Из каких соединений синтезируются углеводы. В зависимости от типа группы в составе молекулы различают альдозы и кетозы

УГЛЕВОДЫ

Углеводы входят в состав клеток и тканей всех растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. На долю углеводов приходится около 80% сухого вещества растений и около 20% животных. Растения синтезируют углеводы из неорганических соединений - углекислого газа и воды (СО 2 и Н 2 О ).

Углеводы делятся на две группы: моносахариды (монозы) и полисахариды (полиозы).

Моносахариды

Для подробного изучения материала, связанного с классификацией углеводов, изомерией, номенклатурой, строением и др., необходимо просмотреть анимационные фильмы " Углеводы. Генетический D - ряд сахаров" и "Построение формул Хеуорса для D - галактозы" (данный видеоматериал доступен только на CD - ROM ). Тексты, сопровождающие эти фильмы, в полном объеме перенесены в данный подраздел и ниже следуют.

Углеводы. Генетический D- ряд сахаров

"Углеводы широко распространены в природе и выполняют в живых организмах различные важные функции. Они поставляют энергию для биологических процессов, а также являются исходным материалом для синтеза в организме других промежуточных или конечных метаболитов. Углеводы имеют общую формулу C n (H 2 O ) m , откуда и возникло название этих природных соединений.

Углеводы делятся на простые сахара или моносахариды и полимеры этих простых сахаров или полисахариды. Среди полисахаридов следует выделить группу олигосахаридов, содержащих в молекуле от 2 до 10 моносахаридных остатков. К ним относятся, в частности, дисахариды.

Моносахариды являются гетерофункциональными соединениями. В их молекулах одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько гидроксильных групп, т.е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. В зависимости от этого моносахариды подразделяются на альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится кетогруппа). Например , глюкоза – это альдоза, а фруктоза – это кетоза.

(глюкоза (альдоза)) (фруктоза (кетоза))

В зависимости от числа атомов углерода в молекуле моносахарид называется тетрозой, пентозой, гексозой и т.д. Если объединить последние два типа классификации, то глюкоза – это альдогексоза, а фруктоза – кетогексоза. Большинство встречающихся в природе моносахаридов – это пентозы и гексозы.

Моносахариды изображаются в виде проекционных формул Фишера, т.е. в виде проекции тетраэдрической модели атомов углерода на плоскость чертежа. Углеродная цепь в них записывается вертикально. У альдоз наверху помещают альдегидную группу, у кетоз – соседнюю с карбонильной первичноспиртовую группу. Атом водорода и гидроксильную группу при асимметрическом атоме углерода располагают на горизонтальной прямой. Асимметрический атом углерода находится в образующемся перекрестье двух прямых и не обозначается символом. С групп, расположенных вверху, начинают нумерацию углеродной цепи. (Дадим определение асимметрическому атому углерода: это атом углерода, связанный с четырьмя различными атомами или группами).

Установление абсолютной конфигурации, т.е. истинного расположения в пространстве заместителей у асимметрического атома углерода является весьма трудоемкой, а до некоторого времени было даже невыполнимой задачей. Существует возможность характеризовать соединения путем сравнения их конфигураций с конфигурациями эталонных соединений, т.е. определять относительные конфигурации.

Относительная конфигурация моносахаридов определяется по конфигурационному стандарту – глицериновому альдегиду, которому еще в конце прошлого столетия произвольно были приписаны определенные конфигурации, обозначенные как D - и L - глицериновые альдегиды. С конфигурацией их асимметрических атомов углерода сравнивается конфигурация наиболее удаленного от карбонильной группы асимметрического атома углерода моносахарида. В пентозах таким атомом является четвертый атом углерода (С 4 ), в гексозах – пятый (С 5 ), т.е. предпоследние в цепи углеродных атомов. При совпадении конфигурации этих атомов углерода с конфигурацией D - глицеринового альдегида моносахарид относят к D - ряду. И, наоборот, при совпадении с конфигурацией L - глицеринового альдегида считают, что моносахарид принадлежит к L - ряду. Символ D означает, что гидроксильная группа при соответствующем асимметрическом атоме углерода в проекции Фишера располагается справа от вертикальной линии, а символ L - что гидроксильная группа расположена слева.

Генетический D- ряд сахаров

Родоначальником альдоз является глицериновый альдегид. Рассмотрим генетическое родство сахаров D - ряда с D - глицериновым альдегидом.

В органической химии существует метод увеличения углеродной цепи моносахаридов путем последовательного введения группы

Н–

I
С
I

–ОН

между карбонильной группой и соседним атомом углерода. Введение этой группы в молекулу D - глицеринового альдегида приводит к двум диастереомерным тетрозам – D - эритрозе и D - треозе. Это объясняется тем, что введенный в цепь моносахарида новый атом углерода становится асимметрическим. По этой же причине каждая полученная тетроза, а далее и пентоза при введении в их молекулу еще одного углеродного атома тоже дают два диастереомерных сахара. Диастереомеры – это стереоизомеры, отличающиеся конфигурацией одного или нескольких асимметрических атомов углерода.

Так получен D - ряд сахаров из D - глицеринового альдегида. Как видно, все члены приведенного ряда, будучи полученными из D - глицеринового альдегида, сохранили его асимметрический атом углерода. Это – последний асимметрический атом углерода в цепи углеродных атомов представленных моносахаридов.

Каждой альдозе D -ряда соответствует стереоизомер L - ряда, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение. Такие стереоизомеры называются энантиомерами.

Следует отметить в заключение, что приведенный ряд альдогексоз не исчерпывается четырьмя изображенными. Представленным выше образом из D - рибозы и D - ксилозы можно получить еще две пары диастереомерных сахаров. Однако мы остановились лишь на альдогексозах, имеющих наибольшее распространение в природе."

Построение формул Хеуорса для D- галактозы

"Одновременно с введением в органическую химию представлений о строении глюкозы и других моносахаридов как о полигидроксиальдегидах или полигидроксикетонах, описываемых открытоцепными формулами, в химии углеводов стали накапливаться факты, которые трудно было объяснить с позиций таких структур. Оказалось, что глюкоза и другие моносахариды существуют в виде циклических полуацеталей, образующихся в результате внутримолекулярной реакции соответствующих функциональных групп.

Обычные полуацетали образуются при взаимодействии молекул двух соединений – альдегида и спирта. В процессе реакции разрывается двойная связь карбонильной группы, по месту разрыва к которой присоединяются атом водорода гидроксила и остаток спирта. Циклические полуацетали образуются за счет взаимодействия аналогичных функциональных групп, принадлежащих молекуле одного соединения – моносахарида. Реакция протекает в том же направлении: разрывается двойная связь карбонильной группы, к карбонильному кислороду присоединяется атом водорода гидроксила и образуется цикл за счет связывания атомов углерода карбонильной и кислорода гидроксильной групп.

Наиболее устойчивые полуацетали образуются за счет гидроксильных групп при четвертом и пятом углеродных атомах. Возникающие при этом пятичленные и шестичленные кольца называют соответственно фуранозной и пиранозной формами моносахаридов. Эти названия происходят от названий пяти- и шестичленных гетероциклических соединений с атомом кислорода в цикле – фурана и пирана.

Моносахариды, имеющие циклическую форму, удобно изображать перспективными формулами Хеуорса. Они представляют собой идеализированные плоские пяти- и шестичленные циклы с атомом кислорода в цикле, дающие возможность видеть взаимное расположение всех заместителей относительно плоскости кольца.

Рассмотрим построение формул Хеуорса на примере D - галактозы.

Для построения формул Хеуорса необходимо в первую очередь пронумеровать углеродные атомы моносахарида в проекции Фишера и повернуть ее направо так, чтоб цепь углеродных атомов заняла горизонтальное положение. Тогда атомы и группы, расположенные в проекционной формуле слева, будут находиться вверху, а расположенные справа – внизу от горизонтальной прямой, а при дальнейшем переходе к циклическим формулам – соответственно над и под плоскостью цикла. В действительности же углеродная цепь моносахарида не расположена на прямой линии, а принимает в пространстве изогнутую форму. Как видно, гидроксил при пятом углеродном атоме значительно удален от альдегидной группы, т.е. занимает положение, неблагоприятное для замыкания кольца. Для сближения функциональных групп осуществляется поворот части молекулы вокруг валентной оси, соединяющей четвертый и пятый углеродный атомы, против часовой стрелки на один валентный угол. В результате такого поворота гидроксил пятого атома углерода приближается к альдегидной группе, при этом два других заместителя также меняют свое положение – в частности, группировка – СН 2 ОН располагается над цепью углеродных атомов. Одновременно с этим и альдегидная группа за счет поворота вокруг s - связи между первым и вторым углеродными атомами сближается с гидроксилом. Сблизившиеся функциональные группы взаимодействуют между собой по указанной выше схеме, приводя к образованию полуацеталя с шестичленным пиранозным циклом.

Возникающую в результате реакции гидроксильную группу называют гликозидной. Образование циклического полуацеталя приводит к появлению нового асимметрического атома углерода, называемого аномерным. В результате возникают два диастереомера – a - и b - аномеры, различающиеся конфигурацией только первого углеродного атома.

Различные конфигурации аномерного атома углерода возникают вследствии того, что альдегидная группа, имеющая плоскую конфигурацию, из-за поворота вокруг s - связи между первым и вторым углеродными атомами обращается к атакующему реагенту (гидроксильной группе) как одной, так и противоположной сторонами плоскости. Гидроксильная группа при этом атакует карбонильную группу с любой стороны двойной связи, приводя к полуацеталям с различными конфигурациями первого атома углерода. Другими словами, основная причина одновременного образования a - и b -аномеров состоит в нестереоселективности обсуждаемой реакции.

У a - аномера конфигурация аномерного центра одинакова с конфигурацией последнего асимметрического атома углерода, опеределяющего принадлежность к D - и L - ряду, а у b - аномера – противоположна. У альдопентоз и альдогексоз D - ряда в формулах Хеуорса гликозидная гидроксильная группа у a - аномеров расположена под плоскостью, а у b - аномеров – над плоскостью цикла.

По аналогичным правилам осуществляется переход и к фуранозным формам Хеуорса. Разница лишь в том, что в реакции участвует гидроксил четвертого углеродного атома, а для сближения функциональных групп необходим поворот части молекулы вокруг s - связи между третьим и четвертым атомами углерода и по часовой стрелке, в результате чего пятый и шестой углеродный атомы расположатся под плоскостью цикла.

Названия циклических форм моносахаридов включают в себя указания на конфигурацию аномерного центра (a - или b -), на название моносахарида и его ряда (D - или L -) и размер цикла (фураноза или пираноза). Например , a , D - галактопираноза или b , D - галактофураноза."

Получение

В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. Другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов. В природе глюкоза получается в результате реакции фотосинтеза:

6CO 2 + 6H 2 O ® C 6 H 12 O 6 (глюкоза ) + 6O 2

Впервые глюкоза получена в 1811 году русским химиком Г.Э.Кирхгофом при гидролизе крахмала. Позже синтез моносахаридов из формальдегида в щелочной среде предложен А.М.Бутлеровым.

В промышленности глюкозу получают гидролизом крахмала в присутствии серной кислоты.

(C 6 H 10 O 5) n (крахмал) + nH 2 O –– H 2 SO 4 ,t ° ® nC 6 H 12 O 6 (глюкоза )

Физические свойства

Моносахариды – твердые вещества, легко растворимые в воде, плохо – в спирте и совсем нерастворимые в эфире. Водные растворы имеют нейтральную реакцию на лакмус. Большинство моносахаридов обладают сладким вкусом, однако меньшим, чем свекловичный сахар.

Химические свойства

Моносахариды проявляют свойства спиртов и карбонильных соединений.

I. Реакции по карбонильной группе

1. Окисление.

a) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция "серебряного зеркала").

b) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

c) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

2. Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

3. Несмотря на схожесть химических свойств моносахаридов с альдегидами, глюкоза не вступает в реакцию с гидросульфитом натрия (NaHSO 3 ).

II. Реакции по гидроксильным группам

Реакции по гидроксильным группам моносахаридов осуществляются, как правило, в полуацетальной (циклической) форме.

1. Алкилирование (образование простых эфиров).

При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу.

При использовании более сильных алкилирующих средств, каковыми являются, например , йодистый метил или диметилсульфат, подобное превращение затрагивает все гидроксильные группы моносахарида.

2. Ацилирование (образование сложных эфиров).

При действии на глюкозу уксусного ангидрида образуется сложный эфир – пентаацетилглюкоза.

3. Как и все многоатомные спирты, глюкоза с гидроксидом меди (II ) дает интенсивное синее окрашивание (качественная реакция).

III. Специфические реакции

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами - процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

a) спиртовое брожение

C 6 H 12 O 6 ® 2CH 3 –CH 2 OH (этиловый спирт ) + 2CO 2 ­

b) молочнокислое брожение

c) маслянокислое брожение

C 6 H 12 O 6 ® CH 3 –CH 2 –СН 2 –СОOH (масляная кислота ) + 2 Н 2 ­ + 2CO 2 ­

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например , спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

Дисахариды

Дисахариды (биозы) при гидролизе образуют два одинаковых или разных моносахарида. Для установления строения дисахаридов необходимо знать: из каких моносахаридов он построен, какова конфигурация аномерных центров у этих моносахаридов (a - или b -), каковы размеры цикла (фураноза или пираноза) и с участием каких гидроксилов связаны две молекулы моносахарида.

Дисахариды подразделяются на две группы: восстанавливающие и невосстанавливающие.

К восстанавливающим дисахаридам относится, в часности, мальтоза (солодовый сахар), содержащаяся в солоде, т.е. проросших, а затем высушенных и измельченных зернах хлебных злаков.

(мальтоза )

Мальтоза составлена из двух остатков D - глюкопиранозы, которые связаны (1–4) -гликозидной связью, т.е. в образовании простой эфирной связи участвуют гликозидный гидроксил одной молекулы и спиртовой гидроксил при четвертом атоме углерода другой молекулы моносахарида. Аномерный атом углерода (С 1 ), участвующий в образовании этой связи, имеет a - конфигурацию, а аномерный атом со свободным гликозидным гидроксилом (обозначен красным цветом) может иметь как a - (a - мальтоза), так и b - конфигурацию (b - мальтоза).

Мальтоза представляет собой белые кристаллы, хорошо растворимые в воде, сладкие на вкус, однако значительно меньше, чем у сахара (сахарозы).

Как видно, в мальтозе имеется свободный гликозидный гидроксил, вследствие чего сохраняется способность к раскрытию цикла и переходу в альдегидную форму. В связи с этим, мальтоза способна вступать в реакции, характерные для альдегидов, и, в частности, давать реакцию "серебряного зеркала", поэтому ее называют восстанавливающим дисахаридом. Кроме того, мальтоза вступает во многие реакции, характерные для моносахаридов, например , образует простые и сложные эфиры (см. химические свойства моносахаридов).

К невосстанавливающим дисахаридам относится сахароза (свекловичный или тростниковый сахар). Она содержится в сахарном тростнике, сахарной свекле (до 28% от сухого вещества), соках растений и плодах. Молекула сахарозы построена из a , D - глюкопиранозы и b , D - фруктофуранозы.

(сахароза)

В противоположность мальтозе гликозидная связь (1–2) между моносахаридами образуется за счет гликозидных гидроксилов обеих молекул, то есть свободный гликозидный гидроксил отсутствует. Вследствие этого отсутствует восстанавливающая способность сахарозы, она не дает реакции "серебряного зеркала", поэтому ее относят к невосстанавливающим дисахаридам.

Сахароза – белое кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде.

Для сахарозы характерны реакции по гидроксильным группам. Как и все дисахариды, сахароза при кислотном или ферментативном гидролизе превращается в моносахариды, из которых она составлена.

Полисахариды

Важнейшие из полисахаридов – это крахмал и целлюлоза (клетчатка). Они построены из остатков глюкозы. Общая формула этих полисахаридов ( C 6 H 10 O 5 ) n . В образовании молекул полисахаридов обычно принимает участие гликозидный (при С 1 -атоме) и спиртовой (при С 4 -атоме) гидроксилы, т.е. образуется (1–4) -гликозидная связь.

Крахмал

Крахмал представляет собой смесь двух полисахаридов, построенных из a , D - глюкопиранозных звеньев: амилозы (10-20%) и амилопектина (80-90%). Крахмал образуется в растениях при фотосинтезе и откладывается в виде "резервного" углевода в корнях, клубнях и семенах. Например , зерна риса, пшеницы, ржы и других злаков содержат 60-80% крахмала, клубни картофеля – 15-20%. Родственную роль в животном мире выполняет полисахарид гликоген, "запасающийся", в основном, в печени.

Крахмал – это белый порошок, состоящий из мелких зерен, не растворимый в холодной воде. При обработке крахмала теплой водой удается выделить две фракции: фракцию, растворимую в теплой воде и состоящую из полисахарида амилозы , и фракцию, лишь набухающую в теплой воде с образованием клейстера и состоящую из полисахарида амилопектина .

Амилоза имеет линейное строение, a , D - глюкопиранозные остатки связаны (1–4) -гликозидными связями. Элементная ячейка амилозы (и крахмала вообще) представляется следующим образом:

Молекула амилопектина построена подобным образом, однако имеет в цепи разветвления, что создает пространственную структуру. В точках разветвления остатки моносахаридов связаны (1–6) -гликозидными связями. Между точками разветвления располагаются обычно 20-25 глюкозных остатков.

(амилопектин)

Крахмал легко подвергается гидролизу: при нагревании в присутствии серной кислоты образуется глюкоза.

(C 6 H 10 O 5 ) n (крахмал) + nH 2 O –– H 2 SO 4 , t ° ® nC 6 H 12 O 6 (глюкоза)

В зависимости от условий проведения реакции гидролиз может осуществляться ступенчато с образованием промежуточных продуктов.

(C 6 H 10 O 5 ) n (крахмал) ® (C 6 H 10 O 5 ) m (декстрины (m < n )) ® xC 12 H 22 O 11 (мальтоза) ® nC 6 H 12 O 6 (глюкоза)

Качественной реакцией на крахмал является его взаимодействие с йодом – наблюдается интенсивное синее окрашивание. Такое окрашивание появляется, если на срез картофеля или ломтик белого хлеба поместить каплю раствора йода.

Крахмал не вступает в реакцию "серебряного зеркала".

Крахмал является ценным пищевым продуктом. Для облегчения его усвоения продукты, содержащие крахмал, подвергают термообработке, т.е. картофель и крупы варят, хлеб пекут. Процессы декстринизации (образование декстринов), осуществляемые при этом, способствуют лучшему усвоению организмом крахмала и последующему гидролизу до глюкозы.

В пищевой промышленности крахмал используется при производстве колбасных, кондитерских и кулинарных изделий. Применяется также для получения глюкозы, при изготовлении бумаги, текстильных изделий, клеев, лекарственных средств и т.д.

Целлюлоза (клетчатка)

Целлюлоза – наиболее распространенный растительный полисахарид. Она обладает большой механической прочностью и исполняет роль опорного материала растений. Древесина содержит 50-70% целлюлозы, хлопок представляет собой почти чистую целлюлозу.

Как и у крахмала, структурной единицей целлюлозы является D - глюкопираноза, звенья которой связаны (1-4) -гликозидными связями. Однако, от крахмала целлюлоза отличается b - конфигурацией гликозидных связей между циклами и строго линейным строением.

Целлюлоза состоит из нитевидных молекул, которые водородными связями гидроксильных групп внутри цепи, а также между соседними цепями собраны в пучки. Именно такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу идеальным материалом для построения клеточных стенок.

b - Гликозидная связь не разрушается пищеварительными ферментами человека, поэтому целлюлоза не может служить ему пищей, хотя в определенном количестве является необходимым для нормального питания балластным веществом. В желудках жвачных животных имеются ферменты, расщепляющие целлюлозу, поэтому такие животные используют клетчатку в качестве компонента пищи.

Несмотря на нерастворимость целлюлозы в воде и обычных органических растворителях, она растворима в реактиве Швейцера (раствор гидроксида меди в аммиаке), а также в концентрированном растворе хлористого цинка и в концентрированной серной кислоте.

Как и крахмал, целлюлоза при кислотном гидролизе дает глюкозу.

Целлюлоза – многоатомный спирт, на элементную ячейку полимера приходятся три гидроксильных группы. В связи с этим, для целлюлозы характерны реакции этерификации (образование сложных эфиров). Наибольшее практическое значение имеют реакции с азотной кислотой и уксусным ангидридом.

Полностью этерифицированная клетчатка известна под названием пироксилин, который после соответствующей обработки превращается в бездымный порох. В зависимости от условий нитрования можно получить динитрат целлюлозы, который в технике называется коллоксилином. Он так же используется при изготовлении пороха и твердых ракетных топлив. Кроме того, на основе коллоксилина изготавливают целлулоид.

Триацетилцеллюлоза (или ацетилцеллюлоза) является ценным продуктом для изготовления негорючей кинопленки и ацетатного шелка. Для этого ацетилцеллюлозу растворяют в смеси дихлорметана и этанола и этот раствор продавливают через фильеры в поток теплого воздуха. Растворитель испаряется и струйки раствора превращаются в тончайшие нити ацетатного шелка.

Целлюлоза не дает реакции "серебряного зеркала".

Говоря о применении целлюлозы, нельзя не сказать о том, что большое количество целлюлозы расходуется для изготовления различной бумаги. Бумага – это тонкий слой волокон клетчатки, проклеенный и спрессованный на специальной бумагоделательной машине.

Из приведенного выше уже видно, что использование целлюлозы человеком столь широко и разнообразно, что применению продуктов химической переработки целлюлозы можно посвятить самостоятельный раздел.

КОНЕЦ РАЗДЕЛА

Органические соединения, которые являются основным источником энергии, называются углеводами. Чаще всего сахара встречаются в пище растительного происхождения. Дефицит углеводов может вызвать нарушение работы печени, а их избыток вызывает повышение уровня инсулина. Поговорим о сахарах подробнее.

Что такое углеводы?

Это органические соединения, которые содержат карбонильную группу и несколько гидроксильных. Они входят в состав тканей организмов, а также являются важным компонентом клеток. Выделяют моно -, олиго - и полисахариды, а также более сложные углеводы, такие как гликолипиды, гликозиды и другие. Углеводы являются продуктом фотосинтеза, а также основным исходным веществом биосинтеза других соединений в растениях. Благодаря большому разнообразию соединений данный класс способен играть многоплановые роли в живых организмах. Подвергаясь окислению, углеводы обеспечивают энергией все клетки. Они участвуют в становлении иммунитета, а также входят в состав многих клеточных структур.

Виды сахаров

Органические соединения делятся на две группы - простые и сложные. Углеводы первого типа - моносахариды, которые содержат карбонильную группу и представляют собой производные многоатомных спиртов. Ко второй группе принадлежат олигосахариды и полисахариды. Первые состоят их остатков моносахаридов (от двух до десяти), которые соединены гликозидной связью. Вторые могут содержать в своем составе и сотни и даже тысячи мономеров. Таблица углеводов, которые чаще всего встречаются, выглядит следующим образом:

  1. Глюкоза.
  2. Фруктоза.
  3. Галактоза.
  4. Сахароза.
  5. Лактоза.
  6. Мальтоза.
  7. Раффиноза.
  8. Крахмал.
  9. Целлюлоза.
  10. Хитин.
  11. Мурамин.
  12. Гликоген.

Список углеводов обширен. Остановимся на некоторых из них подробнее.

Простая группа углеводов

В зависимости от места, которое занимает карбонильная группа в молекуле, различают два вида моносахаридов - альдозы и кетозы. У первых функциональной группой является альдегидная, у вторых - кетонная. В зависимости от числа углеродных атомов, входящих в молекулу, складывается название моносахарида. Например, альдогексозы, альдотетрозы, кетотриозы и так далее. Эти вещества чаще всего не имеют цвета, плохо растворимы в спирте, но хорошо в воде. Простые углеводы в продуктах - твердые, не гидролизуются при переваривании. Некоторые из представителей обладают сладким вкусом.

Представители группы

Что относится к углеводам простого строения? Во-первых, это глюкоза, или альдогексоза. Она существует в двух формах - линейной и циклической. Наиболее точно описывает химические свойства глюкозы - это вторая форма. Альдогексоза содержит шесть атомов углерода. Вещество не имеет цвета, но зато сладкое на вкус. Отлично растворяется в воде. Встретить глюкозу можно практически везде. Она существует в органах растений и животных организмах, а также во фруктах. В природе альдогексоза образуется в процессе фотосинтеза.

Во-вторых, это галактоза. Вещество отличается от глюкозы расположением в пространстве гидроксильной и водородной групп у четвертого атома углерода в молекуле. Обладает сладким вкусом. Она встречается в животных и растительных организмах, а также в некоторых микроорганизмах.

И третий представитель простых углеводов - фруктоза. Вещество является самым сладким сахаром, полученным в природе. Она присутствует в овощах, фруктах, ягодах, меде. Легко усваивается организмом, быстро выводится из крови, что обуславливает ее применение больными сахарным диабетом. Фруктоза содержит мало калорий и не вызывает кариес.

Продукты, богатые простыми сахарами

  1. 90 г - кукурузный сироп.
  2. 50 г - сахара-рафинад.
  3. 40,5 г - мед.
  4. 24 г - инжир.
  5. 13 г - курага.
  6. 4 г - персики.

Суточное употребление данного вещества не должно превышать 50 г. Что касается глюкозы, то в этом случае соотношение будет немного другое:

  1. 99,9 г - сахар-рафинад.
  2. 80,3 г - мед.
  3. 69,2 г - финики.
  4. 66,9 г - перловая крупа.
  5. 61,8 г - овсяные хлопья.
  6. 60,4 г - гречка.

Чтобы рассчитать суточное употребление вещества, необходимо вес умножить на 2,6. Простые сахара обеспечивают энергией человеческий организм и помогают справляться с разными токсинами. Но нельзя забывать, что при любом употреблении должна быть мера, иначе серьезные последствия не заставят долго ждать.

Олигосахариды

Наиболее часто встречающимся видом в данной группе являются дисахариды. Что такое углеводы, содержащие несколько остатков моносахаридов? Они представляют собой гликозиды, содержащие мономеры. Моносахариды связаны между собой гликозидной связью, которая образуется в результате соединения гидроксильных групп. Исходя из строения дисахариды делятся на два виды: восстанавливающие и не восстанавливающие. К первому относится мальтоза и лактоза, а ко второму сахароза. Восстанавливающий тип обладает хорошей растворимостью и имеет сладкий вкус. Олигосахариды могут содержать более двух мономеров. Если моносахариды одинаковые, то такой углевод относится к группе гомополисахаридов, а если разные, то к гетерополисахаридов. Примером последнего типа является трисахарид раффиноза, которая содержит остатки глюкозы, фруктозы и галактозы.

Лактоза, мальтоза и сахароза

Последнее вещество хорошо растворяется, имеет сладкий вкус. Сахарный тростник и свекла являются источником получения дисахарида. В организме при гидролизе сахароза распадается на глюкозу и фруктозу. Дисахарид в больших количествах содержится в сахаре-рафинаде (99,9 г на 100 г продукта), в черносливе (67,4 г), в винограде (61,5 г) и в других продуктах. При избыточном поступлении этого вещества увеличивается способность превращаться в жир практически всех пищевых веществ. Также повышается уровень холестерина в крови. Большое количество сахарозы негативно влияет на кишечную флору.

Молочный сахар, или лактоза, содержится в молоке и его производных. Углевод расщепляется до галактозы и глюкозы благодаря специальному ферменту. Если его в организме нет, то наступает непереносимость молока. Солодовый сахар или мальтоза является промежуточным продуктом распада гликогена и крахмала. В пищевых продуктах вещество встречается в солоде, патоке, меде и проросших зернах. Состав углеводов лактозы и мальтозы представлен остатками мономеров. Только в первом случае ими являются D-галактоза и D-глюкоза, а во втором вещество представлено двумя D-глюкозами. Оба углевода являются восстанавливающимися сахарами.

Полисахариды

Что такое углеводы сложные? Они отличаются друг от друга по нескольким признакам:

1. По строению мономеров, включенных в цепь.

2. По порядку нахождения моносахаридов в цепи.

3. По типу гликозидных связей, которые соединяют мономеры.

Как и у олигосахаридов, в данной группе можно выделить гомо -, и гетерополисахариды. К первой относятся целлюлоза и крахмал, а ко второй - хитин, гликоген. Полисахариды являются важным источником энергии, который образуется в результате обмена веществ. Они участвуют в иммунных процессах, а также в сцеплении клеток в тканях.

Список сложных углеводов представлен крахмалом, целлюлозой и гликогеном, их мы рассмотрим подробнее. Одним из главных поставщиков углеводов является крахмал. Это соединения, которые включают сотни тысяч остатков глюкозы. Углевод рождается и хранится в виде зернышек в хлоропластах растений. Благодаря гидролизу крахмал переходит в водорастворимые сахара, что способствует свободному перемещению по частям растения. Попадая в человеческий организм, углевод начинает распадаться уже во рту. В наибольшем количестве крахмал содержат зерна злаков, клубни и луковицы растений. В рационе на его долю приходится около 80% всего количества употребляемых углеводов. Наибольшее количество крахмала, в расчете на 100 г продукта, содержится в рисе - 78 г. Чуть меньше в макаронах и пшене - 70 и 69 г. Сто грамм ржаного хлеба включает в себя 48 г крахмала, а в той же порции картофеля его количество достигает лишь 15 г. Суточная потребность человеческого организма в данном углеводе равна 330-450 г.

Зерновые продукты также содержат клетчатку или целлюлозу. Углевод входит в состав клеточных стенок растений. Его вклад равен 40-50 %. Человек не способен переварить целлюлозу, так нет необходимого фермента, который бы осуществлял процесс гидролиза. Но мягкий тип клетчатки, например, картофеля и овощей, способен хорошо усваиваться в пищеварительном тракте. Каково содержание данного углевода в 100 г еды? Ржаные и пшеничные отруби являются самыми богатыми клетчаткой продуктами. Их содержание достигает 44 г. Какао-порошок включает 35 г питательного углевода, а сухие грибы лишь 25. Шиповник и молотый кофе содержат 22 и 21 г. Одними из самых богатых на клетчатку фруктов являются абрикос и инжир. Содержание углевода в них достигает 18 г. В сутки человеку нужно съедать целлюлозы до 35 г. Причем наибольшая потребность в углеводе наступает в возрасте от 14 до 50 лет.

В роле энергетического материала для хорошей работы мышц и органов используется полисахарид гликоген. Пищевого значения он не имеет, так как содержание его в еде крайне низкое. Углевод иногда называют животным крахмалом из-за схожести в строении. В данной форме в животных клетках хранится глюкоза (в наибольшем количестве в печени и мышцах). В печени у взрослых людей количество углевода может достигать до 120 г. Лидером по содержанию гликогена являются сахар, мед и шоколад. Также большим содержанием углевода могут «похвастаться» финики, изюм, мармелад, сладкая соломка, бананы, арбуз, хурма и инжир. Суточная норма гликогена равна 100 г в сутки. Если человек интенсивно занимается спортом или выполняет большую работу, связанную с умственной деятельностью, количество углевода должно быть увеличено. Гликоген относится к легко усваиваемым углеводам, которые хранятся про запас, что говорит о его использовании только в случае недостатка энергии от других веществ.

К полисахаридам также относятся следующие вещества:

1. Хитин. Он входит в состав роговых оболочек членистоногих, присутствует в грибах, низших растениях и в беспозвоночных животных. Вещество играет роль опорного материала, а также выполняет механические функции.

2. Мурамин. Он присутствует в качестве опорно-механического материала клеточной стенки бактерий.

3. Декстраны. Полисахариды выступают как заменители плазмы крови. Их получают путем воздействия микроорганизмов на раствор сахарозы.

4. Пектиновые вещества. Находясь вместе с органическими кислотами, могут образовывать желе и мармелад.

Белки и углеводы. Продукты. Список

Человеческий организм нуждается в определенном количестве питательных веществ каждый день. Например, углеводов необходимо употреблять в расчете 6-8 г на 1 кг массы тела. Если человек ведет активный образ жизни, то количество будет увеличиваться. Углеводы в продуктах содержатся практически всегда. Составим список их присутствия на 100 г пищи:

  1. Наибольшее количество (более 70 г) содержатся в сахаре, мюслях, мармеладе, крахмале и рисе.
  2. От 31 до 70 г - в мучных и кондитерских изделиях, в макаронах, крупах, сухофруктах, фасоли и горохе.
  3. От 16 до 30 г углеводов содержат бананы, мороженое, шиповник, картофель, томатная паста, компоты, кокос, семечки подсолнечника и орехи кешью.
  4. От 6 до 15 г - в петрушке, укропе, свекле, моркови, крыжовник, смородина, бобах, фруктах, орехах, кукурузе, пиве, семечках тыквы, сушеных грибах и так далее.
  5. До 5 г углеводов содержится в зеленом луке, томатах, кабачках, тыквах, капусте, огурцах, клюкве, в молочных продуктах, яйцах и так далее.

Питательного вещества не должно поступать в организм меньше 100 г в сутки. В противном случае клетка не будет получать положенную ей энергию. Головной мозг не сможет выполнять свои функции анализа и координации, следовательно, мышцы не будут получать команды, что в итоге приведет к кетозу.

Что такое углеводы, мы рассказали, но, помимо них, незаменимым веществом для жизни являются белки. Они представляют собой цепочку аминокислот, связанных пептидной связью. В зависимости от состава белки различаются по своим свойствам. Например, эти вещества исполняют роль строительного материала, так как каждая клетка организма включает их в свой состав. Некоторые виды белков являются ферментами и гормонами, а также источником энергии. Они оказывают влияние на развитие и рост организма, регулируют кислотно-щелочной и водный баланс.

Таблица углеводов в еде показала, что в мясе и в рыбе, а также в некоторых видах овощей их число минимально. А каково содержание белков в пище? Самым богатым продуктом является желатин пищевой, на 100 г в нем содержится 87,2 г вещества. Далее идет горчица (37,1 г) и соя (34,9 г). Соотношение белков и углеводов в суточном употреблении на 1 кг веса должно быть 0,8 г и 7 г. Для лучшего усвоения первого вещества необходимо принимать пищу, в которой он принимает легкую форму. Это касается белков, которые присутствуют в кисломолочных продуктах и в яйцах. Плохо сочетаются в одном приеме пищи белки и углеводы. Таблица по раздельному питанию показывает, каких вариаций лучше избегать:

  1. Рис с рыбой.
  2. Картофель и курица.
  3. Макароны и мясо.
  4. Бутерброды с сыром и ветчиной.
  5. Рыба в панировке.
  6. Ореховые пирожные.
  7. Омлет с ветчиной.
  8. Мучное с ягодами.
  9. Дыню и арбуз нужно есть отдельно за час до основного приема пищи.

Хорошо сочетаются:

  1. Мясо с салатом.
  2. Рыба с овощами или на гриле.
  3. Сыр и ветчина по отдельности.
  4. Орехи в целом виде.
  5. Омлет с овощами.

Правила раздельного питания основаны на знаниях законов биохимии и информации о работе ферментов и пищевых соков. Для хорошего пищеварения любой вид еды требует индивидуального набора желудочных жидкостей, определенного количества воды, щелочную или кислотную среду, а также присутствие или отсутствие энзимов. Например, кушанье, насыщенное углеводами, для лучшего переваривания требует пищеварительного сока с щелочными ферментами, которые расщепляют данные органические вещества. А вот еда, богатая белками, уже требует кислых энзимов... Соблюдая нехитрые правила соответствия продуктов, человек укрепляет свое здоровье и поддерживает постоянный вес, без помощи диет.

«Плохие» и «хорошие» углеводы

«Быстрые» (или «неправильные») вещества - соединения, которые содержат небольшое число моносахаридов. Такие углеводы способны быстро усваиваться, повышать уровень сахара в крови, а также увеличивать количество выделяемого инсулина. Последний снижает уровень сахара крови, путем превращения его в жир. Употребление углеводов после обеда для человека, который следит за своим весом, представляет наибольшую опасность. В это время организм наиболее предрасположен к увеличению жировой массы. Что именно содержит неправильные углеводы? Продукты, список которых представлен ниже:

1. Кондитерские изделия.

3. Варенье.

4. Сладкие соки и компоты.

7. Картофель.

8. Макароны.

9. Белый рис.

10. Шоколад.

В основном это продукты, не требующие долгого приготовления. После такой еды необходимо много двигаться, иначе лишний вес даст о себе знать.

«Правильные» углеводы содержат более трех простых мономеров. Они усваиваются медленно и не вызывают резкого подъема сахара. Данный вид углеводов содержит большое количество клетчатки, которая практически не переваривается. В связи с этим человек долго остается сытым, для расщепления такой пищи требуется дополнительная энергия, кроме того, происходит естественное очищение организма. Составим список сложных углеводов, а точнее, продуктов, в которых они встречаются:

  1. Хлеб с отрубями и цельнозерновой.
  2. Гречневая и овсяная каши.
  3. Зеленые овощи.
  4. Макароны из грубого помола.
  5. Грибы.
  6. Горох.
  7. Красная фасоль.
  8. Помидоры.
  9. Молочные продукты.
  10. Фрукты.
  11. Горький шоколад.
  12. Ягоды.
  13. Чечевица.

Для подержания себя в хорошей форме нужно больше есть «хороших» углеводов в продуктах и как можно меньше «плохих». Последние лучше принимать в первую половину дня. Если нужно похудеть, то лучше исключить употребление "неправильных" углеводов, так как при их использовании человек получает пищу в большем объеме. "Правильные" питательные вещества низкокалорийные, они способны надолго оставлять ощущение сытости. Это не означает полный отказ от "плохих» углеводов, а лишь только их разумное употребление.

В данном материале нам предстоит полностью разобраться с такой информацией, как:

  • Что же такое углеводы?
  • Какие источники углеводов «правильные» и как их включать в свой рацион?
  • Что такое гликемический индекс?
  • Каким образом происходит расщепление углеводов?
  • Действительно ли они после переработки превращаются в жировую прослойку на теле?

Начинаем с теории

Углеводы (их еще называют сахаридами) представляют собой органические соединения природного происхождения, которые в большинстве своем встречаются в мире растительном. Образуются они в растениях в процессе фотосинтеза и встречаются практически в любой растительной пище. В состав углеводов входит углерод, кислород и водород. В человеческий организм углеводы поступают в основном с пищей (содержатся в крупах, фруктах, овощах, бобовых и прочих продуктах), также вырабатываются из некоторых кислот и жиров.

Углеводы являются не только главным источником энергии человека, но выполняют и ряд других функций:

Конечно, если рассматривать углеводы исключительно с точки зрения наращивания мышечной массы, то они выступают в качестве доступного источника энергии. В целом же, в организме энергетический запас содержится в жировых депо (порядка 80%), в белковых - 18%, а на углеводы приходится только 2%.

Важно : углеводы накапливаются в организме человека в соединении с водой (1г углеводов требует 4г воды). А вот жировым отложениям вода не требуется, поэтому накапливать их проще, а после - использовать в качестве резервного источника энергии.

Все углеводы можно разделить на два вида (см. изображение): простые (моносахариды и дисахариды) и сложные (олигосахариды, полисахариды, клетчатка).

Моносахариды (простые углеводы)

В них содержится одна сахарная группа, например: глюкоза, фруктора, галактоза. А теперь о каждой более подробно.

Глюкоза - является основным «топливом» человеческого организма и поставляет энергию к головному мозгу. Также она принимает участие в процессе образования гликогена, а для нормального функционирования эритроцитов необходимо порядка 40г глюкозы в сутки. Вместе с пищей человек потребляет около 18г, а суточная доза составляет 140г (необходимо для правильной работы центральной нервной системы).

Возникает закономерный вопрос, откуда тогда организм черпает необходимое количество глюкозы для своей работы? Обо всем по порядку. В человеческом организме все продумано до мелочей, а запасы глюкозы хранятся в виде соединений гликогена. И как только тело требует «дозаправки», часть молекул расщепляется и используется.

Уровень глюкозы в крови - величина относительно постоянная и регулируется специальным гормоном (инсулином). Как только человек потребляет много углеводов, а уровень глюкозы резко возрастает, принимает за работу инсулин, который понижает количество до необходимого уровня. И можете не переживать о порции съеденных углеводов, в кровь будет поступать ровно столько, сколько требует организм (за счет работы инсулина).

Богаты глюкозой такие продукты, как:

  • Виноград - 7.8%;
  • Вишня и черешня - 5.5%;
  • Малина - 3.9%;
  • Тыква - 2.6%;
  • Морковь - 2.5%.

Важно : сладость глюкозы достигает отметки в 74 единицы, а сахарозы - 100 единиц.

Фруктоза представляет собой сахар природного происхождения, который содержится в овощах и фруктах. Но важно помнить, что употребление фруктозы в больших количествах не только не приносит пользы, но также наносит вред. Огромные порции фруктозы попадают в кишечник и вызывают повышенную секрецию инсулина. А если сейчас вы не занимаетесь активными физическими нагрузками, то вся глюкоза сохраняется в виде жировых отложений. Главными источниками фруктозы являются такие продукты, как:

  • Виноград и яблоки;
  • Дыни и груши;

Фруктоза намного слаще глюкозы (в 2.5 раза), но несмотря на это, она не разрушает зубы и не вызывает кариес. Галактоза в свободном виде практически нигде не встречается, а чаще всего является компонентом молочного сахара, именуемого лактозой.

Дисахариды (простые углеводы)

В состав дисахаридов всегда входят простые сахара (в количестве 2х молекул) и одна молекула глюкозы (сахароза, мальтоза, лактоза). Давайте рассмотрим более подробно каждую из них.

Сахароза состоит из молекул фруктозы и глюкозы. Чаще всего она встречается в быту в виде обычного сахара, который мы используем во время готовки и просто кладем в чай. Так вот именно этот сахар и откладывается в прослойку подкожного жира, поэтому не стоит увлекаться с потребляемым количеством, даже в чае. Основными источниками сахарозы является сахар и свекла, сливы и варенье, мороженое и мед.

Мальтоза представляет собой соединение 2х молекул глюкозы, которые в большом количестве содержатся в таких продуктах, как: пиво, молод, мед, патока, любые кондитерские изделия. Лактоза же в основном содержится в продуктах молочных, а в кишечнике расщепляется и превращается в галактозу и глюкозу. Больше всего лактозы содержится в молоке, твороге, кефире.

Вот мы и разобрались с простыми углеводами, самое время переходить к сложным.

Сложные углеводы

Все сложные углеводы можно разделить на две категории:

  • Те, что усваиваются (крахмал);
  • Те, что не усваиваются (клетчатка).

Крахмал представляет собой основной источник углеводов, что лежит в основе пирамиды питания. Больше всего его содержится в зерновых культурах, в бобовых и картофеле. Главные источники крахмала - это гречневая, овсяная, перловая крупа, а также чечевица и горох.

Важно : используйте в своем рационе запеченный картофель, в котором содержится большое количество калия и других минералов. Это особенно важно, поскольку во время варки молекулы крахмала разбухают и уменьшают полезную ценность продукта. То есть вначале продукт может содержать 70%, а после варки может и 20% не остаться.

Клетчатка играет очень важную роль в работе человеческого организма. С ее помощью нормализируется работа кишечника и всего желудочно-кишечного тракта в целом. Также она создает необходимую питательную среду для развития важных микроорганизмов в кишечнике. Организм практически не переваривает клетчатку, зато обеспечивает ощущение быстрого насыщения. Овощи, фрукты и хлеб грубого помола (в которых большое содержание клетчатки) используются для профилактики ожирения (поскольку быстро вызывают чувство сытости).

А теперь перейдем к другим процессам, связанным с углеводами.

Как организм накапливает углеводы

Запасы углеводов в человеческом организме расположены в мышцах (находится 2/3 от общего количества), а остальное - в печени. Всего запаса хватает всего на 12-18 часов. И если не пополнить запасы, то организм начинает испытывать нехватку, и синтезирует необходимые ему вещества из белков и промежуточных продуктов обмена. В результате запасы гликогена в печени могут существенно истощиться, что станет причиной отложения жиров в ее клетках.

По ошибке многие худеющие для более «эффективного» результата существенно урезают количество потребляемых углеводов, надеясь, что организм будет расходовать запасы жира. На самом же деле, первыми «в расход» идут белки, и только потом жировые отложения. Важно помнить о том, что большое количество углеводов приведет к быстрому набору массы только в том случае, если они поступают в организм большими порциями (а также они должны быть быстро усваиваемыми).

Метаболизм углеводов

Метаболизм углеводов зависит от того, сколько глюкозы находится в кровеносной системе и делится на три типа процессов:

  • Гликолиз - расщепляется глюкоза, а также другие сахара, после чего вырабатывается необходимое количество энергии;
  • Гликогенез - синтезируется гликоген и глюкоза;
  • Гликонеогенез - в процесс расщепления глицерина, аминокислот и молочной кислоты в печени и почках образуется необходимая глюкоза.

Раним утром (после пробуждения) запасы глюкозы в крови резко падают по простой причине - отсутствие подпитки в виде фруктов, овощей и прочих продуктов, что содержат глюкозу. Организм подпитывается и собственными силами, 75% которых осуществляется в процессе гликолиза, а 25% приходится на гликонеогенез. То есть получается, что утреннее время считается оптимальным для того, чтобы использовать в качестве источника энергии имеющиеся запасы жира. А еще прибавить к этому легкие кардионагрузки, то можно избавиться от нескольких лишних килограммов.

Теперь мы наконец-то переходим к практической части вопроса, а именно: какие углеводы полезны для атлетов, а также в каких оптимальных количествах их нужно потреблять.

Углеводы и бодибилдинг: кто, что, сколько

Пару слов о гликемическом индексе

Если вести речь об углеводах, нельзя не упомянуть такой термин, как «гликемический индекс» - то есть скорость, с которой усваиваются углеводы. Он является показателем того, с какой скоростью тот или иной продукт способен увеличить количество глюкозы в крови. Самый большой гликемический индекс равен 100 и относится к самой глюкозе. Организм же после потребления пищи с большим гликемическим индексом, начинает запасать калории и откладывает жировые отложения под кожей. Так что все продукты с высокими показателями ГИ - верные спутники того, чтобы стремительно набирать лишние килограммы.

Продукты же с низким показателем ГИ - источник углеводов, который длительное время, постоянно и равномерно подпитывает организм и обеспечивает планомерное поступление глюкозы в кровь. С их помощью можно максимально правильно настроить организм на длительное ощущение сытости, а также подготовить тело к активным физическим нагрузкам в зале. Существуют даже специальные таблицы для продуктов питания, в которых указан гликемический индекс (см. изображение).

Потребность организма в углеводах и правильные источники

Вот и наступил момент, когда мы разберемся, сколько же углеводов нужно потреблять в граммах. Логично предположить, что занятия бодибилдингом - весьма затратный в плане энергии процесс. Поэтому если вы хотите, чтобы качество тренировок не страдало, нужно обеспечивать свой организм достаточным количеством «медленных» углеводов (порядка 60-65%).

  • Продолжительности тренировки;
  • Интенсивности нагрузки;
  • Скорости метаболизма в организме.

Важно помнить, что опускаться ниже планки в 100г в сутки не нужно, а также иметь еще в запасе 25-30г, которые приходятся на клетчатку.

Помните и о том, что обычный человек в сутки потребляет порядка 250-300г углеводов. Для тех же, кто занимается в зале с отягощениями, суточная норма увеличивается и доходит до 450-550г. Но их еще нужно правильно употребить, да и в нужное время (в первой половине дня). Почему нужно делать именно так? Схема проста: в первой половине дня (после сна) организм накапливает углеводы для того, чтобы «подпитать» ими свое тело (что нужно для мышечного гликогена). Оставшееся время (после 12 часов) углеводы спокойно откладываются в виде жировой прослойки. Так что придерживайтесь правила: утром больше, вечером - меньше. После тренировок важно придерживаться правил белково-углеводного окна.

Важно : белково-углеводное окно - непродолжительный отрезок времени, в течение которого человеческий организм становится способным усвоить повышенное количество нутриентов (расходуются на восстановление запасов энергии и мышц).

Уже стало понятно, что организму необходимо постоянно получать подпитку в виде «правильных» углеводов. А чтобы разобраться с количественными значениями, рассмотрим приведенную ниже таблицу.

В понятие «правильных» углеводов входят те вещества, что имеют высокую биологическую ценность (количество углеводов/100 гр. продукта) и низкий гликемический индекс. В их число входят такие продукты, как:

  • Печеный или отварной в кожуре картофель;
  • Разные каши (овсяная, перловая, гречневая, пшеничная);
  • Хлебобулочные изделия из муки грубого помола и с отрубями;
  • Макаронные изделия (из твердых сортов пшеницы);
  • Фрукты, у которых низкое содержание фруктозы и глюкозы (грейпфруты, яблоки, помело);
  • Овощи волокнистые и крахмалистые (репа и морковь, тыква и кабачки).

Именно такие продукты должны в обязательном порядке присутствовать в вашем рационе.

Идеальное время, чтобы потреблять углеводы

Самое подходящее время, чтобы употребить дозу углеводов является:

  • Время после утреннего сна;
  • До тренировки;
  • После тренировки;
  • Во время тренировки.

Причем, каждый из периодов важен и среди них нет более или менее подходящего. Также утром, кроме полезных и медленных углеводов можно съесть что-нибудь сладкое (небольшое количество быстрых углеводов).

Перед тем, как отправиться на тренировку (за 2-3 часа), нужно подпитать организм углеводами со средними показателями гликемического индекса. Например, съесть макароны или кукурузную/рисовую кашу. Это обеспечит необходимый запас энергии для мышц и мозга.

Во время занятий в зале можно использовать промежуточное питание, то есть употреблять напитки с содержанием углеводов (каждый 20 минут по 200мл). От этого будет двойная польза:

  • Восполнение запасов жидкости в организме;
  • Пополнение мышечного депо гликогена.

После тренировки лучше всего принять насыщенный белково-углеводный коктейль, а спустя 1-1.5 часа после завершения тренинга плотно поесть. Лучше всего для этого подойдет гречневая или перловая каша или же картофель.

Теперь самое время поговорить о том, какую роль играют углеводы в процессе наращивания мышечной массы.

Помогают ли углеводы наращивать мышцы?

Принято считать, что только белки являются строительным материалом для мышц и лишь их нужно потреблять для того, чтобы наращивать мышечную массу. На самом же деле, это не совсем так. Более того, углеводы не только помогают в наращивании мышц, они могут помочь в борьбе с лишними килограммами. Но все это возможно только в том случае, если их правильно потреблять.

Важно : для того, чтобы в теле появилось 0.5 кг мышц, нужно сжечь 2500 калорий. Естественно, что белки такого количества обеспечить не могут, поэтому на помощь как раз и приходят углеводы. Они предоставляют необходимую энергию организму и защищают белки от разрушений, позволяя им выступать в качестве строительного материала для мышц. Также углеводы способствуют быстрому сжиганию жира. Получается это за счет того, что достаточное количество углеводов способствует расходу жировых клеток, которые постоянно сжигаются в процессе нагрузки.

Нужно помнить и о том, что в зависимости от уровня натренированности атлета, его мышцы могут хранить больший запас гликогена. Чтобы наращивать мышечную массу, нужно принимать по 7г углеводов на каждый килограмм тела. Не забывайте и о том, если вы стали принимать большее количество углеводов, то интенсивность нагрузки нужно также увеличивать.

Чтобы вы уже полностью разобрались со всеми характеристиками нутриентов и поняли, чего и сколько нужно потреблять (в зависимости от возраста, физической активности и пола), внимательно изучите приведенную ниже таблицу.

  • Группа 1 - преимущественно умственная/сидячая работа.
  • Группа 2 - сфера обслуживания/активная сидячая работа.
  • Группа 3 - работа средней тяжести - слесари, станочники.
  • Группа 4 - тяжелая работа - строители, нефтяники, металлурги.
  • Группа 5 - очень тяжелая работа - шахтеры, сталевары, грузчики, спортсмены в соревновательный период.

А теперь итоги

Чтобы эффективность тренировок всегда была на высоте, а у вас было много сил и энергии для этого, важно придерживаться определенных правил:

  • Рацион на 65-70% должен состоять из углеводов, причем они должны быть «правильными» с низким показателем гликемического индекса;
  • Перед тренировкой нужно потреблять продукты со средними показателями ГИ, после занятий - с низким ГИ;
  • Завтрак должен быть максимально плотным, а в первой половине дня нужно съедать большую часть суточной дозы углеводов;
  • Покупая продукты, сверяйтесь с таблицей гликемического индекса и выбирайте те, что имеют средние и низкие показатели ГИ;
  • Если хочется съесть продукты с высокими показателями ГИ (мед, варенье, сахар), лучше это делать утром;
  • Включите в свой рацион больше каш и регулярно их употребляйте;
  • Запомните, углеводы - помощники белков в процессе наращивания мышечной массы, поэтому если ощутимого результата долго нет, то нужно пересматривать свой рацион и количество потребляемых углеводов;
  • Ешьте не сладкие фрукты и клетчатку;
  • Помните о хлебе из муки грубого помола, а также о запеченном в кожуре картофеле;
  • Постоянно пополняйте запас знаний о здоровье и бодибилдинге.

Если придерживаться этих простых правил, то энергии у вас заметно прибавится, а результативность тренировок возрастет.

Вместо заключения

В качестве итога хочется сказать, что подходить к тренировкам нужно осмысленно и со знанием дела. То есть нужно запоминать не только, какие упражнения, как их делать и по сколько подходов. Но также уделять внимание питанию, помнить о белках, жирах, углеводах и воде. Ведь именно совокупность правильных тренировок и качественное питание позволит быстрее достичь намеченной цели - красивое атлетичное тело. Продукты должны быть не просто набором, а средством достижения необходимого результата. Так что думайте не только в зале, но и во время питания.

Понравилось? - Расскажи друзьям!

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц – олигосахариды, а более десяти – полисахариды.

Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях.

Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение – L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН 2 ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы глюкоза , фруктоза , манноза и галактоза – по стереохимической конфигурациям относят к соединениям D-ряда.

Полисахари́ды – общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров моносахаридов . С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.

https :// ru . wikipedia . org / wiki /Углеводы

1.6. Липиды - номенклатура и строение. Полиморфизм липидов.

Липи́ды обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот , сложных – из спирта, высокомолекулярных жирных кислот и других компонентов.

Классификация липидов

Простые липиды – это липиды, включающие в свою структуру углерод (С), водород (H) и кислород (O).

Сложные липиды – это липиды, включающие в свою структуру помимо углерода (С), водорода (H) и кислорода (О) и другие химические элементы. Чаще всего: фосфор (Р), серу (S), азот (N).

https :// ru . wikipedia . org / wiki /Липиды

Литература:

1) Черкасова Л. С., Мережинский М. Ф., Обмен жиров и липидов, Минск, 1961;

2) Маркман А. Л., Химия липидов, в. 12, Таш., 1963 – 70;

3) Тютюнников Б. Н., Химия жиров, М., 1966;

4) Малер Г., Кордес К., Основы биологической химии, пер. с англ., М., 1970.

1.7. Биологические мембраны. Формы агрегации липидов. Понятие о жидко-кристаллическом состоянии. Латеральная диффузия и флип-флоп.

Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндо-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.

Схема строения мембраны: а – трехмерная модель; б – плоскостное изображение;

1 – белки, примыкающие к липидному слою (А), погруженные в него (Б) или пронизывающие его насквозь (В); 2 – слои молекул липидов; 3 – гликопротеины; 4 – гликолипиды; 5 – гидрофильный канал, функционирующий как пора.

Функции биологических мембран следующие:

1) Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

2) Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

3) Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д.).

4) Являются катализаторами (обеспечение примембранных химических процессов).

5) Участвуют в преобразовании энергии.

http :// sbio . info / page . php ? id =15

Латеральная диффузия – это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. При латеральной диффузии рядом рас­положенные молекулы липидов скачком меняются местами, и вследствие таких последовательных перескоков из одного мес­та в другое молекула перемещается вдоль поверхности мемб­раны.

Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флуоресцентных меток – флюоресцирующих молекулярных групп. Флуоресцентные метки делают флюоресцирующими молекулы, дви­жение которых по поверхности клетки можно изучать, например, исследуя под микроскопом скорость расплывания по поверхности клетки флюоресцирующего пятна, созданного такими молекулами.

Флип-флоп – это диффузия молекул мембранных фосфолипидов поперек мембраны.

Скорость перескоков молекул с одной поверхности мембра­ны на другую (флип-флоп) определена методом спиновых ме­ток в опытах на модельных липидных мембранах – липосомах.

Часть фосфолипидных молекул, из которых формировались липосомы, метились присоединенными к ним спиновыми мет­ками. Липосомы подвергались воздействию аскорбиновой кис­лоты, вследствие чего неспаренные электроны на молекулах пропадали: парамагнитные молекулы становились диамагнит­ными, что можно было обнаружить по уменьшению площади под кривой спектра ЭПР.

Таким образом, перескоки молекул с одной поверхности бислоя на другую (флип-флоп) совершаются значительно медлен­нее, чем перескоки при латеральной диффузии. Среднее время, через которое фосфолипидная молекула совершает флип-флоп (Т ~ 1час), в десятки миллиардов раз больше среднего времени, характерного для перескока молекулы из одного места в сосед­нее в плоскости мембраны.

Понятие о жидко-кристаллическом состоянии

Твердое тело может быть как кристаллическим , так и аморфным. В первом случае имеется дальний порядок в расположении частиц на расстояниях, много превышающих межмолекулярные расстояния (кристаллическая решетка). Во втором – нет дальнего порядка в расположении атомов и молекул.

Различие между аморфным телом и жидкостью состоит не в наличии или отсутствии дальнего порядка, а в характере движения частиц. Молекулы жидкости и твердого тела совершают колебательные (иногда вращательные) движения около положения равновесия. Через некоторое среднее время («время оседлой жизни») происходит перескок молекул в другое положение равновесия. Различие заключается в том, что «время оседлой жизни» в жидкости намного меньше, чем в твердом состоянии.

Липидные двухслойные мембраны при физиологических условиях – жидкие, «время оседлой жизни» фосфолипидной молекулы в мембране составляет 10 −7 – 10 −8 с.

Молекулы в мембране расположены не беспорядочно, в их расположении наблюдается дальний порядок. Фосфолипидные молекулы находятся в двойном слое, а их гидрофобные хвосты примерно параллельны друг другу. Есть порядок и в ориентации полярных гидрофильных голов.

Физиологическое состояние, при котором есть дальний порядок во взаимной ориентации и расположении молекул, но агрегатное состояние жидкое, называется жидкокристаллическим состоянием. Жидкие кристаллы могут образовываться не во всех веществах, а в веществах из «длинных молекул» (поперечные размеры которых меньше продольных). Могут существовать различные жидкокристаллические структуры: нематическая (нитевидная), когда длинные молекулы ориентированы параллельно друг другу; смектическая – молекулы параллельны друг другу и располагаются слоями; холестическая – молекулы располагаются параллельно друг другу в одной плоскости, но в разных плоскостях ориентации молекул разные.

http :// www . studfiles . ru / preview /1350293/

Литература: Н.А. Лемеза, Л.В.Камлюк, Н.Д. Лисов. «Пособие по биологии для поступающих в ВУЗы».

1.8. Нуклеиновые кислоты. Гетероциклические основания, нуклеозиды, нуклеотиды, номенклатура. Пространственная структура нуклеиновых кислот - ДНК, РНК (тРНК, рРНК, мРНК). Рибосомы и ядро клетки. Методы определения первичной и вторичной структуры нуклеиновых кислот (секвенирование, гибридизация).

Нуклеиновые кислоты – фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации.

Нуклеиновые кислоты представляют собой биополимеры. Их макромолекулы состоят из неоднократно повторяющихся звеньев, которые представлены нуклеотидами. И их логично назвали полинуклеотидами. Одной из главных характеристик нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида (структурного звена нуклеиновых кислот) входят три составные части:

Азотистое основание. Может быть пиримидиновое и пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов.

Остаток фосфорной кислоты.

Моносахарид – рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

Нуклеотид по своей сути – это фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

http :// sbio . info / page . php ? id =11

Азо́тистые основа́ния гетероциклические органические соединения, производные пиримидина и пурина , входящие в состав нуклеиновых кислот . Для сокращенного обозначения пользуются большими латинскими буквами. К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C), которые входят в состав как ДНК, так и РНК. Тимин (T) входит в состав только ДНК, а урацил (U) встречается только в РНК.

Углеводами называют вещества с общей формулой C n (H 2 O) m , где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

  • моносахариды или простые сахара;
  • олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).
  • полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C 3), тетрозы (C 4), пентозы (C 5), гексозы (C 6), гептозы (C 7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются прежде всего альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками β-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами β-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH 3 . Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки.

Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Функции углеводов

Энергетическая . Глюкоза является основным источником энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания (1 г углеводов при окислении высвобождает 17,6 кДж энергии).

Структурная . Целлюлоза входит в состав клеточных оболочек растений; хитин является структурным компонентом покровов членистоногих и клеточных стенок грибов.

Некоторые олигосахариды входят в состав цитоплазматической мембраны клетки (в виде гликопротеидов и гликолипидов) и образуют гликокаликс.

Метаболическая . Пентозы участвуют в синтезе нуклеотидов (рибоза входит в состав нуклеотидов РНК, дезоксирибоза - в состав нуклеотидов ДНК), некоторых коферментов (например, НАД, НАДФ, кофермента А, ФАД), АМФ; принимают участие в фотосинтезе (рибулозодифосфат является акцептором СO 2 в темновой фазе фотосинтеза).

Пентозы и гексозы участвуют в синтезе полисахаридов; в этой роли особенно важна глюкоза.