. După cum puteți vedea, cunoscând reguli simple, rezolvarea unor astfel de exemple este destul de ușoară. Dar dacă trebuie să efectuați o acțiune cu fracții care au numitori diferiți? Mulți elevi de liceu sunt derutați de astfel de exemple. Dar și aici, dacă cunoașteți principiul soluției, exemplele nu vă vor mai fi dificile. Există și o regulă aici, fără de care soluția unor astfel de fracții este pur și simplu imposibilă.

    Pentru a scădea fracții cu numitori diferiți, acestea trebuie reduse la același cel mai mic numitor.

    Vom vorbi mai detaliat despre cum să facem acest lucru.

    Proprietatea fracțiunii

    Pentru a reduce mai multe fracții la același numitor, trebuie să utilizați proprietatea principală a fracției din soluție: după împărțirea sau înmulțirea numărătorului și numitorului cu același număr, obțineți o fracție egală cu cea dată.

    Deci, de exemplu, fracția 2/3 poate avea numitori precum „6”, „9”, „12”, etc., adică poate arăta ca orice număr care este multiplu al lui „3”. După ce înmulțim numărătorul și numitorul cu „2”, obținem o fracție de 4/6. După ce înmulțim numărătorul și numitorul fracției inițiale cu „3”, obținem 6/9, iar dacă facem o acțiune similară cu numărul „4”, obținem 8/12. Într-o ecuație, aceasta poate fi scrisă astfel:

    2/3 = 4/6 = 6/9 = 8/12…

    Cum să aduceți mai multe fracții la același numitor

    Luați în considerare cum să reduceți mai multe fracții la același numitor. De exemplu, luați fracțiile prezentate în imaginea de mai jos. Mai întâi trebuie să determinați ce număr poate deveni numitorul pentru toate. Pentru a fi mai ușor, să descompunăm numitorii disponibili în factori.

    Numitorul fracției 1/2 și al fracției 2/3 nu pot fi factorizați. Numitorul lui 7/9 are doi factori 7/9 = 7/(3 x 3), numitorul fracției 5/6 = 5/(2 x 3). Acum trebuie să determinați care factori vor fi cei mai mici pentru toate aceste patru fracții. Deoarece prima fracție are numărul „2” la numitor înseamnă că trebuie să fie prezentă la toți numitorii, în fracția 7/9 sunt două triple, ceea ce înseamnă că trebuie să fie prezente și la numitor. Având în vedere cele de mai sus, determinăm că numitorul este format din trei factori: 3, 2, 3 și este egal cu 3 x 2 x 3 = 18.

    Luați în considerare prima fracție - 1/2. Numitorul său conține „2”, dar nu există un singur „3”, ci ar trebui să fie doi. Pentru a face acest lucru, înmulțim numitorul cu două triple, dar, conform proprietății fracției, trebuie să înmulțim numărătorul cu două triple:
    1/2 = (1 x 3 x 3)/(2 x 3 x 3) = 9/18.

    În mod similar, efectuăm acțiuni cu fracțiile rămase.

    • 2/3 - unul trei și unul doi lipsesc la numitor:
      2/3 = (2 x 3 x 2)/(3 x 3 x 2) = 12/18.
    • 7/9 sau 7/(3 x 3) - numitorul lipsesc doi:
      7/9 = (7 x 2)/(9 x 2) = 14/18.
    • 5/6 sau 5/(2 x 3) - numitorului lipsește un triplu:
      5/6 = (5 x 3)/(6 x 3) = 15/18.

    Toate împreună arată așa:

    Cum se scad și se adună fracții cu numitori diferiți

    După cum s-a menționat mai sus, pentru a adăuga sau scădea fracții cu numitori diferiți, acestea trebuie reduse la același numitor și apoi să se folosească regulile de scădere a fracțiilor cu același numitor, care au fost deja descrise.

    Luați în considerare acest lucru cu un exemplu: 4/18 - 3/15.

    Găsirea multiplilor lui 18 și 15:

    • Numărul 18 este format din 3 x 2 x 3.
    • Numărul 15 este format din 5 x 3.
    • Multiplu comun va consta din următorii factori 5 x 3 x 3 x 2 = 90.

    După ce se găsește numitorul, este necesar să se calculeze un factor care va fi diferit pentru fiecare fracție, adică numărul cu care va fi necesar să se înmulțească nu numai numitorul, ci și numărătorul. Pentru a face acest lucru, împărțim numărul pe care l-am găsit (multiplu comun) la numitorul fracției pentru care trebuie să fie determinați factori suplimentari.

    • 90 împărțit la 15. Numărul rezultat „6” va fi un multiplicator pentru 3/15.
    • 90 împărțit la 18. Numărul rezultat „5” va fi un multiplicator pentru 4/18.

    Următorul pas în soluția noastră este să aducem fiecare fracție la numitorul „90”.

    Am discutat deja cum se face acest lucru. Să vedem cum este scris asta într-un exemplu:

    (4 x 5) / (18 x 5) - (3 x 6) / (15 x 6) = 20/90 - 18/90 = 2/90 = 1/45.

    Dacă fracții cu numere mici, atunci puteți determina numitorul comun, ca în exemplul prezentat în imaginea de mai jos.

    Produs similar și având diferiți numitori.

    Scăderea și având părți întregi

    Scăderea fracțiilor și adunarea lor, am analizat deja în detaliu. Dar cum să scadă dacă fracția are o parte întreagă? Din nou, să folosim câteva reguli:

    • Convertiți toate fracțiile care au o parte întreagă în fracții improprii. Cu cuvinte simple, eliminați întreaga parte. Pentru a face acest lucru, numărul părții întregi este înmulțit cu numitorul fracției, produsul rezultat este adăugat la numărător. Numărul care se va obține în urma acestor acțiuni este numărătorul unei fracții improprie. Numitorul rămâne neschimbat.
    • Dacă fracțiile au numitori diferiți, ele ar trebui reduse la același.
    • Efectuați adunarea sau scăderea cu aceiași numitori.
    • Când primiți o fracție necorespunzătoare, selectați întreaga parte.

    Există o altă modalitate prin care puteți adăuga și scădea fracții cu părți întregi. Pentru aceasta, acțiunile sunt efectuate separat cu părți întregi și separat cu fracții, iar rezultatele sunt înregistrate împreună.

    Exemplul de mai sus este format din fracții care au același numitor. În cazul în care numitorii sunt diferiți, aceștia trebuie redusi la același, apoi urmați pașii indicați în exemplu.

    Scăderea fracțiilor dintr-un număr întreg

    O altă varietate de acțiuni cu fracții este cazul în care fracția trebuie scăzută din La prima vedere, un astfel de exemplu pare greu de rezolvat. Totuși, totul este destul de simplu aici. Pentru a o rezolva, este necesar să convertiți un număr întreg într-o fracție, și cu un astfel de numitor, care se află în fracția de scădere. În continuare, efectuăm o scădere similară cu scăderea cu aceiași numitori. De exemplu, arată astfel:

    7 - 4/9 = (7 x 9)/9 - 4/9 = 53/9 - 4/9 = 49/9.

    Scăderea fracțiilor prezentate în acest articol (Clasa 6) este baza pentru rezolvarea unor exemple mai complexe, care sunt luate în considerare în clasele ulterioare. Cunoașterea acestui subiect este folosită ulterior pentru a rezolva funcții, derivate și așa mai departe. Prin urmare, este foarte important să înțelegeți și să înțelegeți acțiunile cu fracții discutate mai sus.

Fracțiile sunt numere obișnuite, ele pot fi, de asemenea, adunate și scăzute. Dar datorită faptului că au un numitor, aici sunt necesare reguli mai complexe decât pentru numerele întregi.

Luați în considerare cel mai simplu caz, când există două fracții cu aceiași numitori. Apoi:

Pentru a adăuga fracții cu aceiași numitori, adăugați numărătorii lor și lăsați numitorul neschimbat.

Pentru a scădea fracții cu aceiași numitori, este necesar să scădeți numărătorul celui de-al doilea din numărătorul primei fracții și să lăsați din nou numitorul neschimbat.

În cadrul fiecărei expresii, numitorii fracțiilor sunt egali. Prin definiția adunării și scăderii fracțiilor, obținem:

După cum puteți vedea, nimic complicat: doar adăugați sau scădeți numărătorii - și atât.

Dar chiar și în acțiuni atât de simple, oamenii reușesc să greșească. Cel mai adesea ei uită că numitorul nu se schimbă. De exemplu, atunci când le adăugați, încep și ele să se adună, iar acest lucru este fundamental greșit.

A scăpa de obiceiul prost de a adăuga numitori este destul de simplu. Încercați să faceți același lucru când scădeți. Ca urmare, numitorul va fi zero, iar fracția (brut!) își va pierde sensul.

Prin urmare, amintiți-vă odată pentru totdeauna: atunci când adunați și scădeți, numitorul nu se schimbă!

De asemenea, mulți oameni fac greșeli atunci când adaugă mai multe fracții negative. Există confuzie cu semnele: unde se pune un minus și unde - un plus.

Această problemă este, de asemenea, foarte ușor de rezolvat. Este suficient să ne amintim că minusul dinaintea semnului fracției poate fi întotdeauna transferat la numărător - și invers. Și, desigur, nu uitați de două reguli simple:

  1. Plus ori minus dă minus;
  2. Două negative fac o afirmație.

Să analizăm toate acestea cu exemple specifice:

Sarcină. Aflați valoarea expresiei:

În primul caz, totul este simplu, iar în al doilea, vom adăuga minusuri numărătorilor fracțiilor:

Dacă numitorii sunt diferiți

Nu puteți adăuga direct fracții cu numitori diferiți. Cel puțin, această metodă îmi este necunoscută. Cu toate acestea, fracțiile originale pot fi întotdeauna rescrise astfel încât numitorii să devină la fel.

Există multe moduri de a converti fracții. Trei dintre ele sunt discutate în lecția „Aducerea fracțiilor la un numitor comun”, așa că nu ne vom opri aici asupra lor. Să aruncăm o privire la câteva exemple:

Sarcină. Aflați valoarea expresiei:

În primul caz, aducem fracțiile la un numitor comun folosind metoda „în cruce”. În al doilea, vom căuta LCM. Rețineți că 6 = 2 3; 9 = 3 · 3. Ultimii factori din aceste expansiuni sunt egali, iar primii sunt coprimi. Prin urmare, LCM(6; 9) = 2 3 3 = 18.

Ce se întâmplă dacă fracția are o parte întreagă

Vă pot mulțumi: numitorii diferiți ai fracțiilor nu sunt cel mai mare rău. Mult mai multe erori apar atunci când întreaga parte este evidențiată în termeni fracționari.

Desigur, pentru astfel de fracții există algoritmi proprii de adunare și scădere, dar sunt destul de complicati și necesită un studiu lung. Mai bine folosiți diagrama simplă de mai jos:

  1. Convertiți toate fracțiile care conțin o parte întreagă în improprii. Obținem termeni normali (chiar dacă au numitori diferiți), care se calculează conform regulilor discutate mai sus;
  2. De fapt, calculați suma sau diferența fracțiilor rezultate. Ca urmare, practic vom găsi răspunsul;
  3. Dacă aceasta este tot ceea ce a fost necesar în sarcină, efectuăm transformarea inversă, adică. scăpăm de fracția improprie, evidențiind partea întreagă din ea.

Regulile pentru trecerea la fracții improprii și evidențierea părții întregi sunt descrise în detaliu în lecția „Ce este o fracție numerică”. Dacă nu vă amintiți, asigurați-vă că repetați. Exemple:

Sarcină. Aflați valoarea expresiei:

Totul este simplu aici. Numitorii din fiecare expresie sunt egali, așa că rămâne să convertiți toate fracțiile în fracții improprii și să numărați. Noi avem:

Pentru a simplifica calculele, am omis câțiva pași evidenti în ultimele exemple.

O mică notă la ultimele două exemple, în care fracțiile cu o parte întreagă evidențiată sunt scăzute. Minusul dinaintea celei de-a doua fracții înseamnă că întreaga fracție este cea care este scăzută, și nu doar întreaga sa parte.

Recitiți din nou această propoziție, uitați-vă la exemple și gândiți-vă. Aici începătorii fac multe greșeli. Le place să dea astfel de sarcini la munca de control. De asemenea, îi veți întâlni în mod repetat la testele pentru această lecție, care va fi publicată în curând.

Rezumat: Schema generală de calcul

În concluzie, voi oferi un algoritm general care vă va ajuta să găsiți suma sau diferența a două sau mai multe fracții:

  1. Dacă o parte întreagă este evidențiată într-una sau mai multe fracții, convertiți aceste fracții în fracțiuni improprii;
  2. Aduceți toate fracțiile la un numitor comun în orice mod convenabil pentru dvs. (cu excepția cazului în care, desigur, compilatorii problemelor au făcut acest lucru);
  3. Adunarea sau scaderea numerelor rezultate dupa regulile de adunare si scadere a fractiilor cu aceiasi numitori;
  4. Reduceți rezultatul dacă este posibil. Dacă fracția sa dovedit a fi incorectă, selectați întreaga parte.

Amintiți-vă că este mai bine să evidențiați întreaga parte chiar la sfârșitul sarcinii, chiar înainte de a scrie răspunsul.

În secolul al V-lea î.Hr., filosoful antic grec Zenon din Elea și-a formulat celebrele aporii, dintre care cea mai cunoscută este aporia „Achile și broasca țestoasă”. Iată cum sună:

Să presupunem că Ahile aleargă de zece ori mai repede decât țestoasa și este la o mie de pași în spatele ei. În timpul în care Ahile parcurge această distanță, țestoasa se târăște o sută de pași în aceeași direcție. Când Ahile a alergat o sută de pași, țestoasa se va târa încă zece pași și așa mai departe. Procesul va continua la nesfârșit, Ahile nu va ajunge niciodată din urmă cu broasca țestoasă.

Acest raționament a devenit un șoc logic pentru toate generațiile următoare. Aristotel, Diogene, Kant, Hegel, Gilbert... Toți, într-un fel sau altul, au considerat aporii lui Zenon. Șocul a fost atât de puternic încât " ... discuțiile continuă în prezent, comunitatea științifică nu a reușit încă să ajungă la o opinie comună cu privire la esența paradoxurilor... în studiul problemei au fost implicate analiza matematică, teoria mulțimilor, noi abordări fizice și filozofice. ; niciunul dintre ele nu a devenit o soluție universal acceptată la problemă...„[Wikipedia,” Aporii lui Zeno „]. Toată lumea înțelege că sunt păcăliți, dar nimeni nu înțelege ce este înșelăciunea.

Din punctul de vedere al matematicii, Zenon în aporia sa a demonstrat clar trecerea de la valoare la. Această tranziție implică aplicarea în loc de constante. Din câte am înțeles, aparatul matematic pentru aplicarea unităților de măsură variabile fie nu a fost încă dezvoltat, fie nu a fost aplicat aporiei lui Zenon. Aplicarea logicii noastre obișnuite ne duce într-o capcană. Noi, prin inerția gândirii, aplicăm reciprocului unități constante de timp. Din punct de vedere fizic, se pare că timpul încetinește până la o oprire completă în momentul în care Ahile ajunge din urmă cu țestoasa. Dacă timpul se oprește, Ahile nu mai poate depăși țestoasa.

Dacă întoarcem logica cu care suntem obișnuiți, totul cade la locul său. Ahile aleargă cu o viteză constantă. Fiecare segment ulterior al traseului său este de zece ori mai scurt decât cel anterior. În consecință, timpul petrecut pentru depășirea acestuia este de zece ori mai mic decât cel anterior. Dacă aplicăm conceptul de „infinit” în această situație, atunci ar fi corect să spunem „Achile va depăși infinit rapid broasca țestoasă”.

Cum să eviți această capcană logică? Rămâneți în unități constante de timp și nu treceți la valori reciproce. În limbajul lui Zeno, arată astfel:

În timpul necesar lui Ahile pentru a alerga o mie de pași, țestoasa se târăște o sută de pași în aceeași direcție. În următorul interval de timp, egal cu primul, Ahile va alerga încă o mie de pași, iar țestoasa se va târa o sută de pași. Acum Ahile este cu opt sute de pași înaintea țestoasei.

Această abordare descrie în mod adecvat realitatea fără niciun paradox logic. Dar aceasta nu este o soluție completă la problemă. Afirmația lui Einstein despre insurmontabilitatea vitezei luminii este foarte asemănătoare cu aporia lui Zeno „Achile și broasca țestoasă”. Încă trebuie să studiem, să regândim și să rezolvăm această problemă. Iar soluția trebuie căutată nu în număr infinit de mare, ci în unități de măsură.

O altă aporie interesantă a lui Zeno spune despre o săgeată zburătoare:

O săgeată zburătoare este nemișcată, deoarece în fiecare moment de timp este în repaus și, deoarece este în repaus în fiecare moment de timp, este întotdeauna în repaus.

În această aporie, paradoxul logic este depășit foarte simplu - este suficient să clarificăm că în fiecare moment de timp săgeata zburătoare este în repaus în diferite puncte din spațiu, ceea ce, de fapt, este mișcare. Mai este un punct de remarcat aici. Dintr-o fotografie a unei mașini pe șosea, este imposibil să se determine nici faptul mișcării acesteia, fie distanța până la ea. Pentru a determina fapta mișcării mașinii, sunt necesare două fotografii realizate din același punct în momente diferite de timp, dar nu pot fi folosite pentru a determina distanța. Pentru a determina distanța până la mașină, aveți nevoie de două fotografii făcute din diferite puncte din spațiu în același timp, dar nu puteți determina faptul deplasării din ele (în mod firesc, aveți nevoie de date suplimentare pentru calcule, trigonometria vă va ajuta). Ceea ce vreau să subliniez în special este că două puncte în timp și două puncte în spațiu sunt două lucruri diferite care nu trebuie confundate, deoarece oferă oportunități diferite de explorare.

miercuri, 4 iulie 2018

Foarte bine diferențele dintre set și multiset sunt descrise în Wikipedia. Ne uitam.

După cum puteți vedea, „multimea nu poate avea două elemente identice”, dar dacă există elemente identice în set, un astfel de set se numește „multiset”. Ființele rezonabile nu vor înțelege niciodată o asemenea logică a absurdității. Acesta este nivelul papagalilor vorbitori și al maimuțelor dresate, în care mintea este absentă din cuvântul „complet”. Matematicienii acționează ca formatori obișnuiți, propovăduindu-ne ideile lor absurde.

Pe vremuri, inginerii care au construit podul se aflau într-o barcă sub pod în timpul testelor podului. Dacă podul s-a prăbușit, inginerul mediocru a murit sub dărâmăturile creației sale. Dacă podul putea rezista la sarcină, talentatul inginer a construit alte poduri.

Indiferent de cât de matematicieni se ascund în spatele expresiei „mind-mă, sunt în casă”, sau mai degrabă „matematica studiază concepte abstracte”, există un cordon ombilical care le leagă indisolubil de realitatea. Acest cordon ombilical este bani. Să aplicăm teoria mulțimilor matematicienilor înșiși.

Am studiat foarte bine matematica și acum stăm la casierie și plătim salarii. Aici vine un matematician la noi pentru banii lui. Numărăm întreaga sumă pentru el și o întindem pe masa noastră în grămezi diferite, în care punem bancnote de aceeași valoare. Apoi luăm câte o bancnotă din fiecare grămadă și îi dăm matematicianului „setul său de salariu matematic”. Explicăm la matematică că va primi restul bancnotelor doar atunci când demonstrează că mulțimea fără elemente identice nu este egală cu mulțimea cu elemente identice. Aici începe distracția.

În primul rând, logica deputaților va funcționa: „puteți aplica și altora, dar mie nu!” În plus, vor începe asigurările că există numere diferite de bancnote pe bancnotele de aceeași valoare nominală, ceea ce înseamnă că acestea nu pot fi considerate elemente identice. Ei bine, numărăm salariul în monede - nu există numere pe monede. Aici, matematicianul își va aminti frenetic de fizică: diferite monede au cantități diferite de murdărie, structura cristalină și aranjarea atomilor pentru fiecare monedă este unică...

Și acum am cea mai interesantă întrebare: unde este granița dincolo de care elementele unui multiset se transformă în elemente ale unui set și invers? O astfel de linie nu există - totul este decis de șamani, știința aici nu este nici măcar aproape.

Uite aici. Selectăm stadioane de fotbal cu aceeași suprafață de teren. Aria câmpurilor este aceeași, ceea ce înseamnă că avem un multiset. Dar dacă luăm în considerare numele acelorași stadioane, obținem multe, pentru că numele sunt diferite. După cum puteți vedea, același set de elemente este atât un set cât și un multiset în același timp. Cât de corect? Și aici matematicianul-șaman-shuller scoate un as de atu din mânecă și începe să ne vorbească fie despre un set, fie despre un multiset. În orice caz, ne va convinge că are dreptate.

Pentru a înțelege cum operează șamanii moderni cu teoria mulțimilor, legând-o de realitate, este suficient să răspundem la o întrebare: prin ce diferă elementele unui set de elementele altui set? Vă voi arăta, fără niciun „conceput ca nu un singur întreg” sau „neconceput ca un singur întreg”.

Duminică, 18 martie 2018

Suma cifrelor unui număr este un dans al șamanilor cu un tamburin, care nu are nimic de-a face cu matematica. Da, la lecțiile de matematică suntem învățați să găsim suma cifrelor unui număr și să o folosim, dar ei sunt șamani pentru asta, pentru a-și învăța descendenții abilitățile și înțelepciunea, altfel șamanii pur și simplu vor muri.

Ai nevoie de dovezi? Deschideți Wikipedia și încercați să găsiți pagina „Suma cifrelor unui număr”. Ea nu există. Nu există o formulă în matematică prin care să poți găsi suma cifrelor oricărui număr. La urma urmei, numerele sunt simboluri grafice cu care scriem numere, iar în limbajul matematicii, sarcina sună astfel: „Găsiți suma simbolurilor grafice care reprezintă orice număr”. Matematicienii nu pot rezolva această problemă, dar șamanii o pot face în mod elementar.

Să ne dăm seama ce și cum facem pentru a găsi suma cifrelor unui număr dat. Și așa, să presupunem că avem numărul 12345. Ce trebuie făcut pentru a găsi suma cifrelor acestui număr? Să luăm în considerare toți pașii în ordine.

1. Notează numărul pe o foaie de hârtie. Ce am făcut? Am convertit numărul într-un simbol grafic numeric. Aceasta nu este o operație matematică.

2. Am tăiat o imagine primită în mai multe imagini care conțin numere separate. Decuparea unei imagini nu este o operație matematică.

3. Convertiți caracterele grafice individuale în numere. Aceasta nu este o operație matematică.

4. Adunați numerele rezultate. Acum asta e matematica.

Suma cifrelor numărului 12345 este 15. Acestea sunt „cursurile de tăiere și cusut” de la șamani folosite de matematicieni. Dar asta nu este tot.

Din punct de vedere al matematicii, nu contează în ce sistem de numere scriem numărul. Deci, în sisteme de numere diferite, suma cifrelor aceluiași număr va fi diferită. În matematică, sistemul numeric este indicat ca indice în dreapta numărului. Cu un număr mare de 12345, nu vreau să-mi păcălesc capul, luați în considerare numărul 26 din articolul despre. Să scriem acest număr în sisteme de numere binar, octal, zecimal și hexazecimal. Nu vom lua în considerare fiecare pas la microscop, am făcut-o deja. Să ne uităm la rezultat.

După cum puteți vedea, în diferite sisteme de numere, suma cifrelor aceluiași număr este diferită. Acest rezultat nu are nimic de-a face cu matematica. Este la fel ca și cum ați obține rezultate complet diferite atunci când determinați aria unui dreptunghi în metri și centimetri.

Zero în toate sistemele de numere arată la fel și nu are sumă de cifre. Acesta este un alt argument în favoarea faptului că . O întrebare pentru matematicieni: cum se notează în matematică ceea ce nu este un număr? Ce, pentru matematicieni, nu există decât numere? Pentru șamani, pot permite acest lucru, dar pentru oameni de știință, nu. Realitatea nu este doar despre cifre.

Rezultatul obținut trebuie considerat ca o dovadă că sistemele numerice sunt unități de măsură ale numerelor. La urma urmei, nu putem compara numerele cu unități de măsură diferite. Dacă aceleași acțiuni cu diferite unități de măsură ale aceleiași mărimi duc la rezultate diferite după compararea lor, atunci acest lucru nu are nimic de-a face cu matematica.

Ce este matematica reală? Acesta este momentul în care rezultatul unei acțiuni matematice nu depinde de valoarea numărului, de unitatea de măsură folosită și de cine efectuează această acțiune.

Semnează pe uşă Deschide usa si spune:

Ai! Asta nu este toaleta femeilor?
- Femeie tânără! Acesta este un laborator pentru studierea sfințeniei nedefinite a sufletelor la înălțarea la cer! Nimbus în sus și săgeată în sus. Ce altă toaletă?

Femeie... Un halou deasupra și o săgeată în jos sunt masculin.

Dacă aveți o astfel de operă de artă de design fulgerând în fața ochilor dvs. de mai multe ori pe zi,

Atunci nu este surprinzător că găsiți brusc o pictogramă ciudată în mașina dvs.:

Personal, fac un efort pe mine însumi să văd minus patru grade la o persoană care face caca (o poză) (compunere din mai multe imagini: semnul minus, numărul patru, desemnarea grade). Și nu o consider pe fata asta o proastă care nu știe fizică. Ea are doar un arc stereotip al percepției imaginilor grafice. Și matematicienii ne învață asta tot timpul. Iată un exemplu.

1A nu este „minus patru grade” sau „unu a”. Acesta este „omul care face caca” sau numărul „douăzeci și șase” în sistemul numeric hexazecimal. Acei oameni care lucrează constant în acest sistem numeric percep automat numărul și litera ca un simbol grafic.

Acțiuni cu fracții.

Atenţie!
Sunt suplimentare
material în secțiunea specială 555.
Pentru cei care puternic „nu foarte...”
Și pentru cei care „foarte mult...”)

Deci, ce sunt fracțiile, tipurile de fracții, transformările - ne-am amintit. Să abordăm întrebarea principală.

Ce poți face cu fracțiile? Da, totul este la fel ca în cazul numerelor obișnuite. Adunați, scădeți, înmulțiți, împărțiți.

Toate aceste acțiuni cu zecimal operațiile cu fracții nu sunt diferite de operațiile cu numere întregi. De fapt, pentru asta sunt bune, zecimală. Singurul lucru este că trebuie să puneți virgula corect.

numere mixte, așa cum am spus, sunt de puțin folos pentru majoritatea acțiunilor. Ele mai trebuie convertite în fracții obișnuite.

Și aici sunt acțiunile cu fracții obișnuite va fi mai inteligent. Și mult mai important! Lasă-mă să-ți amintesc: toate acțiunile cu expresii fracționale cu litere, sinusuri, necunoscute și așa mai departe nu sunt diferite de acțiunile cu fracții obișnuite! Operațiile cu fracții obișnuite stau la baza tuturor algebrei. Tocmai din acest motiv vom analiza aici în detaliu toată această aritmetică.

Adunarea și scăderea fracțiilor.

Toată lumea poate adăuga (scădea) fracții cu aceiași numitori (sper foarte mult!). Ei bine, permiteți-mi să vă reamintesc că sunt complet uituc: la adunarea (scăderea), numitorul nu se schimbă. Număratorii sunt adăugați (scădeți) pentru a da numărătorul rezultatului. Tip:

Pe scurt, în termeni generali:

Ce se întâmplă dacă numitorii sunt diferiți? Apoi, folosind proprietatea principală a fracției (aici ne-a fost util din nou!), Facem numitorii la fel! De exemplu:

Aici a trebuit să facem fracția 4/10 din fracția 2/5. Numai în scopul de a face numitorii la fel. Observ, pentru orice eventualitate, că 2/5 și 4/10 sunt aceeași fracție! Doar 2/5 este incomod pentru noi, iar 4/10 este chiar nimic.

Apropo, aceasta este esența rezolvării oricăror sarcini din matematică. Când suntem afară incomod expresiile fac la fel, dar mai convenabil de rezolvat.

Alt exemplu:

Situația este similară. Aici facem 48 din 16. Prin simplă înmulțire cu 3. Toate acestea sunt clare. Dar aici întâlnim ceva de genul:

Cum sa fii?! E greu să faci un nouă din șapte! Dar suntem deștepți, știm regulile! Să ne transformăm fiecare fracție astfel încât numitorii să fie aceiași. Aceasta se numește „reducere la un numitor comun”:

Cum! De unde am știut despre 63? Foarte simplu! 63 este un număr care este divizibil egal cu 7 și 9 în același timp. Un astfel de număr poate fi întotdeauna obținut prin înmulțirea numitorilor. Dacă înmulțim un număr cu 7, de exemplu, atunci rezultatul va fi cu siguranță împărțit la 7!

Dacă trebuie să adunați (scădeți) mai multe fracții, nu este nevoie să o faceți în perechi, pas cu pas. Trebuie doar să găsiți numitorul care este comun tuturor fracțiilor și să aduceți fiecare fracție la același numitor. De exemplu:

Și care va fi numitorul comun? Puteți, desigur, să înmulțiți 2, 4, 8 și 16. Obținem 1024. Coșmar. Este mai ușor de estimat că numărul 16 este perfect divizibil cu 2, 4 și 8. Prin urmare, este ușor să obțineți din aceste numere 16. Acest număr va fi numitorul comun. Să transformăm 1/2 în 8/16, 3/4 în 12/16 și așa mai departe.

Apropo, dacă luăm 1024 ca numitor comun, totul va merge și el, până la urmă totul se va reduce. Numai că nu toată lumea va ajunge în acest scop, din cauza calculelor...

Rezolvați singur exemplul. Nu un logaritm... Ar trebui să fie 29/16.

Deci, cu adunarea (scăderea) fracțiilor este clar, sper? Desigur, este mai ușor să lucrezi într-o versiune scurtată, cu multiplicatori suplimentari. Dar această plăcere este disponibilă celor care au lucrat sincer în clasele inferioare... Și nu au uitat nimic.

Și acum vom face aceleași acțiuni, dar nu cu fracții, ci cu expresii fracționale. Noi greble vor fi găsite aici, da...

Deci, trebuie să adăugăm două expresii fracționale:

Trebuie să facem numitorii la fel. Și numai cu ajutorul multiplicare! Deci proprietatea principală a fracției spune. Prin urmare, nu pot adăuga unul la x în prima fracție din numitor. (Dar asta ar fi frumos!). Dar dacă înmulți numitorii, vezi, totul va crește împreună! Așa că scriem, linia fracției, lăsăm un spațiu gol deasupra, apoi îl adunăm și scriem produsul numitorilor de mai jos, pentru a nu uita:

Și, desigur, nu înmulțim nimic pe partea dreaptă, nu deschidem paranteze! Și acum, privind numitorul comun al părții drepte, ne gândim: pentru a obține numitorul x (x + 1) în prima fracție, trebuie să înmulțim numărătorul și numitorul acestei fracții cu (x + 1) . Și în a doua fracție - x. Primești asta:

Notă! Parantezele sunt aici! Aceasta este grebla pe care mulți o calcă. Nu paranteze, desigur, ci absența lor. Parantezele apar pentru că ne înmulțim întregul numărător și întregul numitor! Și nu piesele lor individuale...

În numărătorul din dreapta scriem suma numărătorilor, totul este ca în fracții numerice, apoi deschidem parantezele în numărătorul din dreapta, adică. inmulti totul si da like. Nu trebuie să deschideți parantezele din numitori, nu trebuie să înmulțiți ceva! In general, in numitori (oricare) produsul este intotdeauna mai placut! Primim:

Aici avem răspunsul. Procesul pare lung și dificil, dar depinde de practică. Rezolvă exemple, obișnuiește-te, totul va deveni simplu. Cei care au stăpânit fracțiile în timpul alocat, fac toate aceste operații cu o singură mână, la aparat!

Și încă o notă. Mulți se ocupă de fracții, dar se așteaptă cu exemple întreg numerele. Tip: 2 + 1/2 + 3/4= ? Unde să fixați un deuce? Nu este nevoie să fixați nicăieri, trebuie să faceți o fracțiune dintr-un doi. Nu este ușor, este foarte simplu! 2=2/1. Ca aceasta. Orice număr întreg poate fi scris ca fracție. Numătorul este numărul în sine, numitorul este unul. 7 este 7/1, 3 este 3/1 și așa mai departe. La fel este și cu literele. (a + b) \u003d (a + b) / 1, x \u003d x / 1 etc. Și apoi lucrăm cu aceste fracții conform tuturor regulilor.

Ei bine, la adunarea - scăderea fracțiilor, cunoștințele au fost reîmprospătate. Transformări ale fracțiilor de la un tip la altul - repetate. De asemenea, puteți verifica. Ne aliniem putin?)

Calculati:

Răspunsuri (în dezordine):

71/20; 3/5; 17/12; -5/4; 11/6

Înmulțirea / împărțirea fracțiilor - în lecția următoare. Există, de asemenea, sarcini pentru toate acțiunile cu fracții.

Daca va place acest site...

Apropo, mai am câteva site-uri interesante pentru tine.)

Puteți exersa rezolvarea exemplelor și puteți afla nivelul dvs. Testare cu verificare instantanee. Învățarea - cu interes!)

vă puteți familiariza cu funcțiile și derivatele.

Notă!Înainte de a scrie un răspuns final, vezi dacă poți reduce fracția pe care ai primit-o.

Scăderea fracțiilor cu aceiași numitori exemple:

,

,

Scăderea unei fracții adecvate din una.

Dacă este necesară scăderea din unitate a unei fracții care este corectă, unitatea se transformă în forma unei fracții improprie, numitorul ei este egal cu numitorul fracției scăzute.

Un exemplu de scădere a unei fracții adecvate din una:

Numitorul fracției de scăzut = 7 , adică reprezentăm unitatea ca o fracție improprie 7/7 și scădem conform regulii de scădere a fracțiilor cu aceiași numitori.

Scăderea unei fracții adecvate dintr-un număr întreg.

Reguli pentru scăderea fracțiilor - corectă din întreg (numar natural):

  • Traducem fracțiile date, care conțin o parte întreagă, în unele improprii. Obținem termeni normali (nu contează dacă au numitori diferiți), pe care îi considerăm conform regulilor date mai sus;
  • Apoi, calculăm diferența fracțiilor pe care le-am primit. Ca rezultat, aproape vom găsi răspunsul;
  • Efectuăm transformarea inversă, adică scăpăm de fracția improprie - selectăm partea întreagă din fracție.

Scădeți o fracție proprie dintr-un număr întreg: reprezentăm un număr natural ca număr mixt. Acestea. luăm o unitate într-un număr natural și o traducem în forma unei fracții improprie, numitorul este același cu cel al fracției scăzute.

Exemplu de scădere a fracțiilor:

În exemplu, am înlocuit unitatea cu o fracție improprie 7/7 și în loc de 3 am notat un număr mixt și am scăzut o fracție din partea fracțională.

Scăderea fracțiilor cu numitori diferiți.

Sau, altfel spus, scăderea diferitelor fracții.

Regula pentru scăderea fracțiilor cu numitori diferiți. Pentru a scădea fracțiile cu numitori diferiți, este necesar, mai întâi, să aducem aceste fracții la cel mai mic numitor comun (LCD), și abia după aceea să scădem ca și la fracțiile cu aceiași numitori.

Numitorul comun al mai multor fracții este LCM (cel mai mic multiplu comun) numere naturale care sunt numitorii fracțiilor date.

Atenţie! Dacă în fracția finală numărătorul și numitorul au factori comuni, atunci fracția trebuie redusă. O fracție improprie este cel mai bine reprezentată ca o fracție mixtă. Lăsarea rezultatului scăderii fără reducerea fracției acolo unde este posibil este o soluție neterminată a exemplului!

Procedura de scadere a fractiilor cu numitori diferiti.

  • găsiți LCM pentru toți numitorii;
  • pune multiplicatori suplimentari pentru toate fracțiile;
  • înmulțiți toți numărătorii cu un factor suplimentar;
  • scriem produsele rezultate la numărător, semnând un numitor comun sub toate fracțiile;
  • scădeți numărătorii fracțiilor, semnând numitorul comun sub diferență.

În același mod, adunarea și scăderea fracțiilor se efectuează în prezența literelor în numărător.

Scăderea fracțiilor, exemple:

Scăderea fracțiilor mixte.

La scăderea fracțiilor mixte (numere) separat, partea întreagă este scăzută din partea întreagă, iar partea fracțională este scăzută din partea fracțională.

Prima opțiune este de a scădea fracțiile mixte.

Dacă părțile fracționale aceeași numitorii și numărătorul părții fracționale a minuendului (din el scădem) ≥ numărătorul părții fracționale a subtraendului (o scădem).

De exemplu:

A doua opțiune este de a scădea fracțiile mixte.

Când părțile fracționale variat numitori. Pentru început, reducem părțile fracționale la un numitor comun, apoi scădem partea întreagă din întreg, iar fracționalul din fracționar.

De exemplu:

A treia opțiune este de a scădea fracțiile mixte.

Partea fracționară a minuendului este mai mică decât partea fracționară a subtraendului.

Exemplu:

pentru că părțile fracționale au numitori diferiți, ceea ce înseamnă, ca și în a doua opțiune, mai întâi aducem fracțiile obișnuite la un numitor comun.

Numătorul părții fracționale a minuendului este mai mic decât numărătorul părții fracționale a subtraendului.3 < 14. Deci, luăm o unitate din partea întreagă și aducem această unitate la forma unei fracții improprie cu același numitor și numărător = 18.

În numărătorul din dreapta scriem suma numărătorilor, apoi deschidem parantezele în numărătorul din dreapta, adică înmulțim totul și dăm similare. Nu deschidem paranteze la numitor. Se obișnuiește să lăsați produsul în numitori. Primim: