Квадратные уравнения задания для тренировки. Квадратное уравнение с параметром

Квадратные уравнения. Дискриминант. Решение, примеры.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Виды квадратных уравнений

Что такое квадратное уравнение? Как оно выглядит? В термине квадратное уравнение ключевым словом является "квадратное". Оно означает, что в уравнении обязательно должен присутствовать икс в квадрате. Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и просто число (свободный член). И не должно быть иксов в степени, больше двойки.

Говоря математическим языком, квадратное уравнение - это уравнение вида:

Здесь a, b и с – какие-то числа. b и c – совсем любые, а а – любое, кроме нуля. Например:

Здесь а =1; b = 3; c = -4

Здесь а =2; b = -0,5; c = 2,2

Здесь а =-3; b = 6; c = -18

Ну, вы поняли…

В этих квадратных уравнениях слева присутствует полный набор членов. Икс в квадрате с коэффициентом а, икс в первой степени с коэффициентом b и свободный член с.

Такие квадратные уравнения называются полными.

А если b = 0, что у нас получится? У нас пропадёт икс в первой степени. От умножения на ноль такое случается.) Получается, например:

5х 2 -25 = 0,

2х 2 -6х=0,

-х 2 +4х=0

И т.п. А если уж оба коэффицента, b и c равны нулю, то всё ещё проще:

2х 2 =0,

-0,3х 2 =0

Такие уравнения, где чего-то не хватает, называются неполными квадратными уравнениями. Что вполне логично.) Прошу заметить, что икс в квадрате присутствует во всех уравнениях.

Кстати, почему а не может быть равно нулю? А вы подставьте вместо а нолик.) У нас исчезнет икс в квадрате! Уравнение станет линейным. И решается уже совсем иначе...

Вот и все главные виды квадратных уравнений. Полные и неполные.

Решение квадратных уравнений.

Решение полных квадратных уравнений.

Квадратные уравнения решаются просто. По формулам и чётким несложным правилам. На первом этапе надо заданное уравнение привести к стандартному виду, т.е. к виду:

Если уравнение вам дано уже в таком виде - первый этап делать не нужно.) Главное - правильно определить все коэффициенты, а , b и c .

Формула для нахождения корней квадратного уравнения выглядит так:

Выражение под знаком корня называется дискриминант . Но о нём - ниже. Как видим, для нахождения икса, мы используем только a, b и с . Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в эту формулу и считаем. Подставляем со своими знаками! Например, в уравнении:

а =1; b = 3; c = -4. Вот и записываем:

Пример практически решён:

Это ответ.

Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…

Самые распространённые ошибки – путаница со знаками значений a, b и с . Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте !

Предположим, надо вот такой примерчик решить:

Здесь a = -6; b = -5; c = -1

Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится . Вот и пишем подробно, со всеми скобочками и знаками:

Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

Но, частенько, квадратные уравнения выглядят слегка иначе. Например, вот так:

Узнали?) Да! Это неполные квадратные уравнения .

Решение неполных квадратных уравнений.

Их тоже можно решать по общей формуле. Надо только правильно сообразить, чему здесь равняются a, b и с .

Сообразили? В первом примере a = 1; b = -4; а c ? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0 ! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с , а b !

Но неполные квадратные уравнения можно решать гораздо проще. Безо всяких формул. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
Не получается? То-то…
Следовательно, можно уверенно записать: х 1 = 0 , х 2 = 4 .

Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем по общей формуле. Замечу, кстати, какой икс будет первым, а какой вторым - абсолютно безразлично. Удобно записывать по порядочку, х 1 - то, что меньше, а х 2 - то, что больше.

Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

Остаётся корень извлечь из 9, и всё. Получится:

Тоже два корня. х 1 = -3 , х 2 = 3 .

Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

Дискриминант. Формула дискриминанта.

Волшебное слово дискриминант ! Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении.) Напоминаю самую общую формулу для решения любых квадратных уравнений:

Выражение под знаком корня называется дискриминантом. Обычно дискриминант обозначается буквой D . Формула дискриминанта:

D = b 2 - 4ac

И чем же примечательно это выражение? Почему оно заслужило специальное название? В чём смысл дискриминанта? Ведь -b, или 2a в этой формуле специально никак не называют... Буквы и буквы.

Дело вот в чём. При решении квадратного уравнения по этой формуле, возможны всего три случая.

1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

2. Дискриминант равен нулю. Тогда у вас получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых . Но, в упрощённом варианте, принято говорить об одном решении.

3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

Честно говоря, при простом решении квадратных уравнений, понятие дискриминанта не особо-то и требуется. Подставляем в формулу значения коэффициентов, да считаем. Там всё само собой получается, и два корня, и один, и ни одного. Однако, при решении более сложных заданий, без знания смысла и формулы дискриминанта не обойтись. Особенно - в уравнениях с параметрами. Такие уравнения - высший пилотаж на ГИА и ЕГЭ!)

Итак, как решать квадратные уравнения через дискриминант вы вспомнили. Или научились, что тоже неплохо.) Умеете правильно определять a, b и с . Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?

А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…

Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?
Допустим, после всяких преобразований вы получили вот такое уравнение:

Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1 , проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком . Если не получилось – значит уже где-то накосячили. Ищите ошибку.

Если получилось - надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b , который перед иксом, равен -1. Значит, всё верно!
Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

Приём третий . Если в вашем уравнении есть дробные коэффициенты, - избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в уроке "Как решать уравнения? Тождественные преобразования". При работе с дробями ошибки, почему-то так и лезут…

Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

Вот и всё! Решать – одно удовольствие!

Итак, подытожим тему.

Практические советы:

1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

Теперь можно и порешать.)

Решить уравнения:

8х 2 - 6x + 1 = 0

х 2 + 3x + 8 = 0

х 2 - 4x + 4 = 0

(х+1) 2 + x + 1 = (x+1)(x+2)

Ответы (в беспорядке):

х 1 = 0
х 2 = 5

х 1,2 = 2

х 1 = 2
х 2 = -0,5

х - любое число

х 1 = -3
х 2 = 3

решений нет

х 1 = 0,25
х 2 = 0,5

Всё сходится? Отлично! Квадратные уравнения - не ваша головная боль. Первые три получились, а остальные - нет? Тогда проблема не в квадратных уравнениях. Проблема в тождественных преобразованиях уравнений. Прогуляйтесь по ссылке, это полезно.

Не совсем получается? Или совсем не получается? Тогда вам в помощь Раздел 555. Там все эти примеры разобраны по косточкам. Показаны главные ошибки в решении. Рассказывается, разумеется, и о применении тождественных преобразований в решении различных уравнений. Очень помогает!

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

КВАДРАТНЫЙ ТРЕХЧЛЕН III

§ 50 Квадратные уравнения

Уравнения вида

ax 2 + bx + c = 0, (1)

где х - неизвестная величина, а, b, с - данные числа (а =/= 0), называются квадратными.

Выделяя в левой части квадратного уравнения полный квадрат (см. формулу (1) § 49), получаем:

Очевидно, что уравнение (2) эквивалентно уравнению (1) (см. § 2). Уравнение (2) может иметь действительные корни только тогда, когда или b 2 - 4ас > 0 (поскольку 4а 2 > 0).

Ввиду той особой роли, которую играет выражение D = b 2 - 4ас при решении уравнения (1), этому выражению дано специальное название - дискриминант квадратного уравнения ax 2 + bx + c = 0 (или дискриминант квадратного трехчлена ax 2 + bx + c ). Итак, если дискриминант квадратного уравнения отрицателен, то уравнение не имеет действительных корней .

Если же D =b 2 - 4ас > 0, то из (2) получаем:

Если дискриминант квадратного уравнения неотрицателен, то это уравнение имеет действительные корни. Они записываются в виде дроби, в числителе которой стоит коэффициент уравнения при х , взятый с противоположным знаком, плюс-минус корень квадратный из дискриминанта, а в знаменателе - удвоенный коэффициент при х 2 .

Если дискриминант квадратного уравнения положителен, то уравнение имеет два различных действительных корня:

Если дискриминант квадратного уравнения равен нулю, то уравнение имеет один действительный корень:

х = - b / 2 a

(В этом случае иногда говорят, что уравнение имеет два равных корня: x 1 = x 2 = - b / 2 a )

Примеры.

1) Для уравнения 2х 2 - х - 3 = 0 дискриминант D = (- 1) 2 - 4 2 (- 3) = 25 > 0. Уравнение имеет два различных корня:

2) Для уравнения 3х 2 - 6х + 3 = 0 D = (- 6) 2 - 4 3 3 = 0. Это уравнение имеет один действительный корень

3) Для уравнения 5х 2 + 4х + 7 = 0 D = 4 2 - 4 5 7 = - 124 < 0. Это уравнение не имеет действительных корней.

4) Выяснить, при каких значениях а квадратное уравнение х 2 + ах + 1 = 0:

а) имеет один корень;

б) имеет два разных корня;

в) вообще не имеет корней,

Дискриминант данного квадратного уравнения равен

D = а 2 - 4.

Если | а | = 2, тo D = 0; в этом случае уравнение имеет один корень.

Если | а | > 2, то D > 0; в этом случае уравнение имеет два разных корня.

Наконец, если | а | < 2, то данное уравнение не имеет корней.

Упражнения

Решить уравнения (№ 364-369):

364. 6х 2 - х - 1 = 0. 367. - х 2 + 8х - 16 = 0.

365. 3х 2 - 5х + 1 = 0. 368. 2х 2 - 12х + 12 == 0.

366. х 2 - х + 1 = 0. 369. 2х - х 2 - 6 = 0.

370. Можно ли число 15 представить в виде суммы двух чисел так, чтобы их произведение было равно 70?

371. При каких значениях а уравнение

х 2 - 2ах + а (1 + а ) = 0

а) имеет два различных корня;

б) имеет только один корень;

в) не имеет корней?

372. При каких значениях а уравнение

(1 - а ) х 2 - 4ах + 4 (1 - а ) = 0

а) не имеет корней;

б) имеет не более одного корня;

в) имеет не менее одного корня?

373. При каком значении а уравнение х 2 + ах + 1 = 0 имеет единственный корень? Чему он равен?

374. В каких пределах заключено число а , если известно, что уравнения

х 2 + х + а = 0 и х 2 + х - а = 0

375. Что вы можете сказать о величине а , если уравнения

4а (х 2 + х ) = а - 2,5 и х (х - 1) = 1,25 - а

имеют одинаковое число корней?

376. Поезд был задержан на станции на t мин. Чтобы наверстать потерянное время, машинист увеличил скорость на а км/ч и на следующем перегоне в b км ликвидировал опоздание. С какой скоростью поезд шел до задержки на станции?

377. Два подъемных крана, работая вместе, разгрузили баржу за t ч. За какое время может разгрузить баржу каждый кран в отдельности, если один из них тратит на это на а ч меньше другого?

378. Один из заводов выполняет некоторый заказ на 4 дня быстрее, чем другой. За какое время может выполнить заказ каждый завод, работая отдельно, если известно, что при совместной работе за 24 дня они выполнили заказ в 5 раз больший?

Решить уравнения (№ 379, 380).

(Обратите внимание на та, что в этих уравнениях неизвестное содержится в знаменателях дробей. Полученные корни необходимо будет проверить!)

381*. При каких значениях а уравнения

х 2 + ах + 1 = 0 и х 2 + х + а = 0

имеют хотя бы один общий корень?

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Задачи на квадратное уравнение изучаются и в школьной программе и в ВУЗах. Под ними понимают уравнения вида a*x^2 + b*x + c = 0 ,где x - переменная, a,b,c – константы; a<>0 . Задача состоит в отыскании корней уравнения.

Геометрический смысл квадратного уравнения

Графиком функции, которая представлена квадратным уравнением является парабола. Решения (корни) квадратного уравнения - это точки пересечения параболы с осью абсцисс (х) . Из этого следует, что есть три возможных случая:
1) парабола не имеет точек пересечения с осью абсцисс. Это означает, что она находится в верхней плоскости с ветками вверх или нижней с ветками вниз. В таких случаях квадратное уравнение не имеет действительных корней (имеет два комплексных корня).

2) парабола имеет одну точку пересечения с осью Ох . Такую точку называют вершиной параболы, а квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня).

3) Последний случай на практике интересный больше - существует две точки пересечения параболы с осью абсцисс. Это означает, что существует два действительных корня уравнения.

На основе анализа коэффициентов при степенях переменных можно сделать интересные выводы о размещении параболы.

1) Если коэффициент а больше нуля то парабола направлена ветками вверх, если отрицательный - ветки параболы направлены вниз.

2) Если коэффициент b больше нуля то вершина параболы лежит в левой полуплоскости, если принимает отрицательное значение - то в правой.

Вывод формулы для решения квадратного уравнения

Перенесем константу с квадратного уравнения

за знак равенства, получим выражение

Умножим обе части на 4а

Чтобы получить слева полный квадрат добавим в обеих частях b^2 и осуществим преобразование

Отсюда находим

Формула дискриминанта и корней квадратного уравнения

Дискриминантом называют значение подкоренного выраженияЕсли он положительный то уравнение имеет два действительных корня, вычисляемые по формулеПри нулевом дискриминант квадратное уравнение имеет одно решение (два совпадающих корня), которые легко получить из приведенной выше формулы при D=0 При отрицательном дискриминант уравнения действительных корней нет. Однако исують решения квадратного уравнения в комплексной плоскости, и их значение вычисляют по формуле

Теорема Виета

Рассмотрим два корня квадратного уравнения и построим на их основе квадратное уравнение.С записи легко следует сама теорема Виета: если имеем квадратное уравнение видато сумма его корней равна коэффициенту p , взятому с противоположным знаком, а произведение корней уравнения равен свободному слагаемому q . Формульная запись вышесказанного будет иметь видЕсли в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применять теорему Виета.

Расписание квадратного уравнения на множители

Пусть поставлена задача: разложить квадратное уравнение на множители. Для его выполнения сначала решаем уравнение (находим корни). Далее, найденные корни подставляем в формулу разложения квадратного уравненияНа этом задача будет разрешен.

Задачи на квадратное уравнение

Задача 1. Найти корни квадратного уравнения

x^2-26x+120=0 .

Решение: Запишем коэффициенты и подставим в формулу дискриминанта

Корень из данного значения равен 14 , его легко найти с калькулятором, или запомнить при частом использовании, однако для удобства, в конце статьи я Вам дам список квадратов чисел, которые часто могут встречаться при подобных задачах.
Найденное значение подставляем в формулу корней

и получаем

Задача 2. Решить уравнение

2x 2 +x-3=0.

Решение: Имеем полное квадратное уравнение, выписываем коэффициенты и находим дискриминант


По известным формулам находим корни квадратного уравнения

Задача 3. Решить уравнение

9x 2 -12x+4=0.

Решение: Имеем полное квадратное уравнение. Определяем дискриминант

Получили случай когда корни совпадают. Находим значения корней по формуле

Задача 4. Решить уравнение

x^2+x-6=0 .

Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравнения

С второго условия получаем, что произведение должно быть равно -6 . Это означает, что один из корней отрицателен. Имеем следующую возможную пару решений{-3;2}, {3;-2} . С учетом первого условия вторую пару решений отвергаем.
Корни уравнения равны

Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см 2 .

Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:
х(18-х)=77;
или
х 2 -18х+77=0.
Найдем дискриминант уравнения

Вычисляем корни уравнения

Если х=11 , то 18-х=7 , наоборот тоже справедливо (если х=7 , то 21-х=9 ).

Задача 6. Разложить квадратное 10x 2 -11x+3=0 уравнения на множители.

Решение: Вычислим корни уравнения, для этого находим дискриминант

Подставляем найденное значение в формулу корней и вычисляем

Применяем формулу разложения квадратного уравнения по корнями

Раскрыв скобки получим тождество.

Квадратное уравнение с параметром

Пример 1. При каких значениях параметра а , уравнение (а-3)х 2 +(3-а)х-1/4=0 имеет один корень?

Решение: Прямой подстановкой значения а=3 видим, что оно не имеет решения. Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2 . Выпишем дискриминант

упростим его и приравняем к нулю

Получили квадратное уравнение относительно параметра а , решение которого легко получить по теореме Виета. Сумма корней равна 7 , а их произведение 12 . Простым перебором устанавливаем, что числа 3,4 будут корнями уравнения. Поскольку решение а=3 мы уже отвергли в начале вычислений, то единственным правильным будет - а=4 . Таким образом, при а=4 уравнение имеет один корень.

Пример 2. При каких значениях параметра а , уравнение а(а+3)х^2+(2а+6)х-3а-9=0 имеет более одного корня?

Решение: Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3 . При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0 .
Вычислим дискриминант

и найдем значения а при котором оно положительно

С первого условия получим а>3 . Для второго находим дискриминант и корни уравнения


Определим промежутки где функция принимает положительные значения. Подстановкой точки а=0 получим 3>0 . Итак, за пределами промежутка (-3;1/3) функция отрицательная. Не стоит забывать о точке а=0 , которую следует исключить, поскольку в ней исходное уравнение имеет один корень.
В результате получим два интервала, которые удовлетворяют условию задачи

Подобных задач на практике будет много, постарайтесь разобраться с заданиями самостоятельно и не забывайте учитывать условия, которые взаимоисключают друг друга. Хорошо изучите формулы для решения квадратных уравнений, они довольна часто нужны при вычислениях в разных задачах и науках.

Урок был запланирован, как подведение итогов достижения ожидаемых результатов, которые предполагалось получить в процессе совместной деятельности учащихся при их обучении, воспитании и развитии. В ходе урока ставились следующие цели.

Образовательные:

  • систематизация и обобщение знаний учащихся по теме;
  • прививание навыков устного решения квадратных уравнений;
  • расширение круга знаний образовательного уровня обучения учащихся.

Развивающая:

Воспитательные:

  1. воспитание трудолюбия, взаимопомощи, математической культуры учеников;
  2. повышение интереса учащихся к истории математики;
  3. повышение уровня мотивации обучения и, как следствие, уровня их качества знаний;
  4. становление и укрепление нравственного облика через русские народные пословицы и поговорки;
  5. активизация связей родителей со школой.

Чтобы придать показательную значимость темы, на урок были приглашены учителя-математики школы, учащиеся других восьмых классов, родители.

На этом уроке ученики проверяют и показывают свои умения и навыки по этой теме, делают для себя определенные выводы. Это урок повторения, обобщения и закрепления всего материала темы через индивидуальные задания каждому ученику, который стремиться убедить окружающих, и, прежде всего себя, в том, что он может решать квадратные уравнения (КУ) быстро, правильно и красиво.

На уроке создается атмосфера комфортности, учащиеся раскрепощены. Работа проходит в группах (5-6 человек) разного уровня обучения, в духе “математического состязания”. В каждой группе есть консультант, который ведет учет активности каждого ученика, организует ребят к деятельности. Таким образом, развивается чувство взаимопомощи, сотрудничества, создается коллектив. Ученик в группе утверждается как личность.

Контроль усвоенных знаний основан на самоконтроле и осуществляется через индивидуальные оценочные листы путём разноуровневых заданий, дифференцированных в соответствии с посильностью и доступностью индивидуальных возможностей учеников. Выполняя практическую работу, ребята сами распределяют между собой задания, выбирая их “по вкусу”. Таким образом, на уроке, создаются условия для работы на различных уровнях сложности с учетом индивидуальных возможностей. Такая организация учебной деятельности на уроке – лучший способ организовать внимание школьников, у которых нет ни времени, ни желания, ни возможности отвлекаться. Каждый из них – участник учебного процесса.

На протяжении всего урока наблюдается высокая активность ребят. Учитель имеет возможность опросить всех. Плохих оценок на уроке нет. Это урок сотрудничества: ученик – учитель, ученик – ученик.

Исходя из типа урока, целей, содержания учебного материала, отобраны следующие методы обучения :

  • словесный (урок проходит в свободном словесном общении);
  • наглядный (используется: красочный учебно-методический и дидактический материал; презентация, выполненная в Power Point);
  • практический (закрепление происходит в ходе выполнения практических заданий);
  • программированный (используется учебный материал с выбором ответа);
  • исследовательский и частично поисковый (организация самостоятельной работы учащихся выполняется по ходу проблемных и познавательных заданий, выдвигается коллективная гипотеза).

Считаю, что выбранные методы оптимальны для данного урока и позволяют решать задачи личностно-ориентированного подхода в обучении.

В соответствии с содержанием урока и особенностям класса выбраны следующие формы обучения :

  • общеклассная (на определенных этапах урока ведется работа со всем классом, что необходимо для закрепления материала обязательного уровня всеми учениками класса);
  • групповая (практические задания рассчитаны на группу ребят);
  • индивидуальная (учащиеся работают по своему желанию и своим возможностям).

Для того, чтобы ребята восприняли урок как логически законченный, целостный, ограниченный по времени отрезок учебно-воспитательного процесса, он начинается с постановки обоснования задач и заканчивается подведением итогов и постановкой задач к выполнению следующей творческой домашней работы исследовательского характера.

Для успешности урока используются следующие технические средства и наглядность:

  • компьютер и мультимедийный проектор;
  • опорные таблицы;
  • различный учебно-методический и дидактический материал;
  • русские народные пословицы и поговорки, которые украшают урок, характеризуя определенную деятельность учащихся на данном этапе урока;
  • листы учета индивидуальных знаний (для самоконтроля и оценки знаний ребят общим мнением группы).

Ход урока

Испокон века
Книга растит человека

I. Организационный момент

Урок – это книга, которую можно с интересом читать, перелистывая страницу за страницей, обогащаясь знаниями, “расти” умом.

Сегодня мы с вами ещё раз повторим и перескажем прочитанную и изученную нами главу “Квадратные уравнения” – очень важную для изучения курса математики средней школы. Покажем не только знания, но и свои умения, навыки по этой теме.

Предлагаю, по ходу урока, собрать всю приобретённую по этой теме информацию в наш “”.

II. Актуализация опорных знаний

§ 1. “Не тот хорош, кто лицом пригож, тот хорош, кто для дела гож ”.

Кто из ребят для дела гож, подтвердит опрос учащихся по теме “Квадратные уравнения” (Приложение 1) . Здесь проверяется обязательный уровень обученности учащихся. Открывается опорный конспект (Приложение 2) и общие формулы корней квадратных уравнений (Приложение 3 , Слайд 1).

III. Способы решения квадратных уравнений

§ 2. “Не работа дорога – а умение” . Здесь ребята показывают знания умелого нахождения корней квадратного уравнения.

Мы с вами выяснили, как решаются неполные квадратные уравнения и определили общую формулу корней квадратных уравнений. Эти способы можно назвать традиционными. Существуют ли другие методы решения квадратных уравнений? Чем хороши знания и умения этих способов решения? Они позволяют быстро, рационально и правильно решать квадратные уравнения, облегчают прохождения многих тем курса математики. Назовите эти способы.

По формуле корней квадратного уравнения, в котором b четное число (через D 1 ) (Приложение 3 , Слайд 2).

Выделением квадрата двучлена.

Способ подбора корней (по обратной теореме Виета) (Приложение 3 , Слайд 4).

По теореме о сумме коэффициентов (Приложение 3 , Слайд 5).

1). 5x 2 - 11x + 2 = 0; 6). 4 - x 2 = 0;
2). 35x 2 + 2x - 1 = 0; 7). x 2 - 9x + 14 = 0;
3). 9y 2 + 30y + 25 = 0; 8). 2x 2 - 11x + 9 = 0;
4). 3x 2 - 15 = 0; 9). -3x 2 + 7x + 10 = 0.
5). 0,5x 2 - 3,5x = 0;
  • Предлагается в группах составить проект (программу, алгоритм) решения квадратных уравнений. Зачитываются проекты каждой группы, и утверждается единый проект решения квадратных уравнений умелым способом:
  1. Упростить уравнение;
  2. Проанализировать и определить его вид;
  3. Выбрать удобный способ его решения;
  4. Найти корни;
  5. Выполнить проверку (как можно это сделать?) – необязательный пункт, так как ОДЗ квадратных уравнений – любые числа.

IV. Решение квадратных уравнений

§ 3. “В одиночку не обойдёшь и кочку” – а вместе всё у нас получится.

Ученики в группах совместно распределяют между собой уравнения.

1). 35x 2 + 2x - 1 = 0; 5). 4 - x 2 = 0;
2). 9y 2 + 30y + 25 = 0; 6). x 2 - 9x + 14 = 0;
3). 3x 2 - 15 = 0; 7). 2x 2 - 11x + 9 = 0;
4). 0,5x 2 - 3,5x = 0; 8). -3x 2 + 7x + 10 = 0.

Они самостоятельно организуют свой труд дифференцировано. Оценивая собственные силы, выбирают для себя тот уровень задания, который соответствует их потребностям и возможностям в данный момент. Решают их. Выбирают правильный ответ, т.е. нужную букву, заполняют таблицу и объявляют найденное слово.

1 2 3 4 5 6 7 8

Ответ: БХАСКАРЫ .

V. Применение квадратных уравнений при решении задач

Мы научились решать квадратные уравнения. А зачем это нужно? С помощью квадратных уравнений решаются задачи из различных сфер деятельности: в геометрии, в физике, на шахматных турнирах, на полях и даже в кинотеатрах. Задачи на квадратные уравнения впервые встречается в работах индийских учёных в 499 году. В Древней Индии были распространены публичные соревнования в решении трудных задач. Задачи часто облекались в стихотворную форму. Например:

§ 4. Задача Бхаскары (знаменитый индийский математик XII века):

Обезьянок резвых стая,
Всласть поевши, развлекалась.
Их в квадрате часть восьмая
На полянке забавлялась.
А двенадцать по лианам
Стали прыгать, повисая.
Сколько ж было обезьянок,
Ты скажи мне, в этой стае?

Решение . x – число обезьян, тогда

(х/8) 2 + 12 = х, х 2 /64 - х + 12 = 0, х 2 - 64х + 768 = 0.

D 1 = 1024 - 768 = 256, х 1 = 16, х 2 = 48.

Ответ : 16 или 48.

VI. Знаки корней

Если уравнение имеет корни, как можно, не решая его, определить их знаки?

Ответ: по состоянию коэффициентов, при условии а > 0 (Приложение 3, Слайд 6).

Ученикам предлагается проанализировать уравнения

1) 5x 2 - 11x + 2 = 0; 3) 9y 2 + 30y + 25 = 0;
2) 35x 2 + 2x - 1 = 0; 4) -3x 2 + 7x + 10 = 0.

и определить знаки корней (представитель от каждой группы защищает коллективный анализ своего решения у доски).

Ответы :

  1. а > 0, с > 0, следовательно, (х 1 и х 2) – одинаковых знаков и оба положительны (b < 0);
  2. а > 0, с < 0, следовательно, (х 1 и х 2) – разных знаков, больший по модулю – отрицательный (b > 0);
  3. а > 0, с > 0, следовательно, (х 1 и х 2) – одинаковых знаков и оба отрицательны (b > 0);
  4. а > 0 , с < 0, следовательно, (х 1 и х 2) – разных знаков, больший по модулю – положительны (b < 0);

VII. Открытия продолжаются

§ 6. “Век живи – век учись”

Практически все страницы главы “Квадратные уравнения” нашей книги перелистаны. Но процесс познаний бесконечен, как бесконечны открытия, совершаемые человечеством. Итак, открытия продолжаются.

Решите уравнения (Приложение 3 , Слайд 7):

  1. х 2 - 5х + 6 = 0 (Ответ : 2; 3)
  2. 6у 2 - 5у + 1 = 0 (Ответ : 1/3; 1/2)

Сравните в этих уравнениях коэффициенты, свободные члены и корни между собой. Какая наблюдается закономерность между ними? Какую гипотезу можно выдвинуть для таких уравнений? (Приложение 3 , Слайд 8).

Ученикам предлагается, в качестве творческой домашней работы, составить несколько пар уравнений такого вида, исследовать их и доказать выдвинутое предположение в общем виде. (Необходимо напомнить свойство произведения взаимно обратных чисел? произведение взаимно обратных чисел равно 1 и использовать его при доказательстве.)

Эпилог: “Добрый конец всему делу венец”.

Учащиеся в группах совместно оценивают работу каждого ученика и выставляют ему предварительную оценку. Листы учёта знаний и рабочие тетради, в которых выполнялась индивидуальная работа, сдаются учителю на проверку. На основании этого, учитель выставляет итоговую оценку каждому ученику.

Лист учёта знаний учащихся

Ф.И. Опрос по теме Способы решения Решение уравнений Решение задач Знаки корней Гипотеза Коллективная оценка уч-ся Итоговая оценка учителя
1
2
3
4
5

Подведя итоги урока, ученики приходят к выводу: “Чем больше познаём, тем больше понимаем, что знаем мало” (Приложение 3 , Слайд 9).

IХ. Домашнее задание

Индивидуальная творческая работа исследовательского характера по доказательству выдвинутой гипотезы на уроке (№ 647 ).

Групповая работа по составлению проекта “Энциклопедический словарь юного математика ” по теме “Квадратные уравнения и способы их решения”.

Список используемой литературы к уроку

  1. Глейзер Г.И. История математики в школе 7-8 классы. Пособие для учителей.- М.: Просвещение, 1982.
  2. Киселёв А.П. Алгебра. Теория квадратных уравнений. Учебно-методическая газета, № 42, 2001.
  3. Круглов Ю.Г. Русские народные пословицы и поговорки. - М.: Просвещение, 1990.
  4. Макарычев Ю.Н., Миндюк Н.Г. Алгебра 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2000.
  5. Макарычев Ю.Н., Миндюк Н.Г. Алгебра в 6-8 классах. Пособие для учителя. - М.: Просвещение, 1984.