Следствия из преобразований Лоренца. Частицы с нулевой массой

Создателями СТО являются: Лоренц, Пуанкаре, Эйнштейн. Представления СТО справедливы только для процессов, происходящих в инерциальных системах отсчета.

Принципу относительности Эйнштейна предшествовал принцип относительности Галилея, сформулированный только для механических процессов (т.е. только для классической механики – механики Ньютона).

Принцип относительности Галилея представим в двух эквивалентных формах:

Внутри равномерно движущейся лаборатории (системы отсчета) все механические процессы протекают так же, как и внутри покоящейся

Равномерное движение лаборатории (системы отсчета, связанной с телом отсчета – лабораторией) невозможно обнаружить никакими механическими опытами, проводимыми внутри нее

Поясним это принцип на следующем примере: если пассажир (наблюдатель) электрички (движущейся равномерно) уронил некий предмет (например, часы), то для него они упадут вертикально вниз, а для человека (наблюдателя), стоящего на земле, предмет будет падать по параболе, поскольку электричка движется, в то время как предмет падает. У каждого из наблюдателей своя система отсчета. Но, хотя описания событий, при переходе из одной системы отсчета в другую, меняются, есть универсальные вещи, остающиеся неизменными. Если вместо описания падения предмета задаться вопросом о природе закона, вызывающим его падение, то ответ на него будет один и тот же и для наблюдателя в неподвижной системе координат, и для наблюдателя в движущейся системе координат. Иными словами, в то время как описание событий зависит от наблюдателя, то законы механики (в дальнейшем Пуанкаре и Эйнштейн обобщили это на все физические законы) от него не зависят, т.е. являются инвариантными.

Принцип относительности (как в классической механике, так и в СТО) тесно связан с привилегированными системами отсчета, так называемыми инерциальными системами отсчета.

Инерциальными называются системы отсчета, относительно которых материальная точка (тело) без внешних воздействий (или если внешние воздействия компенсируются):

Покоится

Движется равномерно и прямолинейно

Всякая система отсчета, покоящаяся или движущаяся равномерно и прямолинейно относительно инерциальной системы отсчета, также является инерциальной (т.е. все инерциальные системы отсчета равноправны)

Исходные принципы классической механики базируются на формулах преобразования координат и времени так называемым преобразованием Галилея . Пользуясь этими преобразованиями, можно переводить рассмотрение движения какого-либо тела (частицы) из одной инерциальной системы отсчета в другую как, например, рассмотренный ранее пример с падением предмета в электричке.

Все законы классической механики инвариантны относительно перехода из одной инерциальной системы отсчета в другую, проводимого с помощью преобразований Галилея. Преобразования Галилея базируются на одинаковости (инвариантности) времени в различных инерциальных системах отсчета и классическом законе сложения скоростей.

Из преобразований Галилея (т.е. из классической механики) следует, что при переходе от одной системы отсчета к другой, неизменными (инвариантными) остаются:

- время

- размеры тела

- масса тела

Перейдем к специальной теории относительности. Основу СТО составляют два постулата (принципа) Эйнштейна:

Принцип относительности (первый постулат Эйнштейна, являющийся обобщением принципа Галилея на все физические процессы):все физические процессы во всех инерциальных системах отсчета протекают одинаково .

Сформулируем этот принцип и в другом эквивалентном виде: законы природы инвариантны во всех инерциальных системах отсчета .

Принцип инвариантности (постоянства)скорости света (второй постулат Эйнштейна):скорость света в вакууме постоянна во всех инерциальных системах отсчета и не зависит от движения источников и приемников света .

Постулат о постоянстве скорости света вызывает наибольшее непонимание, т.к. он находится в очевидном противоречии с классическим правилом сложения скоростей. То, что скорость света имеет такое необычное свойство, можно почувствоватьпри рассмотрении следующего мысленного эксперимента: пусть космонавт находится в космическом корабле, корабль удаляется от Земли с постоянной скоростью 200000 км/с, а наблюдатель на Земле направляет пучок света, распространяющийся со скоростью 300000 км/с, в сторону космического корабля. Свет, догоняя космический корабль, через маленькие дырочки проходит сквозь этот корабль и уходит далее в космос. Поскольку космонавт (вместе с кораблем) движется со скоростью 200000 км/с относительно Земли, то ему, на основании классического закона сложения скоростей должно было казаться, что относительно него свет распространяется со скоростью 300000 км/с - 200000 км/с = 100000 км/с. Но как следует из принципа постоянства скорости света, если действительно поставить такой эксперимент, то космонавту (т.е. наблюдатель в движущейся инерциальной системе отсчета) будет казаться, что свет распространяется, относительно него, со скоростью 300000 км/с. На основании этого же принципа и наблюдатель на Земле тоже будет считать, что свет распространяется относительно него тоже со скоростью 300000 км/с.

Эйнштейн понял, что единственное объяснение, позволяющее двум, движущимся относительно друг друга, наблюдателям получить одинаковые значения скорости света, заключается в том, что их восприятие времени и пространства неодинаково, что часы космического корабля идут не так, как на земле, одинаковые линейки у обоих наблюдателей имеют разные размеры и т.д. Т.е., на основании СТО, скорость света в космическом корабле равна 300000 космических километров в космическую секунду, а на Земле - 300000 земных километров в земную секунду. Вышеприведенный пример наглядно показывает, что если скорости других объектов относительны, так как зависят от скорости движения измеряющего наблюдателя, то скорость света не относительна – она абсолютна. Этот же пример показывает относительность времени и пространства. Скорость света соответствует максимально возможной в природе скорости передачи сигнала.

Принцип постоянства скорости света был впервые подтвержден в опытах Майкельсона-Морли. Сами авторы этим опытом пытались подтвердить или опровергнуть существование мирового эфира. Мировой эфир представлялся как механическая среда, (невидимая невесомая субстанция) передающая «толчок» действия от одной точки к другой, т.е. передающая волновой процесс распространения света. В экспериментах Майкельсона-Морли сравнивались скорости света при направлении луча света вдоль и поперек орбитального движения Земли. Разницы при этом обнаружено не было, что указывает на постоянство скорости света, независимо от того, в какой инерциальной системе отсчета рассматривается распространение света (для луча света, распространяющегося вдоль направления движения Земли, система отсчета подвижная, для распространяющегося поперек - неподвижная).

Из постулатов СТО следует, что пространственный интервал и временной интервал (длительность события) относительны, т.е. зависимы от движения наблюдателя. Однако объективность описания природы требует, чтобы изучаемое явление можно было характеризовать величинами, не зависящими от выбора системы отсчета. Инвариантной величиной в СТО является так называемый пространственно-временной интервал между событиями , включающий в себя временную и пространственные характеристики материальных процессов. Т.е. СТО делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга, как во времени, так и в пространстве. Т.е. пространство и время рассматриваются как четырехмерный пространственно-временной континуум, или попросту пространство-время. В этом континууме наблюдатели, движущиеся относительно друг друга, могут расходиться во мнении о том, произошли ли два события одновременно, или одно предшествовало другому, но пространственно-временной интервал для обоих наблюдателей будет одним и тем же.

В СТО показано, что нельзя передать воздействие (свет, информацию и т.д.) со скоростью, превышающей скорость света, а это делает невозможным нарушение причинно-следственных связей (т.к. именно передача воздействия со сверхсветовой скоростью привела бы к нарушению причинно-следственных связей). Ненарушимость причинно-следственных связей можно назвать инвариантностью причинно-следственных связей .

Из СТО следует и закон взаимосвязи энергии и массы: между полной энергией, изолированного от внешних воздействий, тела и его массой есть однозначная связь: . этот закон справедлив и для покоящегося тела:
, показывая, что даже покоящиеся тела имеют очень большую энергию, включающую энергию взаимодействий и теплового движения атомов и молекул, энергию ядерного взаимодействия и др. энергии. Этот закон показывает: какие бы взаимные превращения разных видов материи не происходили, изменение энергии в системе соответствует эквивалентному изменению массы. Т.е. энергия и масса являются двумя, однозначно связанными, характеристиками материи. Этот закон раскрывает источник энергии, используемой ядерной энергетикой. Масса продуктов радиоактивного распада, протекающего в ядерном реакторе, меньше массы исходного вещества. Разность масс исходной и конечной (называемойдефектом массы ), помноженная на квадрат скорости света (
), показывает энергию, производящуюся в ядерных реакторах.

Переход из одной инерциальной системы отсчета в другую, в СТО, осуществляется при помощи преобразований Лоренца.

Из преобразований Лоренца (т.е. из СТО) следует, что при увеличении скорости подвижной инерциальной системы отсчета относительно неподвижной:

- длина отрезка в направлении движения уменьшается относительно отрезка в неподвижной системе

- ход времени в подвижной системе, относительно времени в неподвижной системе отсчета, замедляется

Приведенные выше следствия объясняют, рассмотренный нами ранее, мысленный эксперимент: космонавт, определяя скорость света, делит свои маленькие километры на маленькие секунды и получает тот же результат, что и земной наблюдатель, который делит большие километры на большие секунды.

Следствиями СТО является относительный характер :

- расстояний (длины отрезка), т.е. пространства

- одновременности событий, т.е. времени

- массы тела

Следствиями СТО являются:

- пространство и время существуют как единая четырехмерная структура пространство-время и описывается евклидовой геометрией

- эквивалентность массы и энергии

- с увеличением скорости движения тела отсчета темп времени на нем замедляется

- с увеличением скорости движения тела его линейный размер уменьшается

- с увеличением скорости движения тела его масса возрастает

- когда скорость тела приближается к скорости света, его линейный размер стремится к нулю, а масса тела стремится к бесконечно большой

- инвариантность (неизменность) пространственно-временного интервала между событиями

- инвариантность причинно-следственных связей

Соответствие СТО и классической механики: их предсказания совпадают при малых скоростях движения (гораздо меньших скорости света).

Приложение СТО к описанию механических процессов, в которых скорости тел сопоставимы со скоростью света, называется релятивистской механикой .

Причина СТО – инвариантность скорости света

П.В.Путенихин

[email protected]

Аннотация 2

Вывод СТО из принципа постоянства скорости света 2

Вывод СТО из принципа относительности 7

Анализ принципов СТО 11

Литература 14

Аннотация

В основу СТО Эйнштейн положил два принципа. Однако, для того чтобы получить преобразования Лоренца и все релятивистские следствия из них, достаточно только одного принципа (постулата) - инвариантности скорости света. Этот принцип является первопричиной преобразований Лоренца, единственным, необходимым и достаточным условием для их вывода, а также для провозглашения принципа относительности и равноправия всех инерциальных систем отсчета. Получение преобразований Лоренца из принципа относительности возможно, но при обязательном учёте принципа постоянства скорости света.

Вывод СТО из принципа постоянства скорости света

Все выводы СТО - преобразования Лоренца и релятивистские соотношения получены как корректные математические выводы. Поэтому СТО по своей сути является теорией математической, имеет все её признаки: методология вывода, исходные постулаты. Хотя в основу СТО Эйнштейн положил два постулата (принципа), можно сказать, что СТО фактически базируется на единственном постулате: о неизменности скорости света во всех ИСО – принципе постоянства (инвариантности) скорости света. Покажем это - выведем преобразования Лоренца и основные следствия из них, используя для этого только одно предположение: скорость света « всегда одна и та же, независимо от того, движется ИСО или покоится. Иначе можно сказать, что скорость любого фотона равна скорости света, где бы она ни была измерена: в движущейся или в покоящейся ИСО. Это самое общее определение принципа постоянства скорости света. Оно не включает в себя упоминаний об источнике этого фотона и о состоянии движения источника (или приёмника), являющихся излишними . Заявление о предельности скорости света также является производным от принципа постоянства скорости света, его следствием : если скорость света неизменна во всех ИСО, то она автоматически становится максимально возможной скоростью. Назовём этот принцип постоянства скорости света основой теории, а все полученные с его использованием выражения - следствием этого принципа (постулата), следствиями, выводами теории.

Для вывода рассмотрим платформу длиной L, которую пересекает фотон, испущенный неизвестным источником и/или просто пролетающий мимо. Как принято в СТО будем рассматривать две инерциальные системы отсчета - неподвижную К и подвижную К". Фотон для наблюдателей на платформе пролетит через неё за время t 0 = L/c. Сохраним систему обозначений, близкую к принятой в СТО:

L" – длина платформы в инерциальной системе отсчета K";

L – длина платформы в инерциальной системе K;

t" – интервал времени (время), за которое фотон пролетает через платформу и возвращается обратно в системе K";

t – интервал времени (время), за которое фотон пролетает через платформу и возвращается обратно в системе K.

Наблюдатель в движущейся системе K" считает её покоящейся и вычисляет, что фотон преодолеет платформу за время (путь туда и обратно):

Напротив, внешний наблюдатель видит: свет в одном случае догоняет зеркало на противоположном конце платформы, а в другом летит навстречу мишени:

Рис.1 Полет фотона с точки зрения внешнего наблюдателя. Часы внешнего (неподвижного) наблюдателя покажут время t, а часы на платформе (подвижные) покажут время t".

На рисунке видно, что для внешнего наблюдателя время движения фотона вдоль движущейся платформы туда и обратно составит:

Преобразуем уравнение:

Выражение второй дроби выглядит как квадрат некоторой величины. Обозначим эту величину через k (очевидно, что эта величина больше единицы):

Мы получили показания двух часов: движущихся с платформой - t" и неподвижных, мимо которых движется платформа - t. Очевидно, эти показания различаются. Чтобы узнать, как изменилось «время в полёте» фотона через движущуюся платформу при рассмотрении его в разных ИСО, вычислим отношение этих показаний:

Отсюда после сокращений получаем:

(1)

Время t" – это время (интервал времени) пролёта фотона через платформу для наблюдателя, находящегося на этой платформе, а L" – это длина платформы для этого наблюдателя. Очевидно, что наблюдатель ничего не заметил после разгона платформы, для него ничего не произошло, он, вообще говоря, мог и не знать, что платформа движется. Поэтому эти две величины – исходные, не сократившиеся, те, которые были известны до начала эксперимента. А что же за величины t и L? Наблюдателя, который видит движение платформы, мы считаем неподвижным. Следовательно, он видит платформу длиной L и время t, за которое фотон пролетел через платформу туда и обратно. Мы знаем, что на платформе часы стали идти медленнее, то есть время t", прошедшее на платформе, меньше времени, прошедшего в неподвижной системе отсчета t. Аналогично делаем вывод: в неподвижной системе длина платформы видится укороченной до величины L, против исходной длины L". Однако, в соответствии с принятым постулатом о постоянстве скорости света, мы должны признать, что если путь для света изменился, то время в пути у фотона также изменилось. И изменилось оно в ту же сторону, что и длина платформы – уменьшилось, причём ровно во столько же, во сколько сократилась платформа, ведь эти три величины связаны формулой: t 0 = L/с, то есть:

(2)

Подставляя (1) в (2), получаем:

Откуда после преобразований находим:

и, наконец:

Подставим значение величины k и преобразуем к привычному виду:

(3)

Таким образом, стержень, имеющий длину L " в той инерциальной системе, где он покоится, имеет длину
в той инерциальной системе, относительно которой он движется со скоростью v в продольном направлении.
Подставляем (3) в (2) и находим такое же выражение для времени:

(4)

Таким образом, движущиеся часы начинают отставать, ход их замедляется в отношении
, хотя с точки зрения той инерциальной системы, которая движется вместе с часами, в часах не произошло абсолютно никаких изменений
.

Здесь наблюдательный читатель заметит «противоречие», известное как «парадокс штриха». Это надуманный, формальный парадокс, так сказать, парадокс буквы, но не духа. В нашем случае мы сами выбрали обозначения времён. Как обозначать так называемое «внутреннее время ИСО», является в достаточной мере произволом.

Из уравнений (3) и (4) явно следует предельность скорости света «с» - никакая ИСО не может двигаться со скоростью v > c, поскольку в этом случае подкоренное выражение становится отрицательным. Также в рассмотренной методике вывода приведённых уравнений просматривается принцип относительности: все выкладки мы могли вести, поменяв рассматриваемые ИСО местами, и получить точно такой же результат.

Выведем из провозглашенного выше постулата (принципа) остальные следствия рассматриваемой теории. Для этого нам необходимо показать явным образом две системы отсчета К и К":


Рис.2 В неподвижной инерциальной системе отсчета К часы имеют координату x, а в подвижной инерциальной системы отсчета К" по истечении времени t - координату x".

К инерциальной системе отсчета K привязаны координатные оси XYZ, а к подвижной системе K" - координатные оси X"Y"Z". На рисунке оси Z и Z" не показаны. В начальный момент времени t=t"=0 начала координат неподвижной системы K и движущейся системы K" (положение I) совпадают. По прошествии времени t в неподвижной системе K подвижная система K" удалилась (положение II), и расстояние между началами координат двух систем отсчета стало v t. Произведём преобразование координат неподвижной системы K в координаты движущейся системы K". Из рисунка видно, что координата часов с точки зрения системы К" равна:

,

Где 0В" и 0А" - длины отрезков на оси 0X с точки зрения движущейся системы K" (с учетом их знаков, поскольку в системе K" часы движутся в отрицательном направлении). Очевидно, что длины этих отрезков с точки зрения подвижной системы K" укорочены по отношению к их реальным размерам в неподвижном состоянии в системе К. Следовательно, чтобы вычислить их длины в подвижной системе K", мы должны воспользоваться полученным выше соотношением (3) для отрезков:

,

соответственно, второй отрезок:

Подставляем эти величины в исходное уравнение и получаем:

Это уравнение показывает, какую координату в системе K" будут иметь неподвижные часы, имеющие координату x в неподвижной системе К через время t движения со скоростью v . Рассмотрим, какое время будут показывать движущиеся часы. Нам известно, что при движении они отстают от неподвижных. Видимо, чем дольше и быстрее часы движутся, тем больше они отстают. Понятно, что при этом часы удаляются от неподвижных на какое-то расстояние. Интересно, на какое? Чтобы выяснить это, рассмотрим рисунок:

Рис.3 По истечении времени t движущиеся часы переместятся в точку с координатой x и будут показывать время t", которое будет меньше времени t в неподвижной системе отсчета К.

Движущаяся система K" переместилась из положения I в момент времени t=t"=0 в положение II. Часы при этом показывают время t и t" соответственно, координата движущихся часов с точки зрения неподвижной системы K равна x . Преобразуем уравнение (4) следующим образом:

В последнем выражении составного равенства произведём очевидную замену v t = x:

(5)

Таким образом, по прошествии времени t движущиеся со скоростью v часы удалятся на расстояние x и будут показывать время t", и мы получаем все классические уравнения преобразований Лоренца (два последних добавляем из очевидных соображений - движения только по оси X):

; ; y " = y;z " = z .

Последнее и самое загадочное из трёх известных основных следствий преобразований Лоренца - относительность одновременности выведем традиционным способом. Пусть на оси X в инерциальной системе K происходят два события в точках x 1 , x 2 в один и тот же момент времени t. Отметим моменты совершения этих событий t" 1 , t" 2 в системе K". Согласно полученной формуле (5) находим:

,
.

Мы видим, что t" 1 не равно t" 2 , то есть, два события, одновременные относительно K, оказываются разновременными относительно K ". Это расхождение во времени тем больше, чем далее отстоят друг от друга с точки зрения системы K места, где они произошли:

.

Итак, получив уравнения, в точности совпадающие с уравнениями преобразований Лоренца в СТО, мы показали, что преобразования Лоренца и основные следствия из них можно вывести, используя единственное предположение: скорость света « всегда одна и та же, независимо от того, движется ИСО или покоится. Следовательно, это предположение, постулат является единственным необходимым и достаточным условием для появления преобразований Лоренца и всех следствий из них. Поэтому есть достаточные основания считать, что математика кинематического раздела СТО является элементарной математической задачей для школьников старших классов вида «Из пункта А в пункт Б выехал поезд...».

Вывод СТО из принципа относительности

Выше было показано, что для вывода всех лоренц-следствий СТО достаточно одного (второго) постулата – о постоянстве скорости света. Но существует и противоположный подход: для получения этих же следствий достаточно другого (первого) постулата – принципа относительности (равноправия всех ИСО). Причём утверждается, что принцип постоянства скорости света вообще является излишним. Однако, в процессе вывода СТО из принципа относительности неизбежно появляется параметр, который играет в уравнениях Лоренца ту же роль, что и скорость света. То есть, принципы постоянства скорости света и относительности являются всё-таки взаимосвязанными.

Покажем это, воспользовавшись в немалой степени методикой С.Степанова . Запишем результирующие уравнения преобразований времени и координаты между двумя инерциальными системами отсчета в следующем виде:

x" = f(x, t, v), t" = g(x, t, v) (6)

Задачу будем рассматривать как чисто математическую, идеализированную. Поэтому примем, что эти преобразования координат и времени являются линейными функциями:

(7)

Коэффициенты k, m, n, p являются функциями, зависящими от относительной скорости систем отсчёта v .

Будем считать, что в начальный момент времени t=t"= 0 начала координат систем совпадают x=x"= 0. Координата начала подвижной системы отсчета описывается уравнением x=vt . Подставляем x"= 0 и x=vt в первое уравнение и получаем:

откуда находим:

(8)

Теперь подставляем x = 0 и x"=vt в оба уравнения и получаем:

после упрощения:

и затем после подстановки из второго уравнения в первое и учетом (8) получаем:

Вставляем полученные соотношения в исходные уравнения (7):

Введём обозначения (подстановки):

Введённые параметры (подстановки) являются функциями скорости, но в дальнейшем для краткости мы будем записывать их без признака функциональности – без скобок с аргументом v . С учетом этих упрощений преобразования между системами отсчёта принимают окончательный вид:

(9)

Для определения введённых параметров γ и σ, исходя из принципа относительности (первый постулат СТО) – равноправия всех инерциальных систем отсчета, рассмотрим три такие произвольные ИСО - K 1 , K 2 и K 3 .Установим, что система K 2 движется относительно K 1 со скоростью v 1 , система K 3 - относительно K 2 со скоростью v 2 и система K 1 - относительно K 3 со скоростью v 3 =-(v 1 + v 2):

Рис.4 Три системы отсчета, движущиеся друг относительно друга.

Пометим координату x и время t цифровыми индексами, соответствующими номерам систем, к которым они относятся, и запишем преобразования для каждой из них:



Подставим x 2 и t 2 из второй системы уравнений в третью:

Раскроем круглые скобки:

Вынесем за скобки общие множители:

и сгруппируем общие члены:

Полученные уравнения должны иметь (и имеют) такой же вид, что и уравнения системы (9). Это значит, что, как и в системе уравнений (9) в этой системе коэффициенты при первых слагаемых в уравнениях - один и тот же коэффициент:

После сокращения и элементарных преобразований получаем:

Из этого равенства следует, что следующие отношения имеют одно и то же значение для всех систем отсчёта, независимо от скорости их движения:

(10)

Это отношение мы обозначили квадратом величины (константы) «c» - по первой букве слова «const». Поясним, почему необходимо приравнять отношения именно квадрату. Из второго уравнения системы (9) следует, что все полученные отношения имеют размерность квадрата скорости. Чтобы убедиться в этом, анализируем размерности величин (индекс «разм» означает, что рассматривается не значение, а размерность величин):

Очевидно, что в скобках стоят величины с размерностью времени. Отсюда следует, что квадрат размерности константы «c» равен квадрату размерности скорости, а сама величина «с» имеет, соответственно, размерность скорости:

Это и означает, что все отношения (10) равны квадрату некоторой величины «с».

Уравнения (9) должны быть справедливы и для обратного преобразования, когда системы отсчёта «меняются местами». Относительная скорость при этом меняет свой знак:

Подставим в это уравнение значения штрихованных величин из исходной системы (9):

и окончательно:

(11)

Из соотношений (10) находим:

Подставляем это значение в (11) и получаем:

В результате преобразований получаем:

(12)

Функция γ(v ) является четной. Это видно из следующих соображений. Если мы развернём оси двух систем отсчёта на 180 о, то скорость также изменит свой знак. Это равнозначно тому, как если бы мы смотрели на эти системы через зеркало (зеркало заднего вида автомобиля): направления осей и движения развернутся. Следовательно, первое уравнение системы (9) будет иметь вид:

Сравнивая эти уравнение, получаем:

Раскрываем скобки:

и получаем признак четности функции:

(13)

Подставляем полученное значение (13) в (12) и находим:

Теперь находим значение функции гамма:

и подставляем его в уравнения (9):

;
(14)

Имея два этих уравнения, можно легко вывести все остальные следствия преобразований Лоренца, как это было показано в предыдущем разделе. Анализ принципов СТО Итак, мы вывели явный вид уравнений (6) преобразования между двумя инерциальными системами отсчёта и получили уравнения Лоренца (14), в которые мы были вынуждены ввести некую константу с , значение которой нам, строго говоря, неизвестно. Дотошный читатель, наверное, уже давно держит в голове мысль: когда же, наконец, и каким образом автор статьи объявит эту константу скоростью света. По мнению ряда авторов, вопрос этот не простой. Например, С.Степанов считает (у него эта константа α является обратной величиной к нашей константе - с), что «функциональная форма преобразования между наблюдателями двух инерциальных систем отсчёта полностью определяется с точностью до константы α . Выяснение её значения и знака - это уже вопрос экспериментальный. Фундаментальная константа α могла оказаться и нулевой, однако в нашем Мире она больше нуля» .На сайте библиотеки Физического факультета СПбГУ С.Н.Манида (у него величина g также является обратной величиной к нашей константе с): «вводит некоторую постоянную величину, размерность которой - обратный квадрат скорости. Эта величина одинакова во всех системах отсчета, и ее численное значение не может быть выведено из каких-либо общих принципов. Экспериментальное значение этой величины g =c -2 , где c - скорость света в вакууме» .«мы вывели соотношения из принципа относительности и получили следствием постоянство скорости c во всех инерциальных системах отсчета. Важно отметить принципиальное отличие данного подхода к выводу преобразований Лоренца от общепринятого. Постоянство скорости света во всех инерциальных системах отсчета - это экспериментальный факт, установленный с определенной степенью точности. Приведенный выше вывод не опирается на этот факт, из него следует только существование скорости, одинаковой во всех инерциальных системах отсчета» .На одном из форумов в интернете опубликован анализ статьи Фейгенбаума, посвященной, в частности, выводу соотношений СТО из принципа относительности. Там сказано:«Чтобы вывести «специальную теорию относительности» (СТО) постулат постоянства скорости света не нужен. Это значит, что возможно, что скорость света не постоянна (если она меньше фундаментальной константы C). Формулы СТО – логически не зависят от постулата постоянства скорости света. Фейгенбаум пишет, что СТО можно было бы открыть ещё во времена Галилея. Всё, что для этого нужно, это – принцип равноправности равномерно движущихся относительно друг друга систем (принцип относительности Галилея) и изотропия пространства» .Проводится анализ самой константы, аналога скорости света: «Ясно только, что подход Фейгенбаума кардинально меняет всё наше понимание того, что такое релятивистские эффекты. Фундаментальная константа, стоящая в релятивистских формулах не обязательно равна скорости света. Только опыт может определить её значение. Если скорость света меньше этой константы, то фотоны должны иметь массу и, как любые массивные частицы, испытывать гравитационное притяжение, что, возможно, объясняет явление искривления лучей вблизи массивных тел» . Приведённые соображение резонны, однако... Как бы там ни было, но использование для вывода СТО только принципа относительности неизбежно вынуждает нас, требует помимо нашей воли ввести некую константу, сильно напоминающую скорость света в преобразованиях Лоренца в «стандартной» (эйнштейновской) СТО. То есть, принцип относительности сам по себе всё-таки недостаточен для получения релятивистских эффектов. В обязательном порядке ему необходим помощник - светоподобная константа. Попробуем предположить, что эта константа – не скорость света. Но она имеет размерность скорости и, следовательно, это скорость чего-то. Но чего? Рассмотрим, какими свойствами она обладает. В СТО Эйнштейна есть раздел, в котором он анализирует уравнения Максвелла и приходит к выводу, что они инвариантны относительно преобразований Лоренца. У Эйнштейна преобразования Лоренца основаны как на принципе относительности, так и на постулате о постоянстве скорости света. Следовательно, если относительно этих преобразований уравнения Максвелла инвариантны, то принцип относительности в трактовке Эйнштейна имеет силу, справедлив. Тогда возникает вопрос: если принцип относительности соблюдается в виде инвариантности уравнений Максвелла по отношению к преобразованиям Лоренца, то как они могут быть одновременно инвариантны относительно других псевдо-Лоренцевых преобразований, в которых присутствует не скорость света, а какая-то другая константа? Как можно представить себе, что существуют два различающихся принципа относительности? Один из них - это принцип относительности, на который ссылается Эйнштейн при выводе уравнений Лоренца, содержащих скорость света как инвариант. Второй - это принцип относительности Фейгенбаума, Манида и Степанова, из которого выведены те же преобразования Лоренца, но содержащие некую константу, подобную скорости света, но не равную ей. В этом случае возможны только два вывода: либо уравнения Лоренца-Эйнштейна не соответствуют принципу относительности, либо найденная светоподобная константа – это скорость света. Далее. Из основного уравнения (14) Лоренца мы видим, что скорость света - это максимально возможная скорость. Никакая система отсчёта не может двигаться с этой или большей скоростью, поскольку в знаменателе появляется ноль или квадратный корень из отрицательного числа:

Но точно такое же уравнение появляется и при выводе преобразований из принципа относительности, но уже не со скоростью света, а с другой аналогичной константой. То есть в этом случае ни одна система отсчета не может двигаться уже с другой скоростью, с другим максимумом. Очевидно, что эта «другая» скорость не может быть меньше скорости света, если она претендует на звание максимально возможной скорости, поскольку скорость света достоверно измерена. Значит, она может быть только больше скорости света (равенство отождествляет их). Следовательно, в этом случае скорость света - не максимально возможная скорость. Теряют смысл устоявшиеся понятия лоренц-инвариантности, светоподобных и времяподобных интервалов, световой конус Хокинга, радиус Шварцшильда и др. Но Эйнштейн получил максимально возможную скорость, используя как принцип постоянства скорости света, так и принцип относительности. И вновь получается, что принцип относительности Эйнштейна и принцип относительности Степанова - Маниды - Фейгенбаума - это два разных принципа относительности, поскольку они дают разные значения максимально возможной скорости. Два разных принципа относительности для одной теории - это полный абсурд. Вывод уравнений Лоренца на основании одного только постулата о постоянстве скорости света также противоречит уравнениям, выведенным на основании принципа относительности «второго рода» (с трактовками Фейгенбауми и др.). То есть эти два принципа - постоянства скорости света и «новой» относительности - оказываются в этом случае несовместимыми. Постоянство скорости света противоречит принципу относительности («второго рода»). Другими словами, в принципе относительности «второго рода» скорость света не является инвариантом, и системы отсчёта становятся неравноправными, поскольку протекание физических процессов в них зависит от скорости их движения: скорость света можно складывать со скоростью движения системы.

Все эти абсурдные следствия снимаются, если принять значение константы, равное скорости света. Тогда неизбежно следует: для вывода всех следствий СТО, преобразований Лоренца, как минимум, невозможно обойтись без постулата о постоянстве скорости света и, как максимум, для их вывода вообще необходимо и достаточно только одного этого постулата - только он не приводит к привотолкам по поводу неясной констатны. Сам по себе постулат об инварианте скорости света включает в себя основной элемент принципа относительности - одинаковое протекание физических явлений, зависимых от скорости света. А это, в соответствии с известным мнением Лоренца - едва ли не все явления природы. Такой принцип относительности оказывается в определённом смысле следствием инвариантности скорости света, зависимым от него, что, видимо, отвергает трактовку принципа относительности Фейгенбаумом и его единомышленниками.

Учитывая серьёзность доводов процитированных авторов, можно сказать, что объективно они являются наиболее сильными опровержениями специальной теории относительности Эйнштейна, рубящими, что называется, теорию под самый корень, отвергающими её на самом фундаментальном уровне - теоретическом, в противовес доводам традиционных альтернативщиков, анти-СТО-в с их бесчисленными мысленными экспериментами. Два постулата у Эйнштейна неразрывны, не существуют один без другого. Принцип относительности порождает принцип постоянства скорости света. Фраза симметрична неспроста: с одной стороны, использование принципа относительности приводит к появлению принципа постоянства скорости света, а с другой - использование принципа постоянства скорости света означает провозглашение и использование принципа относительности. Кто кого порождает? Каждый - каждого! Действительно, принцип относительности как принцип равноправия всех инерциальных систем отсчёта провозглашает, что во всех этих системах существует одна и та же максимальная скорость, один и тот же инвариант скорости, один и тот же вид уравнений Максвелла, а при выводе уравнений Лоренца неизбежно «порождает» одну и ту же константу скорости для всех систем, причём эта константа неизбежно проявляется как скорость света. С другой стороны, принцип постоянства скорости света означает не что иное, как равноправие всех систем по отношению к этой скорости, что является, по меньшей мере, частью принципа относительности. Вывод уравнений Лоренца из принципа постоянства скорости света даёт однозначно такой же их вид, что и при выводе на основе принципа относительности. А это означает, что принцип относительности един для обоих подходов, что существует лишь одни принцип относительности - это принцип, который как неотъемлемую часть содержит в себе принцип постоянства скорости света, равноправия, так и сам является прямым следствием принципа постоянства скорости света. Литература

    Манида С.Н., Преобразования Лоренца. Глава 2 - Вывод преобразований Лоренца из принципа относительности //Лекции для школьников. Библиотека Физического факультета СПбГУ, URL: http://www.phys.spbu.ru/library/schoollectures/manida-lor/chapter2 (дата обращения 18.11.2011) Степанов С.С., Релятивистский мир, URL: http://synset.com/ru/Преобразования_Лоренца (дата обращения 18.11.2011) Форум «СОЦИНТЕГРУМ», Логические основания теории относительности, URL: http://www.socintegrum.ru/forum/viewtopic.php?f=17&t=575 (дата обращения 18.11.2011) Путенихин П.В., Причина СТО - инвариантность скорости света. – Самиздат, 2011, URL: http://zhurnal.lib.ru/editors/p/putenihin_p_w/prichina.shtml (дата обращения 19.11.2011)

Лекция: Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна


Принцип относительности Галилея


Чтобы понять, что происходит с телами, которые двигаются с высокими скоростями, следует более детально рассмотреть принцип относительности Галилея.


Итак, давайте представим, что мы находимся на корабле, в каюте которого нет ни окон, ни любых других отверстий, через которые можно было бы посмотреть на окружение корабля. Вопрос: сможем ли мы определить, двигается корабль равномерно или неподвижен? В данной каюте мы можем рассматривать те же процессы, что и если бы мы находились на Земле. Мы можем рассматривать движение тела по наклонной плоскости, движение тела, которое падает или же любые виды движения. Но все они будут протекать таким же образом, как и если бы происходили вне корабля на суше.


Таким образом, можно сделать вывод, что, если вы неподвижны или находитесь в системе, которая двигается равномерно, все физические процессы протекают одинаково. А, следовательно, нельзя определить, как ведет себя корабль, находясь в каюте.


Таким образом, все системы, двигающиеся равномерно, или находящиеся в состоянии покоя, инерциальные.


Согласно принципу относительности Галилея, все процессы протекают одинаково во всех ИСО.


Инвариантность скоростей


Рассмотрим две ИСО, причем, одна из которых неподвижна, а вторая двигается равномерно.

В начальный момент времени начало координат обоих систем совпадает. После начала движения начинается отчет времени. Для определения координаты тела в подвижной системы отсчета относительно неподвижной, следует воспользоваться формулой:

Заметьте, так как движение происходит вдоль одной оси, то и изменение координаты заметно только относительно нее, все остальные параметры остаются неизменными.


С помощью относительности Галилея можно определить положение подвижной системы относительно той, которая не двигается.


А теперь давайте представим, что в данной подвижной системе еще двигается частица. Пусть скорость данной частицы относительно неподвижной системы u, а относительно подвижной u 1 . Теперь мы рассмотрим, как эти две скорости связаны между собой.


Мы знаем, что скорость - это первая производная координаты, поэтому найдем производные предыдущих трех уравнений:

Обобщив три уравнения, получим:

Данная формула нам уже достаточно давно знакома, как закон сложения скоростей.


Принцип относительности Эйнштейна


Мы говорили ранее, что нельзя определить, в какой ИСО мы находимся подвижной или нет, с точки зрения механики. Но что нам стоит постараться сделать это с точки зрения других разделов физики.


Оказывается, законы других разделов физики не подвластны относительности Галилея, это доказал Максвелл. Ученый доказал, что скорость света в вакууме является постоянной величиной, с какой бы скоростью и как не двигалась бы система, в которой происходят эксперименты.

Представьте себе ситуацию, в которой Вы двигаетесь на сверхскоростном корабле со скоростью 5*10 7 м/с . На носу этого корабля находится лампочка, свет которой распространяется с известной нам скоростью 3*10 8 м/с . Это значит, что по принципу относительности Галилея, её скорость относительно Вас достигает 3,5*10 8 м/с . Но, как уже было сказано, скорость света не может принимать величину, больше граничной.


Кроме некоторых изменений относительно сложения скоростей Лоренц заметил, что тела, двигающиеся со скоростями, приближенными ко скорости света, заметно сокращаются в размере.

) и является воплощением лоренц-инвариантности электродинамики. Более обобщенно можно говорить, что максимальная скорость распространения взаимодействия (сигнала), называемая скоростью света , должна быть одинаковой во всех инерциальных системах отсчёта.

Данное утверждение очень непривычно для нашего повседневного опыта. Мы понимаем, что скорости (и расстояния) меняются при переходе от покоящейся системы к движущейся, при этом интуитивно полагая, что время абсолютно. Однако принцип инвариантности скорости света и абсолютность времени несовместимы. Если максимально возможная скорость инвариантна, то время идёт различным образом для наблюдателей, движущихся друг относительно друга. Кроме этого, события одновременные в одной системе отсчёта, будут неодновременны в другой.

Инвариантность скорости света в лаборатории покоящейся относительно поверхности Земли, твёрдо установлена экспериментально. Интерес представляет поиск возможных небольших отклонений от этого закона .

Примечания


Wikimedia Foundation . 2010 .

  • Герб СФРЮ
  • Людовик I

Смотреть что такое "Принцип инвариантности скорости света" в других словарях:

    ОТНОСИТЕЛЬНОСТЬ - Теории относительности образуют существенную часть теоретического базиса современной физики. Существуют две основные теории: частная (специальная) и общая. Обе были созданы А.Эйнштейном, частная в 1905, общая в 1915. В современной физике частная… … Энциклопедия Кольера

    П:Ф - Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание География · История · Общество · Персоналии · Религия · Спорт · Техника · Наука · Искусство · Философия … Википедия

    Уравнения Максвелла - Классическая электродинамика … Википедия

    Лоренц-преобразование

    Лоренца преобразования - Преобразованиями Лоренца в физике, в частности в специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно временные координаты (x,y,z,t) каждого события при переходе от одной инерциальной системы… … Википедия

    Преобразование Лоренца - Преобразованиями Лоренца в физике, в частности в специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно временные координаты (x,y,z,t) каждого события при переходе от одной инерциальной системы… … Википедия

    История теории относительности - Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики . Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения… … Википедия

    Преобразования Лоренца - Преобразования Лоренца линейные (или аффинные) преобразования векторного (соответственно, аффинного) псевдоевклидова пространства, сохраняющее длины или, что эквивалентно, скалярное произведение векторов. Преобразования Лоренца… … Википедия

    Список научных публикаций Альберта Эйнштейна - Альберт Эйнштейн (1879 1955) был известным специалистом по теоретической физике, который наиболее известен как разработчик общей и специальной теорий относительности. Он также внёс большой вклад в развитие статистической механики, особенно… … Википедия

    ТЕОРИЯ - (1) система научных идей и принципов, обобщающих практический опыт, отражающих объективные природные закономерности и положения, которые образуют (см.) или раздел какой либо науки, а также совокупность правил в области какого либо знания млн.… … Большая политехническая энциклопедия

Принцип относительности Эйнштейна и преобразования Лоренца

Одной из важнейших физических постоянных является скорость света в вакууме с, то есть скорость распространения электромагнитных волн в свободном от вещества пространстве. Эта скорость не зависит от частоты электромагнитных волн, и принятое сейчас ее начение равно с = 299 792 458 м/с.

В громадном большинстве случаев эту величину с достаточной точностью можно принять равной с = 3 108 м/с - погрешность при этом менее 0,001.

И именно «триста тысяч километров в секунду» для скорости света запоминается большинством из нас на всю жизнь. Напомним, что 300 000 км - это, по порядку величины, расстояние от Земли до Луны (точнее, 380 000 км).

Таким образом, радиосигнал с Земли достигает Луны через время немного большее, чем одна секунда.

Предположение о том, что свет распространяется не с бесконечной, а с конечной скоростью, высказывались за много столетий до того, как люди смогли доказать это экспериментально. Впервые это было сделано в XVII веке, когда астрономические наблюдения странных «нерегулярностей» в движении спутника Юпитера Ио удалось объяснить только на основе предположения о конечной скорости распространения света (кстати, эта первая попытка определить скорость света дала заниженный результат с ~ 214 300 км/с).

Вплоть до конца XIX столетия скорость света интересовала исследователей, главным образом, с точки зрения понимания природы электромагнитного излучения - физикам тогда было не ясно, могут ли электромагнитные волны распространяться в вакууме, или они распространяются в особой заполняющей пространство субстанции - эфире. Однако итогом исследования этой проблемы явилось открытие, перевернувшее все существовавшие до тех пор представления о пространстве и времени. В 1881 г. в результате знаменитых опытов американского ученого Альберта Майкельсона был

установлен удивительный факт - величина скорости света не зависит от того, относительно какой системы отсчета она определяется!

Этот опытный факт противоречит закону сложения скоростей Галилея, который мы рассматривали в предыдущей главе и который кажется очевидным и подтверждается нашими повседневными наблюдениями. Но свет не подчиняется этому естественному, казалось бы, правилу сложения скоростей - относительно всех наблюдателей, как бы они ни двигались, свет распространяется с одной и той же скоростью с = 299 793 км/с. И то, что распространение света - это движение электромагнитного поля, а не частиц,

состоящих из атомов, не играет здесь роли. При выводе закона сложения скоростей (9.2) не имела значения природа движущегося объекта.

И хотя невозможно отыскать что-либо подобное в накопленных нами ранее опыте и знаниях, тем не менее, мы должны признать этот опытный факт, помня, что именно опыт является решающим критерием истины. Вспомним, что мы сталкивались с подобной ситуацией в самом начале курса, когда обсуждали свойства пространства. Тогда мы отмечали, что представить себе кривизну трехмерного пространства нам - трехмерным существам -невозможно. Но мы поняли, что факт «наличия или отсутствия» кривизны можно установить опытным путем: измеряя, например, сумму углов треугольника.

Какие же изменения необходимо внести в наше понимание свойств пространства и времени? И как в свете этих фактов относиться к преобразованиям Галилея? Можно ли их изменить так, чтобы они по-прежнему не противоречили здравому смыслу при их применении к привычным движениям окружающих нас тел и в то же время не противоречили факту постоянства скорости света во всех системах отсчета?

Принципиальное решение этих вопросов принадлежит Альберту Эйнштейну, создавшему в начале XX в. специальную теорию относительности (СТО), связавшую необычный характер распространения света с фундаментальными свойствами пространства и времени, проявляющимися при движениях со скоростями, сравнимыми со скоростью света. В современной физической литературе ее чаще называют просто релятивистской механикой.

Впоследствии Эйнштейн построил общую теорию относительности (ОТО), где исследуется связь свойств пространства и времени с гравитационными взаимодействиями.

Основу СТО составляют два постулата , которые носят название принципа относительности Эйнштейна и принципа постоянства скорости света .

Принцип относительности Эйнштейна является обобщением принципа относительности Галилея, рассмотренного в предыдущей главе, на все без исключения (а не только механические) явления природы. Согласно этому принципу, все законы природы одинаковы во всех инерциальных системах отсчета. Принцип относительности Эйнштейна можно сформулировать следующим образом: все уравнения, выражающие законы природы, инвариантны по отношению к преобразованиям координат и времени от одной инерциальной системы отсчета к другой. (Напомним, что инвариантностью

уравнений называется неизменность их вида при замене в них координат и времени одной системы отсчета координатами и временем другой). Понятно, что в соответствии с эйнштейновым принципом относительности никакими вообще опытами нельзя установить, движется «наша» система отсчета с постоянной скоростью или она неподвижна, точнее говоря, между этими состояниями нет никакого различия. Галилей эту невозможность постулировал в принципе только для механических опытов.

Принцип постоянства (точнее, инвариантности) скорости света утверждает, что скорость света в пустоте одинакова для всех инерциальных систем отсчета. Как мы вскоре убедимся, из этого следует, что с - максимальная из всех возможных физических скоростей.

Оба постулата являются отражением опытных фактов: скорость света не зависит от движения источника или приемника; она не зависит также от движения системы отсчета, в которой производятся эксперименты по ее измерению. В принципе относительности это отражено в признании того факта, что не только механические, но и электромагнитные (распространение света) явления, подчиняются во всех инерциальных системах отсчета

одним и тем же законам.

Из сформулированных выше положений вытекает ряд важных выводов, касающихся свойств пространства и времени. Прежде всего, из них следуют новые правила перехода от одной инерциальной системы отсчета к другой, в рамках которых «очевидные» преобразования Галилея являются лишь некоторым частным случаем, реализуемым только при движениях со скоростями, много меньшими с. Для определения этих новых правил рассмотрим свет, распространяющийся от точечного источника, расположенного в начале неподвижной системы отсчета К (рис. 10.1 а).

Распространение света можно представить как распространение светового фронта, имеющего форму сферической поверхности в системе отсчета, относительно которой источник света неподвижен. Но согласно принципу относительности Эйнштейна световой фронт должен быть сферическим также и тогда, когда он наблюдается в системе отсчета, находящейся в равномерном и прямолинейном движении относительно источника.

Рис. 10.1 Свет, распространяющийся от точечного источника, расположенного в начале неподвижной системы отсчета К световой фронт должен быть сферическим также и тогда, когда он наблюдается в системе отсчета, находящейся в равномерном и прямолинейном движении относительно источника.

Из этого условия мы и определим сейчас, каковы должны быть правила преобразования координат и времени при переходе от одной инерциальной системы к другой.

Если источник света находится в начале координат системы отсчета К, то для света, испускаемого в момент t = 0, уравнение сферического светового фронта имеет вид

x 2 + у 2 + z 2 = (ct) 2 (10.1)

Это уравнение описывает сферическую поверхность, радиус которой R = ct

увеличивается во времени со скоростью с.

Координаты и время, измеряемые наблюдателем в движущейся системе отсчета К", обозначим буквами со штрихами: х", у", z", t" . Положим, что начало отсчета времени t" совпадает с началом отсчета t и что в этот совпадающий нулевой момент времени начало координат системы К1 совпадает с положением источника света в системе К. Пусть, для определенности, система К" движется в направлении +х с постоянной скоростью V относительно системы К (рис. 10.1 б).

Как мы уже говорили, согласно второму постулату Эйнштейна, для наблюдателя в «штрихованной» системе световой фронт должен быть также сферическим, то есть уравнение светового фронта в движущейся системе должно иметь вид

x" 2 + у" 2 + z" 2 =c 2 t" 2 (10.2)

причем величина скорости света с здесь та же, что и в системе отсчета К. Таким образом, преобразования координат и времени от одной нашей системы отсчета к другой обязаны обладать таким свойством, что, например, после замены с помощью этих преобразований в (10.2) «штрихованных» величин на «не штрихованные» мы должны вновь получить уравнение сферического фронта (10.1).

Легко убедиться, что преобразования Галилея (9.3) не удовлетворяют этому требованию. Напомним, что эти преобразования связывают координаты и время в двух разных системах отсчета следующими соотношениями:

х" = х - Vt, у" = у, z" = z, t" = t. (10.3)

Если мы подставим (10.3) в (10.2), то получим

х 2 - 2xVt + V 2 t 2 + у 2 + z 2 = c 2 t 2 , (10.4)

что, конечно, не согласуется с уравнением (10.1). Какими же должны быть новые преобразования? Во-первых, так как все системы равноправны, переход из некоторой системы в любую другую должен описываться одними и теми же формулами (со своим значением V), а двукратное применение преобразований с заменой на втором шаге +V на

V должно возвращать нас в исходную систему. Таким свойством могут обладать только линейные по х и t преобразования. Бесполезно испытывать для этого соотношения типа

х" = x l/2 t 1/2 , х" = sin x

или им подобные.

Во-вторых, при V/с -> 0 эти преобразования должны переходить в преобразования Галилея, справедливость которых для малых скоростей не может быть подвергнута сомнению.

Из уравнения (10.4) ясно видно, что мы не можем оставить без изменения преобразование t" = t, если хотим уничтожить в этом уравнении нежелательные слагаемые -2xVt + V 2 t 2 , потому что для их уничтожения необходимо обязательно что-то прибавить к t.

Попробуем сначала преобразование вида:

x" = x-Vt, y" = y, z"= z, t" = t + bx, (10.5)

где b - постоянная, значение которой надо определить. Тогда уравнение (10.2) принимает вид

х 2 - 2Vxt + V 2 t 2 +y 2 + z 2 = c 2 t 2 + 2c 2 bxt + c 2 b 2 x 2 . (10.6)

Заметим, что члены в левой и правой частях равенства, содержащие произведение xt, взаимно уничтожаются, если принять

b= -V/c 2 , или t"= t-Vx/c 2 . (10.7)

При этом значении b уравнение (10.6) можно переписать следующим образом:

x 2 (1 - V 2 /с 2) + у 2 + z 2 = c 2 t 2 (l - V 2 /с 2) . (10.8)

Это уже ближе к уравнению (10.1), но еще остается нежелательный множитель 1 - (V 2 /с 2), на который умножаются х 2 и t 2 .

Мы можем исключить и этот множитель, если окончательно запишем преобразование координат и времени в следующем виде:

Это и есть знаменитые преобразования Лоренца, названные по имени голландского физика-теоретика Хендрика Лоренца, который в 1904 году вывел формулы (10.9) и тем самым подготовил переход к теории относительности.

Нетрудно проверить, что при подстановке (10.9) в уравнение (10.2) преобразования Лоренца, как и должно быть, преобразуют это уравнение в уравнение сферической поверхности (10.1) в неподвижной системе координат. Также легко убедиться, что при

V/с -> 0 преобразования Лоренца переходят в преобразования Галилея (9.2).

10.2. Следствия из преобразований Лоренца. Сокращение длины и замедление времени

Из преобразований Лоренца вытекает ряд необычных с точки зрения ньютоновой механики следствий.

Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси х и покоящийся относительно системы отсчета К" (рис. 10.2). Длина его в этой системе равна l 0 = x" 2 - x" 1 где x" 1 и x" 2 - не изменяющиеся со временем t" координаты концов стержня. Относительно системы К стержень движется вместе со штрихованной системой со скоростью v. Для определения его длины в этой системе нужно отметить

Рис. 10.2 системы отсчета К, К" . Относительно системы К стержень движется вместе со штрихованной системой со скоростью v

координаты концов стержня х 1 и x 2 в один и тот же момент времени t 1 = t 2 = t. Разность этих координат l= x 2 – х 1 даст длину стержня, измеренную в системе К. Чтобы найти соотношение между l 0 и l, следует взять ту из формул преобразований Лоренца, которая содержит x", х и t, то есть первую из формул (10.9). Согласно этой формуле,

откуда получаем

или окончательно

Таким образом, длина стержня l, измеренная в системе, относительно которой он движется, оказывается меньше «собственной» длины l 0 , измеренной в системе, относительно которой стержень покоится. Поперечные размеры стержня в обеих системах одинаковы. Итак, для неподвижного наблюдателя размеры движущихся тел в направлении их движения сокращаются, и тем больше, чем больше скорость движения.

Длительность процессов в разных системах отсчета. Пусть в некоторой точке, неподвижной относительно движущейся системы К", происходит

какой-то процесс, длящийся время At 0 = t" 2 - t" 1 . Это может быть работа какого-либо прибора или механизма, колебание маятника часов, какое-нибудь изменение в свойствах тела и так далее. Началу процесса соответствует в этой системе координата х" = а и момент времени t" 1 , концу - та же самая координата х" 2 = х" 1 = а и момент времени t" 2 Относительно системы К точка, в которой происходит процесс, перемещается. Согласно формулам (10.9),

началу и концу процесса в системе К соответствуют моменты времени

откуда получаем

Введя обозначения t 2 - t 1 = At, получим окончательно:

В этой формуле ∆t 0 - длительность процесса, измеренная по часам в движущейся системе отсчета, где тело, с которым происходит процесс, покоится. Промежуток At измерен по часам системы, относительно которой тело движется со скоростью v. Иначе можно сказать, что ∆t определено по часам, которые движутся относительно тела со скоростью v. Как следует из (10.11), промежуток времени ∆t 0 , измеренный по часам, неподвижным относительно тела, оказывается меньше, чем промежуток времени At, из-

измеренный по часам, движущимся относительно тела.

Заметим, что для релятивистских множителей (Лоренц-факторов) движущейся со скоростью V системы отсчета и/или движущейся со скоростью v частицы приняты обозначения

Г = 1/√(1 - V 2 /с 2)

и соответственно

γ = 1/√(1 - v 2 /с 2).

Если это не приводит к путанице, для обеих величин употребляется обозначение γ

Рассматривая протекание процесса из системы X, можно определить ∆t как его длительность, измеренную по неподвижным часам, a ∆t 0 - как длительность, измеренную по часам, движущимся со скоростью v. Согласно (10.11),

∆t 0 < ∆t

поэтому можно сказать, что движущиеся часы идут медленнее , чем покоящиеся часы (имеется, конечно, в виду, что во всем, кроме скорости движения, часы совершенно идентичны).

Время ∆t 0 , отсчитанное по часам, движущимся вместе с телом, называется «собственным временем» этого тела. Как видно из (10.11), собственное время всегда меньше, чем время, отсчитанное по часам, движущимся относительно тела.

Эффект замедления времени симметричен по отношению к обоим рассматриваемым часам: для обоих наблюдателей из разных систем отсчета часы движущегося относительно него наблюдателя будут идти медленнее. Замедление времени является объективным следствием преобразований Лоренца, которые, в свою очередь, являются следствием постоянства скорости света во всех системах отсчета. Необходимо подчеркнуть то обстоятельство, что релятивистские эффекты отнюдь не умозрительны. На сегодняшний день СТО с очень хорошей точностью подтверждена экспериментально. Разумеется, при V/c ->> 0 формулы (10.10), (10.11) преобразуются к тривиальному

нерелятивистскому пределу. Для наблюдения нетривиальных эффектов необходимо исследовать объекты с V ~ с.

Примерами могут служить явления, наблюдаемые при изучении элементарных частиц. Одним из наиболее наглядных опытов, подтверждающих соотношение (10.11), является наблюдение в составе космических лучей одного из видов элементарных частиц, именуемых мюонами. Эти частицы нестабильны - они самопроизвольно распадаются на другие элементарные частицы. Время жизни мюонов, измеренное в условиях, когда они

неподвижны (или движутся с малой скоростью), равно примерно 2 10 -6 с. Казалось

бы, даже двигаясь почти со скоростью света, мюоны могут пройти от момента своего рождения до момента распада лишь путь, равный примерно 3 10 8 м/с) (2 10 -6 с) = 600 м. Однако наблюдения показывают, что мюоны, образуясь в космических лучах в верхних слоях атмосферы на высоте 20-30 км, успевают, тем не менее, в большом количестве достигнуть земной поверхности. Это объясняется тем, что 2*10 -6 с - собственное время жизни мюона, то есть время, измеренное по часам, которые бы «двигались вместе с

ним». Время, отсчитанное по часам экспериментатора, связанного с поверхностью Земли, оказывается гораздо большим из-за того, что скорость мюонов близка к скорости света. Поэтому не удивительно, что экспериментатор наблюдает пробег мюона, значительно превышающий 600 м. Интересно рассмотреть этот эффект с точки зрения наблюдателя, «движущегося вместе с мюоном». Для него расстояние, пролетаемое до поверхности Земли, сокращается до 600 м в соответствии с формулой (10.10), так что мюон успевает

пролететь его за 2 10 -6 с, т. е. за «собственное время жизни».

Наиболее впечатляющее следствие преобразований Лоренца -относительность одновременности разнесенных в пространстве событий . Если два события А и В произошли одновременно в одной точке пространства, то в любой системе координат t A =t B . Конкретные значения, например, t A и t" A могут быть различными, но в каждой системе останется справедливым равенство t" A = t" B . Если же при t A = t B окажется, что

х А ≠ х в, то в любой другой системе, как это с очевидностью следует из преобразований Лоренца, t A ≠t B .

Почему это обстоятельство до Эйнштейна оставалось незамеченным? До Эйнштейна явно или неявно сохранялось представление о существовании абсолютного пространства и абсолютного времени. Но если нет абсолютной системы отсчета, нет и абсолютной одновременности. Исчезает не только абсолютное пространство, исчезает и абсолютное время, которое, по Ньютону, течет «всегда одинаково, безотносительно к чему-либо внешнему». Время СТО зависит от системы отсчета. Зависит от системы отсчета и промежуток времени между двумя событиями, и расстояние между двумя точками. В механике Галилея-Ньютона координаты точек зависят от системы отсчета, но расстояние между точками А и В

(х А - x B) 2 + (у А - у в) 2 + (z A - z B) 2 = l 2

от системы не зависит. В механике СТО эта величина перестает быть инвариантом. Независимым от системы отсчета становится интервал между событиями, определяемый соотношением

s 2 AB = c 2 (t A - t B) 2 - (х А - x B) 2 + (у А - у в) 2 + (z A - z B) 2 .

Время становится в один ряд с пространственными координатами или, как сказал Г. Минковский, «пространство само по себе и время само по себе погружаются в реку забвения, а остается жить лишь своеобразный их союз». Это проявляется особенно наглядно, если, следуя Минковскому, в качестве четвертой координаты выбрать не t, как таковое, a ict. Тогда интервал запишется в симметричной форме:

He следует, однако, воспринимать четырехмерное пространство Минковского как простой аналог нашего трехмерного мира. Все же четвертая координата сохраняет важнейшее отличие от трех остальных - однонаправленность, которой, в частности, обусловлены

причинно-следственные связи. Путешествие вспять во времени как было, так и остается невозможным.

Ввиду того, что по Лоренцу, в отличие от Галилея, преобразуется, кроме координат, и время, заметно меняется закон сложения скоростей. Если в системе К тело движется со скоростью v, имеющей составляющие по осям координат v x v y v z а система К" движется со скоростью V вдоль оси x, для составляющих скорости тела в системе К" получаем

С учетом того, что

Хотя координаты у" и z" равны соответственно у и z, составляющие скорости

по этим осям в разных системах различны, так как различаются темпы течения времени.

Не представляется неожиданным факт, что если v x по модулю равна скорости света - с, то эта величина не изменится при переходе в любую другую систему отсчета. Ведь именно инвариантность скорости света является критерием справедливости преобразований Лоренца.