Вводный урок. Предмет астрономии

Люди древности так же, как и мы, смотрели по ночам на звезды и Луну и пытались понять, что они собой представляют, почему перемещаются по небесному своду, влияют ли на земную жизнь. На последний вопрос они, как правило, отвечали утвердительно Астрономия, древнейшая из наук, на первых этапах своего развития существовала параллельно с астрологией. Составляя первые карты звездного неба и рассчитывая движение светил, исследователи былых времен в первую очередь стремились предсказать по ним будущее.

С другой стороны, астрономия была частью философской системы. Созерцание звезд наводило на размышления о смысле бытия, о месте человека в этом мире, о предназначении и свободе воли. Вопросы о том, как устроено мироздание, тесно переплетались с религиозными учениями и доктринами. Первыми астрономами были жрецы и монахи, прорицатели и философы.

Самые древние астрономические наблюдения были сделаны нашими предками десятки тысяч лет назад, когда не существовало ни письменности, ни тем более науки. Следы этих наблюдений сохранились в виде наскальных рисунков, изображающих небесные светила, фазы Луны, примитивные календари и т. п. Один из самых древних астрономических памятников, сохранившихся до наших дней, – Стоунхендж, расположенный на территории современной Великобритании. Начало его сооружения датируется III тыс. до н. э. Положение камней в Стоунхендже связано с наиболее значимыми астрономическими явлениями: солнцестояниями, равноденствиями, движением и фазами Луны.

В каждом из древних очагов цивилизации, существовавших на нашей планете, современными археологами найдены астрономические записи, рисунки и карты.

Еще пять тысяч лет назад древние вавилоняне разделили небо на созвездия, составили календарь, отражающий фазы и циклы Луны, определили, что год состоит из 365 дней с четвертью. Вавилонские жрецы могли предсказывать затмения Луны и Солнца, им же, по мнению ученых, принадлежит первенство деления года на двенадцать месяцев и создания недели, состоящей из семи дней (каждому дню покровительствовало одно из небесных светил).

В Египте, в III тыс. до н. э., существовал сотический календарь. Он начинался со дня восхода самой яркой звезды на небе, Сириуса (Сотиса). Египтяне знали, что с момента восхода Сириуса начинается разлив Нила, а значит, пришла пора приступать к сельскохозяйственным работам. Астрономы Древнего Египта считали, что Земля находится в центре мира, вокруг нее вращаются Луна и Солнце. Меркурий и Венера, в свою очередь, движутся вокруг Солнца (а с ним вместе вокруг Земли). Кроме этих двух планет, египтяне обнаружили на небе еще одну – за нее они принимали все остальные планеты солнечной системы.

В Китае наблюдением за небесным сводом еще в конце III тыс до н. э. занимались придворные астрономы, позже здесь были созданы обсерватории, оснащенные самыми передовыми для своего времени приборами. Первое упоминание о знаменитой комете Галлея обнаружено именно в китайских источниках, оно относится к III в. до н. э. Китайцы создали циклический календарь, который по сей день используется в странах Азии. Он основывается на движении Юпитера, полный оборот которого происходит приблизительно за 12 лет, и Сатурна, оборот которого занимает 60 лет. Каждому году цикла соответствует определенное животное (всего их 12) и одна из пяти стихий. К другим достижениям китайских астрономов можно отнести создание первого звездного каталога, умение с большой точностью предсказывать затмения, нахождение экваториальных координат звезд и планет.

Индийская астрономия изложена в Ведах, священных писаниях, созданных во II–I вв. до н. э. Самой важной задачей ведические ученые считали календарные расчеты, от которых зависела правильная организация обрядов и приношений богам. Астрономы Индии имели четкое представление о движении Луны по небу, путь этого светила они делили на 27 созвездий (стоянок). Годичный путь Солнца, эклиптика, был ими подробно изучен, так же как солнечные и лунные затмения.

Говоря об астрономии древних времен, нельзя не упомянуть цивилизацию Майя, создавшую удивительно точный календарь. Уже в I в. до н. э. астрономы Майя знали пять планет солнечной системы, от Меркурия до Юпитера, наблюдали за созвездиями, создавали уникальные обсерватории, руины которых сохранились до наших дней.

Большое количество важнейших астрономических открытий принадлежит древним грекам. Они впервые заговорили о том, что Земля – не плоский диск, а шар и что она может не быть центром Вселенной. Последователи Пифагора, к примеру, предложили очень оригинальную модель: в центре Вселенной находится священный огонь, а вокруг него вращаются Солнце, Луна, Земля и пять других известных планет. У них были противники, выдвигавшие гипотезу гелиоцентрической системы, соответствующую нашим сегодняшним представлениям.

Идеи о шарообразности нашей планеты высказывали многие древнегреческие философы, но логически обосновать эту концепцию смог только Аристотель. Он доказал, что Земля – шар, так как во время лунных затмений она отбрасывает круглую тень. Греческий астроном Эратосфен Киренский, используя систему меридианов, измерил длину окружности Земли. Многие теории и исследования древних греков оказались правильными и были развиты в последующие столетия.

1.2. Николай Коперник, его предшественники и последователи

В Средние века общепринятой была геоцентрическая система мира, предложенная еще во II в. греческим астрономом Птолемеем. Несмотря на то что эта система не соответствовала реальному положению вещей, она была довольно точной и математически выверенной. Птолемею удалось объяснить замысловатые траектории движения как комбинации простых перемещений по окружностям. Вселенная, по Птолемею, является закрытой системой, ее граница – это небесный свод, имеющий форму сферы. По этому своду вокруг неподвижной Земли вращаются Солнце, Луна и планеты. Их движение происходит не непосредственно вокруг нашей планеты, а вокруг некой точки, которая совершает оборот вокруг Земли. Так древнегреческий ученый смог объяснить сложное и хаотичное на первый взгляд перемещение планет по небесному своду.

Почти полтора тысячелетия астрономы сверяли свои расчеты и наблюдения с таблицами, основанными на модели Птолемея. Этим же поначалу занимался польский астроном Николай Коперник в XVI в. Изучая схемы движения планет, рассчитывая их траектории, он столкнулся с постоянно возникающими погрешностями. После многих лет работы с птолемеевыми таблицами Коперник пришел к твердому убеждению, что вся система расчетов неверна, потому что неверна сама модель мира.

Коперник стал первым, кто предложил новую модель Вселенной и не побоялся заявить о ней всему научному миру.

Коперник понял, что если поставить в центр модели Солнце, то все станет гораздо проще: планеты, также как и наша Земля, будут двигаться вокруг него по простым траекториям.

Основываясь на новых постулатах, Коперник высказал несколько смелых гипотез. Во-первых, он предположил, что Земля вращается не только вокруг Солнца, она за сутки оборачивается вокруг своей оси, благодаря этому день сменяет ночь и происходит видимое перемещение небесных объектов. Во-вторых, он пришел к выводу, что оборот вокруг светила совершается нашей планетой за год, и этим перемещением вызвано годовое движение звезд по небу. Позже эти гипотезы были подтверждены наблюдениями.

Система мира Коперника была революционной для своего времени, она кардинально меняла представление о Вселенной и, естественно, многими была встречена в штыки. Прежде всего она наносила урон католической церкви, так как опровергала библейское учение об устройстве мироздания.

I. Введение

1. Предмет астрономии

1. Что изучает астрономия. Связь астрономии с другими науками, ее значение

Астрономия * - наука, изучающая движение, строение, происхождение и развитие небесных тел и их систем. Накопленные ею знания применяются для практических нужд человечества.

* (Это слово происходит от двух греческих слов: астрон - светило, звезда иномос - закон. )

Астрономия является одной из древнейших наук, она возникла на основе практических потребностей человека и развивалась вместе с ними. Элементарные астрономические сведения были известны уже тысячи лет назад в Вавилоне, Египте, Китае и применялись народами этих стран для измерения времени и ориентировки по сторонам горизонта.

И в наше время астрономия используется для определения точного времени и географических координат (в навигации, авиации, космонавтике, геодезии, картографии). Астрономия помогает исследованию и освоению космического пространства, развитию космонавтики и изучению нашей планеты из космоса. Но этим далеко не исчерпываются решаемые ею задачи.

Наша Земля является частью Вселенной. Луна и Солнце вызывают на ней приливы и отливы. Солнечное излучение и его изменения влияют на процессы в земной атмосфере и на жизнедеятельность организмов. Механизмы влияния различных космических тел на Землю также изучает астрономия.

Курс астрономии завершает физико-математическое и естественнонаучное образование, получаемое вами в школе.

Современная астрономия тесно связана с математикой и физикой, с биологией и химией, с географией, геологией и космонавтикой. Используя достижения других наук, она в свою очередь обогащает их, стимулирует их развитие, выдвигая перед ними все новые задачи.

Изучая астрономию, необходимо обращать внимание на то, какие сведения являются достоверными фактами, а какие - научными предположениями, которые со временем могут измениться.

Астрономия изучает в космосе вещество в таких состояниях и масштабах, какие неосуществимы в лабораториях, и этим расширяет физическую картину мира, наши представления о материи. Все это важно для развития диалектико-материалистического представления о природе.

Предвычисляя наступление затмений Солнца и Луны, появление комет, показывая возможность естественнонаучного объяснения происхождения и эволюции Земли и других небесных тел, астрономия подтверждает, что предела человеческому познанию нет.

В прошлом веке один из философов-идеалистов, доказывая ограниченность человеческого познания, утверждал, что, хотя люди и сумели измерить расстояния до некоторых светил, они никогда не смогут определить химический состав звезд. Однако вскоре был открыт спектральный анализ, и астрономы не только установили химический состав атмосфер звезд, но и определили их температуру. Несостоятельным оказались и многие другие попытки указать границы человеческого познания. Так, ученые сначала теоретически оценили температуру лунной поверхности, затем измерили ее с Земли при помощи термоэлемента и радиометодов, потом эти данные были подтверждены приборами автоматических станций, созданных и посланных людьми на Луну.

2. Масштабы Вселенной

Вы уже знаете, что естественный спутник Земли - Луна является ближайшим к нам небесным телом, что наша планета вместе с другими большими и малыми планетами входит в состав Солнечной системы, что все планеты обращаются вокруг Солнца. В свою очередь Солнце, как и все звезды, видимые на небе, входит в состав нашей звездной системы - Галактики. Размеры Галактики так велики, что даже свет, распространяющийся со скоростью 300 000 км/с, проходит расстояние от одного ее края до другого за сто тысяч лет. Подобных галактик во Вселенной множество, но они очень далеки, и мы невооруженным глазом можем видеть лишь одну из них - туманность Андромеды.

Расстояния между отдельными галактиками обычно в десятки раз превосходят их размеры. Чтобы яснее представить себе масштабы Вселенной, внимательно изучите рисунок 1.


Звезды являются наиболее распространенным типом небесных тел во Вселенной, а галактики и их скопления - ее основными структурными единицами. Пространство между звездами в галактиках и между галактиками заполнено очень разреженной материей в виде газа, пыли, элементарных частиц, электромагнитного излучения, гравитационных и магнитных полей.

Изучая законы движения, строение, происхождение и развитие небесных тел и их систем, астрономия дает нам представление о строении и развитии Вселенной в целом.

Проникнуть в глубины Вселенной, изучить физическую природу небесных тел можно при помощи телескопов и других приборов, которыми располагает современная астрономия благодаря успехам, достигнутым в различных областях науки и техники.

Вопрос 1.

Навигационный секстан: назначение, устройство, основные тактико-технические данные и выверки. Секстаном - называется угломерный инструмент, построенный на принципе отражательной схемы и предназначенный для измерения углов на подвижной основе. Название "секстан" связано с величиной его дуги лимба, равной приблизительно 1/6 окружности (по-латыни sextantis-шестая часть). Секстан служит для измерения высоты светила, т.е. вертикального угла между плоскостью горизонта и направлением на светило. Кроме вертикальных углов, секстаном можно измерять горизонтальные углы между направлениями на земные ориентиры (предметы) при определении места судна навигационными способами. При измерении секстаном вертикальных и горизонтальных углов один из предметов наблюдается прямовидимо, изображение же другого предмета наблюдатель видит после отражения от двух зеркал. Чтобы измерить угол, эти два изображения необходимо совместить.

Секстан состоит из металлической или пластмассовой рамы в форме сектора. На раме расположен лимб с градусными делениями, а по торцу дуги нарезана зубчатая рейка. На левом радиусе рамы укреплены неподвижное малое зеркало и светофильтры. На правом радиусе рамы имеется угольник с кольцом, служащий для крепления на ней астрономической трубы и подъемного механизма. На подвижном радиусе- алидаде крепится большое зеркало и на противоположном ее конце установлен винт с отсчетным барабаном, наружная поверхность которого имеет 60 минутных делений. Число градусов показывает индекс, нанесенный около выреза на алидаде. Минуты и десятые доли минуты отсчитываются на барабане. При вращении барабана алидада передвигается, что дает возможность точно совместить прямовидимое и отраженное изображения предметов. Точность измерения углов секстаном 0,1¢. На оборотной стороне рамы имеются ручка и две ножки. Измеряя высоту, нужно в поле зрения трубы секстана совместить светило (или края его диска) с линией видимого горизонта. Совмещение производят в вертикале светила. Установить индекс алидады на 0° и навести трубу на светило. Передвигая алидаду от себя, одновременно опустить секстан к горизонту так, чтобы дважды отраженное изображение светила оставалось все время в поле зрения трубы. Как только появиться прямовидимое изображение горизонта, приступить к точному визированию высоты.

В
судовых условиях выполняют следующие выверки секстана
: проверку положения трубы (для СНО-М и дневной СНО-Т) - перед плаванием, но не реже чем через 3 мес.; проверку перпендикулярности большого и малого зеркал (в указанной последовательности) к плоскости лимба не реже раза в неделю и при подозрении, что установка зеркал нарушена. Поправку индекса секстана необходимо определять каждый раз непосредственно до или после измерения высот светил. Подготовка секстана. Проверка параллельности оптической трубы (дневной или универсальной) плоскости лимба . Секстан устанавливают на горизонтальную поверхность. Алидада ставится на середину лимба, отфокусированная труба - на своё штатное место, а диоптры - на край лимба так, чтобы вертикальная плоскость, проходящая через них, была параллельна оси трубы. Прицеливаются диоптрами, на какой- то удалённый предмет (см. рис.) Если этот предмет располагается в поле зрения по вертикали(положение а) ось трубы параллельна плоскости лимба. Если же предмет смещён вверх или вниз (положение б и в), то ось трубы непараллельная плоскости лимба и её следует выправить, действуя винтами, крепящими трубу.

Проверка перпендикулярности большого зеркала плоскости лимба . Секстан устанавливают на горизонтальную плоскость большим зеркалом к себе, алидаду на отсчёт лимба около 40°, диоптры - на края лимба так, чтобы их плоскости располагались по касательной к внутренней дуге лимба. Судоводитель должен видеть, помимо большого зеркала (справа), часть диоптра 5, установленного на 0°, а часть другого диоптра - отражённой в большом зеркале. При перпендикулярном зеркале верхние срезы диоптров будут представлять непрерывную линию (положение отражённого диоптра 4). Если же зеркало не перпендикулярно плоскости лимба, то срезы диоптров составят ступеньку (положения 1 и 3 , отражённого диоптра). Вращая регулировочный винт большого зеркала, добиваются положения 4 отражённого диоптра. Проверка перпендикулярности малого зеркала плоскости лимба . Секстан вооружается отфокусированной трубой. Алидада устанавливается на нуль по лимбу и барабану. Труба наводится на какой-то удалённый предмет (лучше светило). Вращая барабан, проводят дважды отражённое изображение предмета через прямовидимое. При перпендикулярном положении зеркала дважды отражённое изображение точно перекроет прямовидимое. В противном случае барабаном выводят дважды отражённое изображение предмета на одну горизонталь с прямовидимым и нижним регулировочным винтом малого зеркала совмещают оба изображения. Проверка параллельности зеркал (определение поправки индекса). При установке алидады на нуль по лимбу и барабану плоскости обоих зеркал должны быть параллельны. Угол их расхождения называется поправкой индекса: i = 360° - OC 1 (1) Отсчёт погрешности индекса может быть получен одним из четырёх приёмов: по звезде, видимому горизонту, предмету, Солнцу. Методика определения поправки индекса первыми тремя приёмами одинакова. Секстан вооружается отфокусированной трубой. Алидада устанавливается на 0°. Труба наводится на выбранный объект. Вращением барабана дважды отражённое изображение объекта наблюдения совмещается с прямовидимым и снимается ОС 1 . Если индекс алидады смещён влево от нуля пункта делений лимба, то градусы записываются 360, 361° и т.д., если же вправо - то 359, 358°С и т.д. Поправка индекса с её знаком определяется по формуле (1). При определении поправки по Солнцу последовательно совмещают верхний и нижний края прямовидимого изображения Солнца с нижним и верхним краями дважды отражённого. Совместив верхний край прямовидимого изображения Солнца 2 с нижним краем дважды отражённого 3 , получают ОС i1 . Совместив нижний край прямовидимого изображения с верхним краем дважды отражённого 1, получают ОС i2 . OCi = OCicp = (ОC i1 + OC i2 ) / 2; Поправка индекса вычисляется по формуле (1). R " e = (OC i 2 OC i 1 ) /4 . (2). Сравнивая полудиаметр Солнца, полученный по формуле 2, с полудиаметром, выбранным на дату наблюдения из МАЕ Re, контролируют правильность определения i, которая считается достоверной, если: R"e- Re £ 0.3" Если i > 5", её уменьшают. Для этого алидаду вновь устанавливают на нуль по лимбу и барабану и совмещают дважды отражённое изображение объекта наблюдений с прямовидимым верхним регулировочным винтом. После этого вновь производят установку малого зеркала перпендикулярно плоскости лимба и определяют остаточную поправку индекса одним из описанных приёмов.

Вопрос №2

Время. Организация службы времени на судне. Служба времени организуется на судне для судовождения и для нормальной жизни на судне. В службу времени входят: хронометр, палубные часы, судовые часы, секундомеры, хронометрический журнал, журнал сличения. Повседневная служба времени предусматривает: Ежедневный завод хронометров и палубных часов в одно и то же время; Ежедневное определение поправок хронометра в одно и то же время по радиосигналам точного времени и запись её в хронометрическом журнале; Сличение палубных часов с хронометром и запись его в журнал сличения; Определение суточного хода хронометра и его вариации. Перевод судовых часов при переходе из одного часового пояса в другой; Ежедневное согласование и регулирование всех часов; Отметки времени на ленте самописцев. Категорически запрещается разборка каких-либо измерителей времени. Ремонт – только в мастерских. Хронометр должен выдавать GMT с точностью до 0,5с. Судовые часы в радиорубке должны показывать киевское время с точностью до 6 сек; в штурманской и МКО – судовое время с точностью до 0,5 мин, остальные – до 1 мин. В судовождении используется три системы счета времени : звездное, истинное солнечное и среднее солнечное. Звездное время – промежуток времени, прошедший с момента верхней кульминации токи Овна до данного ее положения. Звездные сутки – промежуток времени между 2 последовательными верхними кульминациями точки Овна. S = t + α – основная ф-ла звездного времени ; t - часовой угол светила в круговом счете; α - прямое восхождение; S - звездное время. Человек связывает счет времени с положением Солнца на небесном своде. Ежедневное запаздывание верхней кульминации центра истинного Солнца приводит к тому, что начало звездных суток будет приходиться на разное по освещенности поверхности Земли Солнцем время: 21.03 и истинные и звездные сутки начнутся в полдень, то 22.06 они начнутся в 6 ч по истинному солнечному времени, 23.09 в полночь, 22.12 в 18 ч. Предшествующих суток. Это неудобно, поэтому в повседневной жизни звездное время не используется. Вторая причина – неравенство истинных и звездных часов, минут, секунд. Истинное солнечное время – промежуток времени прошедший с момента верхней кульминации центра истинного Солнца до данного положения его на меридиане. Видимый годовой путь вокруг Земли Солнце совершает по эклиптике, а циферблат истинных часов – небесный экватор. Поэтому стрелкой этих часов является не сам центр истинного Солнца, а точка пересечения его меридиана с небесным экватором. Из сказанного выше следует, что стрелка истинных солнечных часов будет изо дня в день менять скорость своего движения по циферблату (небесному экватору). Такая неравномерность усугубляется еще и тем, что само истинное Солнце движется по эклиптике неравномерно. Поэтому истинное солнечное время не используется для нужд человека. Истинное Солнце заменяют условной точкой, движущейся по небесному экватору с постоянной скоростью, равной средней скорости движения истинного Солнца по эклиптике, в том же направлении что и истинное Солнце. Эта точка – среднее Солнце. Обязательное условие выбора среднего Солнца в перигее: λ © = α „ ; где λ © - долгота истинного Солнца, α „ - прямое восхождение среднего Солнца. Перигей – точка эклиптики, ближайшая к Земле. Средним солнечным временем наз промежуток времени от нижней кульминации среднего Солнца до данного его положения. Средние солнечные сутки равны полному обороту Земли вокруг своей оси относительно среднего Солнца. Начало средних солнечных суток приходится в полночь, а в фундаментальной астрономии – в полдень. Такой счет времени принят в повседневной человеческой жизни и получил название гражданского времени. Связь между истинным солнечным и средним солнечным временем определяется уравнением времени η. η =t „ – t © = α © – α „ ; знак уравнения времени считается положительным, если среднее Солнце опережает истинное. Из уравнения времени определяется не только значение, но и знак. Связь гражданского времени с часовым углом среднего Солнца: Т=t „ + 12 ч (180˚). Также η=Т вк - 12 ч,

Для наблюдателей расположенных на разных меридианах гражданское время разное. Т.к. отсчет его ведется от меридиана наблюдателя. Также существует разновидность гражданского - гринвичское, местное, поясное и летнее время. Демаркационная линия времени – линия при пересечении которой при движении судна с Е на W дата пропускается.

T м =Тгр±λ E W – местное время; S м =Sгр±λ E W – местное время; T п =Тгр±Ν E W – поясное время. Служба времени на судне организуется для обеспечения нормальной жизни на судне. В СВ входят: хронометр, палубные часы, судовые часы, секундомер, хронометрический журнал и журнал сличений. С В предусматривает: 1) ежедневный завод хронометров и палубных часов; 2) ежедневное определение поправок хронометра строго в одно и тоже время по радиосигналам времени с последующей записью в хронометрический журнал; 3) ежедневное сличение палубных часов с хронометром с записью в журнал сличений; 4) ежедневное определение суточного хода и его вариации; 5) перевод судовых часов при переходе из одного пояса в другой; 6) ежедневное согласование часов штурманской рубке и в МО; Тритий помощник капитана возглавляет и организует службу времени.

Вопрос №3

В
идимое суточное движение светил и сопровождающие его явления
. Наблюдая в течение нескольких часов за звездным небом, заметим, что созвездия, расположенные в восточной стороне небесного свода, поднимутся выше, а находящиеся на западе зайдут. Наблюдателю представляется, что весь небесный свод вместе со светилами вращается вокруг некоторой оси в направлении с востока на запад. Наблюдаемое движение светил в направлении с востока на запад является видимым, т. е. кажущимся. Его причиной на самом деле слу­жит вращение Земли вокруг своей оси с запада на восток. В сфери­ческой астрономии принято, однако, рассматривать все явления так, как они представляются наблюдателю. Поэтому для удобства рассуж­дений будем считать Землю неподвижной, а небесные светила - вра­щающимися. Вместе с наблюдателем остаются неподвижными и свя­занными с ним линии и круги небесной сферы: отвесная линия(ZOn) , истин­ный горизонт(NESW) с полуденной линией NS , ось мира(P N Ps) , меридиан наблюда­теля(P N Q′P S Q ), первый вертикал(ZEnW) и небесный экватор(QЕQ′W) .

Видимое суточное движение све­тил происходит по небесным парал­лелям в направлении по часовой стрелке, если смотреть на сферу со стороны Северного полюса ми­ра pn. В зависимости от соотношения широты наблюдателя ф и склоне­ния д все светила при своем дви­жении по параллелям будут про­ходить те или иные характерные положения. Кульминацией светила называется точка пересечения центром све­тила меридиана наблюдателя. Если светило находится на полуденной части меридиана наблюдателя, то его кульминация называется верх­ней, а если на полуночной, - нижней. Истинным восходом светила называется точка пересечения цент­ром светила е-й части истинного горизонта, а истинным заходом - точка пересечения его W-й части. Следовательно, условием восхода и захода светил в данной широте является неравенство б < 90° - ф.

Особенности видимого суточного движения светил для наблюда­телей на полюсах или экваторе. Для наблю­дателя, находящегося на полюсе (ф = 90°), полюсы мира P N и ps сов­падают с точками Z и п, ось мира - с отвесной линией, а экватор - с истинным горизонтом. Наблюдателю доступна только одна половина небесной сферы. Наблюдатель не видит светил, склоне­ние которых разноименно с широтой. В суточном движении светила описывают круги, параллельные горизонту, высоты светил не изме­няются и равны склонениям. Светила не имеют точек кульминации, восхода и захода. Для наблюдателей на экваторе (= 0°) полюсы мира pn и P S совпадают с точками горизонта N и S , ось мира - с полуденной ли­нией, экватор - с первым вертикалом. Здесь все светила восходят и заходят. Параллели светил перпендикулярны горизонту и делятся пополам, т. е. время нахождения светил над горизонтом и под ним одинаковое.Расчеты Тс различных явлений : 1. Определение времени кульминации c ветил. В ежедневных таблицах на правой странице дается местное время на гринвичском меридиане верхней и нижней кульминаций Солнца и Луны на каждый день. Там же на левой странице под колонкой суточных эфемерид навигационных планет приведено местное время кульминации планеты на гринвичском меридиане на среднюю дату разворота. Рассчитываем суточное изменение  как разность двух моментов кульминаций для восточных долгот из предшествующего момента вычитаем настоящий момент, для западных из последующего настоящий. По вспомогательной таблице (приложение 1Б в МАЕ; поправка за долготу) по аргументам -долгота и -разность моментов выбираем поправку за долготу Т. Знак поправки одинаков со знаком . Получаем местное время кульминации Тм. Переводим местное время в судовое (через Гринвич). ТкТ=Тмс=Тгр№=Тп+1или 2 часа=Тд=Тс. 1 час если часы идут по декретному времени с 01.10 по 01.04, и 2 часа с 01.04 по 01.10; где Тп – поясное время. Тд – декретное время. 2.Определение времени восхода и захода Солнца и Луны, начала и конца сумерек . В ежедневных таблицах МАЕ на правой странице разворота приводятся моменты явления Тт на среднюю дату трехсуточного интервала. Момент явления выбирается для широты, ближайшей меньшей к заданной широте. В случае если заданная дата не совпадает со средней, используя суточные изменения необходимо рассчитать момент явления на заданную дату. Для предыдущей даты суточное изменение берется слева, для последующей справа. Моменты начала или конца сумерек выбираются на среднюю дату без интерполяции. Здесь же находим разность 1 (значение и знак) между моментом для последующей большей табличной широты, разность  между заданной широтой и меньшей табличной широтой, а так же замечаем величину табличного интервала широт (2,5или 10), между которыми производится интерполирование. Из таблицы приложения 1 (А. Поправка за широту) по аргументам  и 1 для соответсвующего интервала широт находим поправку Т (с тем же знаком, что и 1). Из таблицы приложения 1 (Б. Поправка за долготу) по аргументам  и суточные изменения 2 находим поправку Т (знак одинаков со знаком 2). Суточные изменения приведены слева и справа от моментов восхода и захода.Если долгота восточная берем слева, если западная справа. Знак суточных изменений определяется в зависимости от возрастания или убывания моментов к предыдущим или последующим суткам. При расчете начала сумерек поправкой за долготу можно пренебречь. Прибавляем со своими знаками найденные поправки Т , Т к выбранному моменту Тт и получаем местное вре6мя явления Тм. Приемом через Гринвич переводят Тм в Тс. Тт  Т  Т = Тм  
=Тгр N
= Тс

Вопрос 4.

Метод высотных линий положения: высотная изолиния, высотная линия положения и её элементы:

Высотная линия положения и ее элементы. В основе метода высотных линий положения заложено понятие о высотной линии положения (ВЛП), которую можно построить относительно счислимого места судна. Действительное место в момент наблюдений какого-либо светила находится на круге равных высот, сферический радиус которого R = Z = 90° – h, где h – измеренная и исправленная всеми поправками истинная геоцентрическая высота наблюденного светила.При нормальных условиях плавания судна, его счислимое и действительное (обсервованное) места, располагаются на сравнительно небольшом расстоянии одно от другого.Следовательно, для получения обсервованного места судна, можно ограничиться построением малых отрезков изолиний в районе счислимого места.Такие отрезки изолиний (кругов равных высот) малой кривизны, можно заменять прямыми линиями.При построениях на морской навигационной карте или специальном астрономическом бланке (форма Ш-8) именно так и поступают (рис. 11.8):линию азимута светила проводят из счислимой точки Мc в виде прямой линии под углом к меридиану равным АС = ИП* (азимут светила должен быть в круговой системе счета);высотную линию положения (ВЛП) проводят в виде прямой, касательной к кругу равных высот, соответствующего истинной высоте светила (hh).

Рис. 11.8. Построение кругов равных высот на карте. Сущность метода ВЛП

Точка К на круге равных высот, соответствующем истинной высоте светила, лежащая на кратчайшем расстоянии от счислимого места (Мc) называется определяющей точкой.Прямая, перпендикулярная к линии счислимого азимута светила (Ac) и проходящая через определяющую точку К, называется высотной линией положения (I–I).

Сущность метода высотных линий положения следует из рис. 11.8, на котором показаны: полюс освещения светила (точка а);

счислимое место наблюдателя на время замера высоты светила (точка Мc);часть круга равных высот (hh), соответствующая обсервованной, то есть измеренной и исправленной всеми поправками истинной высоте светила, радиусом R = Z0 =90° – h;часть круга равных высот (hchc), соответствующая счислимой высоте того же светила, то есть высоте светила, вычисленной по координатам счислимого места (Мc) с помощью таблиц или по формулам. Радиус этого круга: R′ = Zc = 90° – hc.Угол между северной частью истинного меридиана счислимого места и направлением на полюс освещения (NИМcа), представляет собой истинный пеленг полюса освещения (ИП) и рассчитывается с помощью таблиц или по формулам. ИП – это счислимый азимут светила (Аc*) в круговой системе счета. Расстояние от счислимого места (точки Мc) до определяющей точки (точки К) – отрезок МcК – принято называть переносом линии положения и обозначать буквой «n». Перенос ВЛП (n) – расстояние от счислимого места (точки Мc) до круга равных высот (hh), соответствующего истинной высоте светила: n = Zc – Z0 = (90°– hc) – (90° – h) = h – hc.n = h – hc Из рис. 11.8 следует, что для нанесения на карту ВЛП I–I знать местоположение полюса освещения и строить круги равных высот (hh и hchc) не требуется. Необходимо и достаточно знать значение счислимого азимута светила (Аc) и величину переноса (n).

Эти две величины (Аc и n) называют элементами ВЛП.

Вопрос №5

Определение места судна по одновременным наблюдениям светил .

ОМС по одновременным наблюдениям двух светил.Порядок действий, 1. Измеряются серии по 3-5 высот каждого светила, причём на каждый отсчёт секстана OCi засекается момент времени по хронометру Tхрi с точностью до 1с, после чего определяется вероятнейшее (среднее) значение ОСср и среднее время измерений Tср.2. На момент второго измерения замечается судовое время Тс с точно­стью до 1м, счислимые координаты судна, ИК или ПУ, скорость, от­счёт лага, высота глаза наблюдателя е, температура воздуха и атмо­сферное давление.3. Рассчитать приближенное Тгр и гринвичскую дату по замеченному Тс и номеру часового пояса. 4. По средним моментам хронометра и его поправке получить точное Тгр наблюдений каждого светила. 5. С помощью МАЕ по Тгр наблюдений и с получить местные практические часовые углы, а также склонения светил.6. По формулам сферической тригонометрии с помощью таблиц ТВА-57, ВАС-58 рассчитать счислимые высоты и азимуты светил.7. Исправив средние ОС всеми поправками, получить обсервованные высоты светил. 8. Первую обсервованную высоту привести к зениту вторых наблюдений. 9. Рассчитать переносы. 10. Проложить линии положения на карте. 11.Полученные обсервованные координаты, невязку, Тс, и ОЛ записать в судовой журнап.

Способ определения места судна по одновременным наблюдениям двух светил отличается сравнительной простотой. Однако полученная по двум линиям положения обсервованная точка при наличии систе­матических ошибок не получается достаточно определенной.Чтобы получить более точную и надежную обсервацию, необходи­мо иметь еще одну линию положения, т. е. определить место судна no-наблюдениям трех светил. Важным преимуществом такого способа определения является возможность исключить из результатов обсервации систематические погрешности наблюдения. Для этого при подборе звезд по глобусу желательно выполнить требование, заклю­чающееся в том, чтобы разность азимутов между каждой звездой была близка к 120°. Подобранные для наблюдений звезды С г , С 2 , С я (рис. 116, а) будут располагаться по всему горизонту. По возможности подбирают звезды с близкими по величине высотами (объектом наблю­дения могут являться также планеты).

Подготовку к наблюдениям, сами наблюдения, вычисления и про­кладку проводят в том же порядке, как и при определении места по двум светилам. Высоты первой и второй звезд обычно приводят к зе­ниту третьих наблюдений. В этом случае судовое время и отсчет лага замечают при взятии средней по порядку высоты третьей звезды. Особенности способа определения места по трем светилам прояв­ляются в анализе обсервации.

Т
ак как в полученных трех линиях положения /-/, //-// и ///- /// будут присутствовать систематические и случайные погрешности, то при прокладке на карте или бумаге эти линии, как правило, не пе-

Рис. 116. Нахождение обсервованного места при определении по трем (а) и по четырем (б) звездам

ресекаются в одной точке. Образованный ими треугольник называет­ся ложным треугольником или треугольником погрешностей. Задача судоводителя - отыскать наиболее вероятное место судна, т. е. такую обсервованную точку, которая ближе всего располагается к его действительному месту. Теоретические исследования показыва­ют, что если попарные разности азимутов трех светил были равны или близки к 120°, то обсервованное место М 0 (см. рис. 116, а), свободное от систематических ошибок, может приниматься внутри треугольника на пересечении его биссектрис.

Определение места судна по одновременным наблюдениям четырех светил C 1 C 2 , С 3 , С 4 (рис. 116, б) является еще более точным и надеж­ным способом, при применении которого также оказывается возмож­ным исключить влияние систематических погрешностей высот. Пре­имущество этого способа проявляется при условии правильного под­бора светил для наблюдений. Звезды должны подбираться по всему го­ризонту, чтобы разность азимутов между соседними светилами была близкой к 90° (см. рис. 116, б). Высоты «противоположных» звезд долж­ны быть по возможности близкими по значению. Подбор звезд делают заблаговременно по звездному глобусу. Объектом наблюдения могут быть также планеты, которые нужно нанести на глобус.

Наблюдения, вычисления и прокладку при определении по четырем светилам выполняют в обычном порядке. Высоты первых трех звезд приводят обычно к зениту четвертых наблюдений. Судовое время и отсчет лага в этом случае записывают при измерении средней по по­рядку высоты четвертой звезды. В результате вычислений получают элементы четырех линий поло­жения, которые прокладывают на карте или бумаге. Под действием случайных и систематических ошибок четыре ли­нии положения, как правило, не пересекаются в одной точке, образуя четырехугольник погрешностей. При правильном подборе светил, когда четырехугольник погреш­ностей близок к квадрату, обсервованную точку М 0 (см. рис. 116, б) принимают в пересечении линий, соединяющих середины противопо­ложных сторон четырехугольника.

Вопрос №6

Определение места судна по измерениям высот Солнца. Для получения обсервованного места судна необходимо нанести на карту не менее двух линий положения. Промежуток времени между двумя наблюдениями определяется необходимостью изменения азимута светила на 40-60. При различных условиях этот промежуток составляет от нескольких минут до 3-4 часов. При определении места судна по разновременным наблюдениям Солнца руководствуются следующим порядком работы. Подготовка к наблюдениям: выбрать время выхода на первые и вторые наблюдения, что особенно необходимо при плавании в малых и средних широтах; перед выходом на первые наблюдения подготовить секстан к измерениям высот Солнца, проверить перпендикулярность зеркал плоскости лимба; определить поправку индекса секстана по Солнцу, применяя контроль; если возможно измерить наклонение видимого горизонта наклономером; привести поправку хронометра к моменту наблюдения. Наблюдения: измерить три-пять высот Солнца, замечая при каждом измерении моменты по хронометру; при измерении средней высоты заметить Тс и ОЛ; записать ИК судна; если высота Солнца не превышает 50, записать температуру и давление воздуха. Вычисления: по замеченному Тс и номеру часового пояса рассчитать приближенное Тгр и гринвичскую дату наблюдений; по среднему моменту хронометра и его поправке получить точное Тгр наблюдений; с помощью МАЕ по Тгр наблюдений и с получить местный практический часовой угол и склонение Солнца; при помощи таблиц ТВА-57 определить счислимые высоту и азимут светила; исправив средний ОС всеми поправками, получить обсервованную высоту Солнца; рассчитать перенос. Первую линию положения прокладывают на карте, если есть необходимость в уточнении счисления. В промежутке между первыми и вторыми наблюдениями следует принимать меры к точному учету всех элементов счисления. Вторые наблюдения выполняют после изменения азимута Солнца на 40-60 в том же порядке, что и первые. При нахождении счислимой высоты и азимута включают в расчет координаты второй счислимой точки. Обе линии положения на карте прокладывают из счислимой точки, сооветсвующей моменту вторых наблюдений. Место судна принимают в пересечении линий положения.

Небесный свод, горящий славой,
Таинственно глядит из глубины,
И мы плывем, пылающею бездной
Со всех сторон окружены.
Ф. Тютчев

Урок1/1

Тема : Предмет астрономии.

Цель : Дать представление об астрономии - как наука, связи с другими науками; познакомится с историей, развитием астрономии; инструментами для наблюдений, особенности наблюдений. Дать представление о строении и масштабах Вселенной. Рассмотреть решение задач на нахождение разрешающей способности, увеличения и светосила телескопа. Профессия астронома, значение для народного хозяйства. Обсерватории. Задачи :
1. Обучающая : ввести понятия астрономии, как науке и основных разделах астрономии, объектах познания астрономии: космических объектах, процессах и явлениях; методах астрономических исследований и их особенностях; обсерватории, телескопа и его различных видов. Истории астрономии и связи с другими науками. Роли и особенности наблюдений. Практическом применении астрономических знаний и средств космонавтики.
2. Воспитывающая : историческая роль астрономии в формировании представления человека об окружающем мире и развитии других наук, формирование научного мировоззрения учащихся в ходе знакомства с некоторыми философскими и общенаучными идеями и понятиями (материальности, единства и познаваемости мира, пространственно-временными масштабами и свойствами Вселенной, универсальностью действия физических законов во Вселенной). Патриотическое воспитание при ознакомлении с ролью российской науки и техники в развитии астрономии и космонавтики. Политехническое образование и трудовое воспитание при изложении сведений о практическом применении астрономии и космонавтики.
3. Развивающая : развития познавательных интересов к предмету. Показать, что мысль человеческая всегда стремится к познанию неизвестного. Формирование умений анализировать информацию, составлять классификационные схемы.
Знать: 1-й уровень (стандарт) - понятие астрономии, основных ее разделах и этапах развития, месте астрономии среди других наук и практическом применении астрономических знаний; иметь первоначальное понятие о методах и инструментах астрономических исследований; масштабах Вселенной, космических объектах, явлениях и процессах, свойства телескопа и его виды, значение астрономии для народного хозяйства и практических нужд человечества. 2-й уровень - понятие астрономии, системы, роль и особенности наблюдений, свойства телескопа и его виды, связь с другими предметами, преимущества фотографических наблюдений, значение астрономии для народного хозяйства и практических нужд человечества. Уметь: 1-й уровень (стандарт) - пользоваться учебником и справочным материалом, строить схемы простейших телескопов разных видов, наводить телескоп на заданный объект, искать в Интернет информацию по выбранной астрономической теме. 2-й уровень - пользоваться учебником и справочным материалом, строить схемы простейших телескопов разных видов, вычислять разрешающую способность, светосилу и увеличение телескопов, проводить наблюдения с помощью телескопа заданного объекта, искать в Интернет информацию по выбранной астрономической теме.

Оборудование : Ф. Ю. Зигель “Астрономия в ее развитии”, Теодолит, Телескоп, плакаты “телескопы”, “Радиоастрономия”, д/ф. “Что изучает астрономия”, «Крупнейшие астрономические Обсерватории», к/ф «Астрономия и мировоззрение», "астрофизические методы наблюдений". Глобус Земли, диапозитивы: фотографии Солнца, Луны и планет, галактик. CD- "Red Shift 5.1" или фотографии и иллюстрации астрономических объектов из мультимедийного диска «Мультимедиа библиотека по астрономии». Показать Календарь Наблюдателя на сентябрь (взять с сайта Астронет), пример астрономического журнала (электронного, например Небосвод). можно показать отрывок из фильма Астрономия (ч.1, фр. 2 Самая древняя наука).

Межпредметная связь : Прямолинейное распространение, отражение, преломление света. Построение изображений, даваемых тонкой линзой. Фотоаппарат (физика, VII кл). Электромагнитные волны и скорость их распространения. Радиоволны. Химическое действие света (физика, X кл).

Ход урока :

Вводная беседа (2 мин)

  1. Учебник Е. П. Левитан; общая тетрадь - 48 листов; экзамены по желанию.
  2. Астрономия - новая дисциплина в курсе школы, хотя вкратце с некоторыми вопросами вы знакомы.
  3. Как работать с учебником.
  • проработать (а не прочитать) параграф
  • вникнуть в сущность, разобраться с каждым явлениями и процессами
  • проработать все вопросы и задания после параграфа, кратко в тетрадях
  • контролировать свои знания по перечню вопросов в конце темы
  • дополнительно материал посмотреть в Интернете

Лекция (новый материал) (30 мин) Начало - демонстрация видео клипа с CD (или моей презентации).

Астрономия [греч. Астрон (astron) - звезда, номос (nomos) -закон] - наука о Вселенной, завершающая естественно-математический цикл школьных дисциплин. Астрономия изучает движение небесных тел (раздел “небесная механика”), их природу (раздел “астрофизика”), происхождение и развитие (раздел “космогония”) [Астрономия - наука о строении, происхождении и развитии небесных тел и их систем =, то есть наука о природе]. Астрономия - единственная наука, которая получила свою музу-покровительницу - Уранию.
Системы (космические): - все тела во Вселенной образуют системы различной сложности.

  1. - Солнце и движущиеся вокруг (планеты, кометы, спутники планет, астероиды), Солнце - самосветящиеся тело, остальные тела, как и Земля светят отраженным светом. Возраст СС ~ 5 млрд. лет. /Таких звездных систем с планетами и другими телами во Вселенной огромное количество/
  2. Видимые на небе звезды , в том числе Млечный путь - это ничтожная доля звезд, входящих в состав Галактики (или называют нашу галактику Млечный Путь)- системы звезд, их скоплений и межзвездной среды. /Таких галактик множество, свет от ближайших идет к нам миллионы лет. Возраст Галактик 10-15 млрд. лет/
  3. Галактики объединяются в своего рода скопления (системы)

Все тела находятся в непрерывном движении, изменении, развитии. Планеты, звезды, галактики имеют свою историю, нередко исчисляемую млрд. лет.

На схеме отражена системность и расстояния:
1 астрономическая единица = 149, 6 млн.км (среднее расстояние от Земли до Солнца).
1пк (парсек) = 206265 а.е. = 3, 26 св. лет
1 световой год (св. год) - это расстояние, которое луч света со скоростью почти 300 000 км/с пролетает за 1 год. 1 световой год равен 9,46 миллионам миллионов километров!

История астрономии (можно фрагмент фильма Астрономия (ч.1, фр. 2 Самая древняя наука))
Астрономия - одна из самых увлекательных и древнейших наук о природе - исследуется не только настоящее, но и далекое прошлое окружающего нас макромира, а также вырисовать научную картину будущего Вселенной.
Потребность в астрономических знаниях диктовалась жизненной необходимостью:

Этапы развития астрономии
I-й Античный мир (до н. э). Философия →астрономия → элементы математики (геометрия).
Древний Египет, Древняя Ассирия, Древние Майя, Древний Китай, Шумеры, Вавилония, Древняя Греция. Ученые, внесшие значительный вклад в развитие астрономии: ФАЛЕС Милетский (625-547, Др.Греция), ЕВДОКС Книдский (408- 355, Др. Греция), АРИСТОТЕЛЬ (384-322, Македония, Др. Греция), АРИСТАРХ Самосский (310-230, Александрия, Египет), ЭРАТОСФЕН (276-194, Египет), ГИППАРХ Родосский (190-125г, Др.Греция).
II-ой Дотелескопический период. (наша эра до 1610г). Упадок науки и астрономии. Развал Римской империи, набеги варваров, зарождение христианства. Бурное развитие арабской науки. Возрождение науки в Европе. Современная гелиоцентрическая система строения мира. Ученые, внесшие значительный вклад в развитие астрономии в данный период: Клавдий ПТОЛЕМЕЙ (Клавдиус Птоломеус )(87-165, Др. Рим), БИРУНИ, Абу Рейхан Мухаммед ибн Ахмед аль - Бируни (973-1048, совр. Узбекистан), Мирза Мухаммед ибн Шахрух ибн Тимур (Тарагай ) УЛУГБЕК (1394 -1449, совр. Узбекистан), Николай КОПЕРНИК (1473-1543,Польша), Тихо(Тиге) БРАГЕ (1546- 1601, Дания).
III-ий Телескопический до появления спектроскопии (1610-1814гг). Изобретение телескопа и наблюдения с его помощью. Законы движения планет. Открытие планеты Уран. Первые теории образования Солнечной системы. Ученые, внесшие значительный вклад в развитие астрономии в данный период: Галилео ГАЛИЛЕЙ (1564-1642, Италия), Иоганн КЕПЛЕР (1571-1630, Германия), Ян ГАВЕЛИЙ (ГАВЕЛИУС ) (1611-1687, Польша), Ганс Христиан ГЮЙГЕНС (1629-1695, Нидерланды), Джованни Доминико (Жан Доменик) КАССИНИ> (1625-1712, Италия-Франция), Исаак НЬЮТОН (1643-1727, Англия), Эдмунд ГАЛЛЕЙ ( ХАЛЛИ , 1656-1742, Англия), Вильям (Уильям) Вильгельм Фридрих ГЕРШЕЛЬ (1738-1822, Англия), Пьер Симон ЛАПЛАС (1749-1827, Франция).
IV-ый Спектроскопия . До фотографии. (1814-1900гг). Спектроскопические наблюдения. Первые определения расстояния до звезд. Открытие планеты Нептун. Ученые, внесшие значительный вклад в развитие астрономии в данный период: Йозеф фон ФРАУНГОФЕР (1787-1826, Германия), Василий Яковлевич (Фридрих Вильгельм Георг) СТРУВЕ (1793-1864, Германия-Россия), Джордж Бидделл ЭРИ (ЭЙРИ , 1801-1892, Англия), Фридрих Вильгельм БЕССЕЛЬ (1784-1846, Германия), Иоганн Готфрид ГАЛЛЕ (1812-1910, Германия), Уильям ХЕГГИНС (Хаггинс , 1824-1910, Англия), Анжело СЕККИ (1818-1878, Италия), Федор Александрович БРЕДИХИН (1831-1904, Россия), Эдуард Чарльз ПИКЕРИНГ (1846-1919, США).
V-ый Современный период (1900-наст.время). Развитие применения в астрономии фотографии и спектроскопических наблюдений. Решение вопроса об источнике энергии звезд. Открытие галактик. Появление и развитие радиоастрономии. Космические исследования. Подробнее смотрите .

Связь c другими предметами.
ПСС т 20 Ф. Энгельс - “Сперва астрономия, которая уже из-за времен года абсолютно необходима для пастушеских и земледельческих работ. Астрономия может развиваться только при помощи математики. Следовательно приходилось заниматься и математикой. Далее, на известной ступени развития земледелия в известных странах (поднятие воды для орошения в Египте), а в особенности вместе с возникновением городов, крупных построек и развитием ремесла развивалось и механика. Вскоре она становится необходимой для судоходства и военного дела. Она так же передается в помощь математике и таким образом способствует ее развитию”.
Астрономия сыграла столь ведущую роль в истории науки, что многие ученые считают - “астрономию наиболее существенным фактором развития от ее возникновения - вплоть до Лапласа, Лагранжа и Гаусса” - они черпали из нее задания и создавали методы решения этих задач. Астрономия, математика и физика никогда не теряли взаимосвязи, что нашло отражение в деятельности многих ученых.


Взаимодействие астрономии и физики продолжает оказывать влияние на развитие других наук, технологии, энергетики и различных отраслей народного хозяйства. Пример - создание и развитие космонавтики. Разрабатываются способы удержания плазмы в ограниченном объеме, концепция "бесстолкновительной" плазмы, МГД-генераторы, квантовые усилители излучения (мазеры) и т. д.
1 - гелиобиология
2 - ксенобиология
3 - космическая биология и медицина
4 - математическая география
5 - космохимия
А - сферическая астрономия
Б - астрометрия
В - небесная механика
Г - астрофизика
Д - космология
Е - космогония
Ж - космофизика
Астрономию и химию связывают вопросы исследования происхождения и распространенности химических элементов и их изотопов в космосе, химическая эволюция Вселенной. Возникшая на стыке астрономии, физики и химии наука космохимия тесно связана с астрофизикой, космогонией и космологией, изучает химический состав и дифференцированное внутреннее строение космических тел, влияние космических явлений и процессов на протекание химических реакций, законы распространенности и распределения химических элементов во Вселенной, сочетание и миграцию атомов при образовании вещества в космосе, эволюцию изотопного состава элементов. Большой интерес для химиков представляют исследования химических процессов, которые из-за их масштабов или сложности трудно или совсем невоспроизводимых в земных лабораториях (вещество в недрах планет, синтез сложных химических соединений в темных туманностях и т. д.).
Астрономию, географию и геофизику связывает изучение Земли как одной из планет Солнечной системы, ее основных физических характеристик (фигуры, вращения, размеров, массы и т. д.) и влияния космических факторов на географию Земли: строение и состав земных недр и поверхности, рельеф и климат, периодические, сезонные и долговременные, местные и глобальные изменения в атмосфере, гидросфере и литосфере Земли - магнитные бури, приливы, смена времен года, дрейф магнитных полей, потепления и ледниковые периоды и т. д., возникающие в результате воздействия космических явлений и процессов (солнечной активности, вращения Луны вокруг Земли, вращения Земли вокруг Солнца и др.); а также не потерявшие своего значения астрономические методы ориентации в пространстве и определения координат местности. Одной из новых наук стало космическое землеведение - совокупность инструментальных исследований Земли из космоса в целях научной и практической деятельности.
Связь астрономии и биологии определяется их эволюционным характером. Астрономия изучает эволюцию космических объектов и их систем на всех уровнях организации неживой материи аналогично тому, как биология изучает эволюцию живой материи. Астрономию и биологию связывают проблемы возникновения и существования жизни и разума на Земле и во Вселенной, проблемы земной и космической экологии и воздействия космических процессов и явлений на биосферу Земли.
Связь астрономии с историей и обществоведением , изучающим развитие материального мира на качественно более высоким уровне организации материи, обусловлена влиянием астрономических знаний на мировоззрение людей и развитие науки, техники, сельского хозяйства, экономики и культуры; вопрос о влиянии космических процессов на социальное развитие человечества остается открытым.
Красота звездного неба будила мысли о величии мироздания и вдохновлял писателей и поэтов . Астрономические наблюдения несут в себе мощный эмоциональный заряд, демонстрируют могущество человеческого разума и его способности познавать мир, воспитывают чувство прекрасного, способствуют развитию научного мышления.
Связь астрономии с "наукой наук" - философией - определяется тем, что астрономия как наука имеет не только специальный, но и общечеловеческий, гуманитарный аспект, вносит наибольший вклад в выяснение места человека и человечества во Вселенной, в изучение отношения "человек - Вселенная". В каждом космическом явлении и процессе видны проявления основных, фундаментальных законов природы. На основе астрономических исследований формируются принципы познания материи и Вселенной, важнейшие философские обобщения. Астрономия оказала влияние на развитие всех философских учений. Невозможно сформировать физическую картину мира в обход современных представлений о Вселенной - она неминуемо утратит свое мировоззренческое значение.

Современная астрономия - фундаментальная физико-математическая наука, развитие которой непосредственно связано с НТП. Для исследования и объяснения процессов используется весь современный арсенал разнообразных, вновь возникших разделов математики и физики. Существует и .

Основные разделы астрономии:

Классическая астрономия

объединяет ряд разделов астрономии, основы которых были разработаны до начала ХХ века:
Астрометрия:

Сферическая астрономия

изучает положение, видимое и собственное движение космических тел и решает задачи, связанные с определением положений светил на небесной сфере, составлением звездных каталогов и карт, теоретическим основам счета времени.
Фундаментальная астрометрия ведет работу по определению фундаментальных астрономических постоянных и теоретическому обоснованию составления фундаментальных астрономических каталогов.
Практическая астрономия занимается определением времени и географических координат, обеспечивает Службу Времени, вычисление и составление календарей, географических и топографических карт; астрономические методы ориентации широко применяются в мореплавании, авиации и космонавтике.
Небесная механика исследует движение космических тел под действием сил тяготения (в пространстве и времени). Опираясь на данные астрометрии, законы классической механики и математические методы исследования, небесная механика определяет траектории и характеристики движения космических тел и их систем, служит теоретической основой космонавтики.

Современная астрономия

Астрофизика изучает основные физические характеристики и свойства космических объектов (движение, строение, состав и т.д.), космических процессов и космических явлений, подразделяясь на многочисленные разделы: теоретическая астрофизика; практическая астрофизика; физика планет и их спутников (планетология и планетографии); физика Солнца; физика звезд; внегалактическая астрофизика и т. д.
Космогония изучает происхождение и развитие космических объектов и их систем (в частности Солнечной системы).
Космология исследует происхождение, основные физические характеристики, свойства и эволюцию Вселенной. Теоретической основой ее являются современные физические теории и данные астрофизики и внегалактической астрономии.

Наблюдения в астрономии.
Наблюдения - основной источник информации о небесных телах, процессах, явлениях, происходящих во Вселенной, так как их потрогать и провести опыты с небесными телами невозможно (возможность проведения экспериментов вне Земли возникла только благодаря космонавтике). Они имеют и особенности в том, что для изучения какого либо явления необходимы:

  • длительные промежутки времени и одновременное наблюдение родственных объектов (пример-эволюция звезд)
  • необходимость указания положения небесных тел в пространстве (координаты), так как все светила кажутся далекими от нас (в древности возникло понятие небесной сферы, которая как единое целое вращается вокруг Земли)

Пример: Древний Египет, наблюдая за звездой Сотис (Сириус) определили начало разлива Нила, установили продолжительность года в 4240г до н.э. в 365 дней. Для точности наблюдений, нужны были приборы .
1). Известно, что Фалес Милетский (624-547, Др. Греция) в 595г до н.э. впервые использовал гномон (вертикальный стержень, приписывается, что создал его ученик Анаксимандр) - позволил не только быть солнечными часами, но и определять моменты равноденствия, солнцестояния, продолжительности года, широту наблюдения и т.д.
2). Уже Гиппарх (180-125г, Др. Греция) использовал астролябию, что позволило ему измерить параллакс Луны, в 129г до н.э., установить продолжительность года в 365,25сут, определить процессию и составить в 130г до н.э. звездный каталог на 1008 звезд и т.д.
Существовали астрономический посох, астролабон (первая разновидность теодолита), квадрант и т.д. Наблюдения проводятся в специализированных учреждениях - , возникших еще на первом этапе развития астрономии до НЭ. Но настоящее астрономическое исследование началось с изобретением телескопа в 1609г.

Телескоп - увеличивает угол зрения, под которым видны небесные тела (разрешающая способность ), и собирает во много раз больше света, чем глаз наблюдателя (проникающая сила ). Поэтому в телескоп можно рассмотреть невидимые невооруженным глазом поверхности ближайших к Земле небесных тел и увидеть множество слабых звезд. Все зависит от диаметра его объектива. Виды телескопов: и радио (Показ телескопа, плакат "Телескопы", схемы). Телескопы: из истории
= оптические

1. Оптические телескопы ()


Рефрактор (refracto-преломляю)- используется преломление света в линзе (преломляющий). “Зрительная труба” сделана в Голландии [Х. Липперсгей]. По приблизительному описанию ее изготовил в 1609г Галилео Галилей и впервые направил в ноябре 1609г на небо, а в январе 1610г открыл 4 спутника Юпитера.
Самый большой в мире рефрактор изготовлен Альваном Кларк (оптиком из США) 102см (40 дюймов) и установлен в 1897г в Йерской обсерватории (близь Чикаго). Им же был изготовлен 30 дюймовый и установлен в 1885г в Пулковской обсерватории (разрушен в годы ВОВ).
Рефлектор (reflecto-отражаю)- используется вогнутое зеркало, фокусирующее лучи. В 1667г первый зеркальный телескоп изобрел И. Ньютон (1643-1727, Англия) диаметр зеркала 2,5см при 41 х увеличении. В те времена зеркала делались из сплавов металла, быстро тускнели.
Самый Большой в мире телескоп им. У. Кека установлен в 1996 году диаметр зеркало 10м (первый из двух, но зеркало не монолитное, а состоит из 36 зеркал шестиугольной формы) в обсерватории Маун-Кеа (Калифорния, США).
В 1995г введен первый из четырех телескопов (диаметр зеркала 8м) (обсерватория ESO, Чили). До этого самый крупный был в СССР, диаметр зеркала 6м, установлен в Ставропольском крае (гора Пастухова, h=2070м) в Специальной астрофизической обсерватории АН СССР (монолитное зеркало 42т, 600т телескоп, можно видеть звезды 24 м).

Зеркально - линзовый. Б.В. ШМИДТ (1879-1935, Эстония) построил в 1930г (камера Шмидта) с диаметром объектива 44 см. Большой светосилы, свободный от комы и большим полем зрения, поставив перед сферическим зеркалом корректирующую стеклянную пластину.
В 1941 году Д.Д. Максутов (СССР) сделал менисковый, выгоден короткой трубой. Применяется любителями - астрономами.
В 1995г для оптического интерферометра введен в строй первый телескоп с 8м зеркалом (из 4 -х) с базой 100м (пустыне АТАКАМА, Чили; ESO).
В 1996г первый телескоп диаметром 10м (из двух с базой 85м) им. У. Кека введен в обсерватории Маун - Кеа (Калифорния, Гавайские острова, США)
любительские телескопы

  • непосредственные наблюдения
  • фотографировать (астрограф)
  • фотоэлектрические - датчик, колебание энергии, излучений
  • спектральные - дают сведения о температуре, химическом составе, магнитных полях, движений небесных тел.
Фотографические наблюдения (перед визуальными) имеет преимущества:
  1. Документальность - способность фиксировать происходящее явление и процессы и долгое время сохранять полученную информацию.
  2. Моментальность - способность регистрировать кратковременные события.
  3. Панорамность - способность запечатлеть одновременно несколько объектов.
  4. Интегральность - способность накапливать свет от слабых источников.
  5. Детальность - способность рассматривать детали объекта на изображении.
В астрономии расстояние между небесными телами измеряют углом → угловое расстояние: градусы - 5 о,2, минуты - 13",4, секунды - 21",2 обычным глазом мы видим рядом 2 звезды (разрешающая способность ), если угловое расстояние 1-2". Угол, под которым мы видим диаметр Солнца и Луны ~ 0,5 о = 30".
  • В телескоп мы предельно видим: (разрешающая способность ) α= 14 " /D или α= 206265·λ/D [где λ - длина световой волны, а D - диаметр объектива телескопа] .
  • Количество света, собранного объективом - называется светосилой . Светосила Е =~S (или D 2) объектива. Е=(D/d хр ) 2 , где d хр - диаметр зрачка человека в обычных условиях 5мм (максимум в темноте 8мм).
  • Увеличение телескопа =Фокусное расстояние объектива/Фокусное расстояние окуляра. W=F/f=β/α .
При сильном увеличении >500 х видно колебания воздуха, поэтому телескоп необходимо располагать как можно выше в горах и где небо часто безоблачно, а еще лучше за пределами атмосферы (в космосе).
Задача (самостоятельно-3 мин): Для 6м телескопа- рефлектора в Специальной астрофизической обсерватории (на северном Кавказе) определить разрешающую способность, светосилу и увеличение, если используется окуляр с фокусным расстоянием 5см (F=24м). [Оценка по скорости и правильности решения ] Решение: α= 14 " /600 ≈ 0,023" [при α= 1" спичечная коробка видна на расстоянии 10км]. Е=(D/d хр) 2 =(6000/5) 2 = 120 2 =14400 [во столько раз собирает больше света, чем глаз наблюдателя] W=F/f=2400/5=480
2. Радиотелескопы - преимущества: в любую погоду и время суток можно вести наблюдение объектов, недоступные для оптических. Представляют собой чашу (подобие локатора. плакат "Радиотелескопы"). Радиоастрономия получило развитие после войны. Наибольшие сейчас радиотелескопы это неподвижные РАТАН- 600, Россия (вступил в строй в 1967г в 40 км от оптического телескопа, состоит из 895 отдельных зеркал размером 2,1х7,4м и имеет замкнутое кольцо диаметром 588м), Аресибо (Пуэрто -Рико, 305м-забетонированная чаша потухшего вулкана, введен в 1963г). Из подвижных имеют два радиотелескопа 100м чашу.


Небесные тела дают излучение: свет, инфракрасное, ультрафиолетовое, радиоволны, рентгеновское, гамма - излучения. Так как атмосферы мешает прониканию лучей к земле c λ< λ света (ультрафиолетовые, рентгеновские, γ - излучения), то последнее время на орбиту Земли выводятся телескопы и целые орбитальные обсерватории : (т.е развиваются внеатмосферные наблюдения).

l. Закрепление материала .
Вопросы:

  1. Какие сведения астрономические вы изучали в курсах других предметов? (природоведение, физики, истории и т.д.)
  2. В чем специфика астрономии по сравнению с другими науками о природе?
  3. Какие типы небесных тел вам известны?
  4. Планеты. Сколько, как называются, порядок расположения, самая большая и т.д.
  5. Какое значение в народном хозяйстве имеет сегодня астрономия?

начения в народном хозяйстве:
- Ориентирование по звездам для определения сторон горизонта
- Навигация (мореходство, авиация, космонавтика) - искусство прокладывать путь по звездам
- Исследование Вселенной с целью понять прошлое и спрогнозировать будущее
- Космонавтика:
- Исследование Земли с целью сохранения ее уникальной природы
- Получение материалов, которые невозможно получение в земных условиях
- Прогноз погоды и предсказание стихийных бедствий
- Спасение терпящих бедствие судов
- Исследования других планет для прогнозирования развития Земли
Итог:

  1. Что нового узнали. Что такое астрономия, назначение телескопа и его виды. Особенности астрономии и т.д.
  2. Надо показать пользование CD- "Red Shift 5.1", Календарь Наблюдателя, пример астрономического журнала (электронного, например Небосвод). В Интернете показать , Астротоп , портал:Астрономия в Википедии , - используя которые можно получить информации по интересующему вопросу или найти её.
  3. Оценки.

Домашнее задание: Введение, §1; вопросы и задания для самоконтроля (стр11), №6 и 7 составить схемы, желательно бы на уроке; стр29-30 (п.1-6) - главные мысли.
При подробном изучении материала об астрономических инструментах можно предложить ученикам вопросы и задачи:
1. Определите основные характеристики телескопа Г. Галилея.
2. В чем преимущества и недостатки оптической системы рефрактора Галилея по сравнению с оптической схемой рефрактора Кеплера?
3. Определите основные характеристики БТА. Во сколько раз БТА мощнее МШР?
4. В чем преимущества телескопов, установленных на борту космических аппаратов?
5. Какими условиями должно удовлетворять место для строительства астрономической обсерватории?

Урок оформили члены кружка “Интернет технологии” 2002г: Прытков Денис (10кл) и Дисенова Анна (9кл) . Изменен 01.09.2007г

«Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".
Планетарий 2,67 мб Данный ресурс представляет собой интерактивную модель "Планетарий", которая позволяет изучать звездное небо посредством работы с данной моделью. Для полноценного использования ресурса необходимо установить Java Plug-in
Урок Тема урока Разработки уроков в коллекции ЦОР Статистическая графика из ЦОР
Урок 1 Предмет астрономии Тема 1. Предмет астрономии. Созвездия. Ориентирование по звездному небу 784,5 кб 127,8 кб 450,7 кб
Шкала электромагнитных волн с приемниками излучения 149,2 кб
  1. Потребность счета времени (календарь). (Древний Египет - замечена взаимосвязь с астрономическими явлениями)
  2. Находить дорогу по звездам, особенно мореплавателям (первые парусные суда появились за 3 тыс. лет до н. э)
  3. Любознательность - разобраться в происходящих явлениях и поставить их себе на службу.
  4. Забота о своей судьбе, народившая астрологию.

Слово астрономия происходит от двух греческих слов: а с т р о н – звезда, н о м о с – закон. Практическая потребность изучения звездного неба привела к зарождению начатков науки, получившей впоследствии в Древней Греции около 4 в до н.э. название астрономия. Но само название отнюдь не служит доказательством зарождения и развития астрономии только в Древней Греции. Астрономия возникла и самостоятельно развивалась буквально у всех народов, но степень ее развития, естественно, находилась в прямой зависимости от уровня производительных сил и культуры народов.








Астрометрия – это раздел астрономии, изучающий видимое движение небесных тел. Небесная механика – это раздел астрономии, изучающий действительное движение небесных тел. Астрофизика – это раздел астрономии, изучающий природу небесных тел. Космогония – это раздел астрономии, изучающий происхождение небесных тел. Космология – это раздел астрономии, изучающий эволюцию (развитие) небесных тел.










Наблюдения проводятся с помощью астрономических обсерваторий. Первая обсерватория была создана в 4000 г. до н. э. в местечке Стоунхендж (Англия). Наиболее известные обсерватории РФ: Главная астрономическая обсерватория Российской Академии наук – Пулковская (в Санкт – Петербурге); Специальная астрофизическая обсерватория (на Северном Кавказе); Государственный астрономический институт им. П.К. Штернберга (в Москве).


Телескоп – оптический прибор, увеличивающий угол зрения, под которым видны небесные тела и позволяющий собирать во много раз больше света, приходящего от светила, чем глаз наблюдателя. Существует несколько типов оптических телескопов о s F2 F1 Объектив Окуляр F1 Изображение S Телескоп – рефрактор – главная часть – линза или система линз. Увеличение телескопа (Г) = фокусное расстояние объектива (F1) / фокусное расстояние окуляра (F2) Г = ОF1 / OF2




Телескопы, приспособленные для фотографирования называются астрографами. С помощью телескопов производят не только визуальные и фотографические наблюдения, но и фотоэлектрические и спектральные наблюдения. Преимущества фотографических наблюдений: документальность… моментальность… панорамность… интегральность… детальность… Спектральные наблюдения (спектральный анализ) позволяет получать сведения о температуре, химическом составе, магнитных полях небесных тел, а также об их движении. Радиотелескопы предназначены для исследования небесных тел в радиодиапазоне.


Телескопы бывают самыми разными: - оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения ИСЗ); - радиотелескопы; - инфракрасные; - нейтринные; - рентгеновские. При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи: создать максимально резкое изображение и, при визуальных наблюдениях, увеличить угловые расстояния между объектами (звездами, галактиками и т. п.); собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.


Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем. Телескоп имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение. Он позволил сделать целую серию замечательных открытий (фазы Венеры, горы на Луне, спутники Юпитера, пятна на Солнце, звезды в Млечном Пути). Очень плохое качество изображения в первых телескопах заставило оптиков искать пути решения этой проблемы. Оказалось, что увеличение фокусного расстояния объектива значительно улучшает качество изображения. Телескопы Галилея (Музей истории науки, Флоренция). Два телескопа укреплены на музейной подставке, В центре виньетки разбитый объектив от первого телескопа Галилея Телескопы Галилея (Музей истории науки, Флоренция). Два телескопа укреплены на музейной подставке, В центре виньетки разбитый объектив от первого телескопа Галилея


Телескоп Гевелия имел длину 50 м и подвешивался системой канатов на столбе. Телескоп Озу имел длину 98 метров. При этом он не имел трубы, объектив располагался на столбе на расстоянии почти 100 метров от окуляра, который наблюдатель держал в руках (так называемый воздушный телескоп). Наблюдать с таким телескопом было очень неудобно. Озу не сделал ни одного открытия. Телескоп Гевелия


В 1663 году Грегори создал новую схему телескопа- рефлектора. Грегори первым предложил использовать в телескопе вместо линзы зеркало. Основная аберрация линзовых объективов – хроматическая – полностью отсутствует в зеркальном телескопе. Первый телескоп-рефлектор был построен Исааком Ньютоном в 1668 году. Схема, по которой он был построен, получила название «схема Ньютона». Длина телескопа составляла 15 см.








В 1963 году начал работать 300-метровый радиотелескоп со сферической антенной в Аресибо на острове Пуэрто-Рико, установленный в огромном естественном котловане, в горах. В 1976 году на Северном Кавказе в России начал работать 600-метровый радиотелескоп РАТАН-600. Угловое разрешение радиотелескопа на волне 3 см составляет 10".