იპოვეთ არითმეტიკული პროგრესიის პირველი 9 რიცხვის ჯამი. არითმეტიკული და გეომეტრიული პროგრესიები

ვიღაც სიტყვას „პროგრესიას“ სიფრთხილით ეპყრობა, როგორც ძალიან რთული ტერმინისექციებიდან უმაღლესი მათემატიკა. იმავდროულად, უმარტივესი არითმეტიკული პროგრესია არის ტაქსის მრიცხველის მუშაობა (სადაც ისინი ჯერ კიდევ რჩებიან). და გაიგე არსი (და მათემატიკაში არაფერია უფრო მნიშვნელოვანი, ვიდრე "არსის გაგება") არითმეტიკული თანმიმდევრობაეს არც ისე რთულია, როცა გაიგებ რამდენიმე ძირითად ცნებას.

მათემატიკური რიცხვების თანმიმდევრობა

ჩვეულებრივ, ციფრულ მიმდევრობას ვუწოდოთ რიცხვების სერია, რომელთაგან თითოეულს აქვს საკუთარი ნომერი.

და 1 არის მიმდევრობის პირველი წევრი;

და 2 არის მიმდევრობის მეორე წევრი;

და 7 არის რიგითობის მეშვიდე წევრი;

და n არის მიმდევრობის n-ე წევრი;

თუმცა, ჩვენ არ გვაინტერესებს რაიმე თვითნებური ფიგურა და რიცხვი. ჩვენ ყურადღებას გავამახვილებთ რიცხვით მიმდევრობაზე, რომელშიც n-ე წევრის მნიშვნელობა დაკავშირებულია მის რიგით რიცხვთან დამოკიდებულებით, რომელიც შეიძლება მკაფიოდ ჩამოყალიბდეს მათემატიკურად. Სხვა სიტყვებით: რიცხვითი მნიშვნელობა n-ე რიცხვი არის n-ის გარკვეული ფუნქცია.

a - რიცხვითი მიმდევრობის წევრის მნიშვნელობა;

n - მისი სერიული ნომერი;

f(n) არის ფუნქცია, სადაც n რიცხვითი მიმდევრობის რიგითი არგუმენტია.

განმარტება

არითმეტიკულ პროგრესიას ჩვეულებრივ უწოდებენ რიცხვითი თანმიმდევრობას, რომელშიც ყოველი მომდევნო წევრი ერთი და იგივე რიცხვით მეტია (ნაკლები) ვიდრე წინა. არითმეტიკული მიმდევრობის n-ე წევრის ფორმულა შემდეგია:

a n - მიმდინარე წევრის მნიშვნელობა არითმეტიკული პროგრესია;

a n+1 - შემდეგი რიცხვის ფორმულა;

d - განსხვავება (გარკვეული რიცხვი).

ადვილია იმის დადგენა, რომ თუ სხვაობა დადებითია (d>0), მაშინ განხილული სერიის ყოველი მომდევნო წევრი წინაზე დიდი იქნება და ასეთი არითმეტიკული პროგრესია გაიზრდება.

ქვემოთ მოცემულ დიაგრამაში ადვილი გასაგებია რატომ რიცხვითი თანმიმდევრობასახელწოდებით "მზარდი".

იმ შემთხვევებში, როდესაც განსხვავება უარყოფითია (დ<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

მითითებული წევრის ღირებულება

ზოგჯერ საჭიროა არითმეტიკული პროგრესიის ზოგიერთი თვითნებური ტერმინის მნიშვნელობის განსაზღვრა. ამის გაკეთება შეგიძლიათ არითმეტიკული პროგრესიის ყველა წევრის მნიშვნელობების თანმიმდევრული გამოთვლით, პირველიდან სასურველამდე. თუმცა, ეს გზა ყოველთვის არ არის მისაღები, თუ, მაგალითად, საჭიროა ხუთიათასიანი ან რვა მილიონიანი მნიშვნელობის პოვნა. ტრადიციულ გაანგარიშებას დიდი დრო დასჭირდება. თუმცა, კონკრეტული არითმეტიკული პროგრესია შეიძლება გამოკვლეული იყოს გარკვეული ფორმულების გამოყენებით. ასევე არსებობს n-ე წევრის ფორმულა: არითმეტიკული პროგრესიის ნებისმიერი წევრის მნიშვნელობა შეიძლება განისაზღვროს, როგორც პროგრესიის პირველი წევრის ჯამი პროგრესიის სხვაობით, გამრავლებული სასურველი წევრის რაოდენობაზე, მინუს ერთი. .

ფორმულა უნივერსალურია პროგრესირების გაზრდისა და შემცირებისთვის.

მოცემული წევრის ღირებულების გამოთვლის მაგალითი

გადავწყვიტოთ არითმეტიკული პროგრესიის n-ე წევრის მნიშვნელობის პოვნის შემდეგი ამოცანა.

მდგომარეობა: არსებობს არითმეტიკული პროგრესია პარამეტრებით:

მიმდევრობის პირველი წევრი არის 3;

რიცხვების სერიებში განსხვავება არის 1.2.

დავალება: აუცილებელია 214 ტერმინის მნიშვნელობის პოვნა

ამოხსნა: მოცემული წევრის მნიშვნელობის დასადგენად ვიყენებთ ფორმულას:

a(n) = a1 + d(n-1)

პრობლემის განცხადების მონაცემების გამონათქვამში ჩანაცვლებით, ჩვენ გვაქვს:

a(214) = a1 + d(n-1)

a(214) = 3 + 1.2 (214-1) = 258.6

პასუხი: მიმდევრობის 214 წევრი უდრის 258,6-ს.

ამ გაანგარიშების მეთოდის უპირატესობები აშკარაა - მთელი გამოსავალი იღებს არაუმეტეს 2 ხაზს.

წევრთა მოცემული რაოდენობის ჯამი

ძალიან ხშირად, მოცემულ არითმეტიკულ სერიაში საჭიროა მისი ზოგიერთი სეგმენტის მნიშვნელობების ჯამის დადგენა. მას ასევე არ სჭირდება თითოეული ტერმინის მნიშვნელობების გამოთვლა და შემდეგ მათი შეჯამება. ეს მეთოდი გამოიყენება, თუ ტერმინების რაოდენობა, რომელთა ჯამი უნდა მოიძებნოს, მცირეა. სხვა შემთხვევებში უფრო მოსახერხებელია შემდეგი ფორმულის გამოყენება.

არითმეტიკული პროგრესიის წევრების ჯამი 1-დან n-მდე უდრის პირველი და n-ე წევრების ჯამს, გამრავლებული n წევრის რიცხვზე და გაყოფილი ორზე. თუ ფორმულაში n-ე წევრის მნიშვნელობა შეიცვლება სტატიის წინა აბზაცის გამოსახულებით, მივიღებთ:

გაანგარიშების მაგალითი

მაგალითად, მოვაგვაროთ პრობლემა შემდეგი პირობებით:

მიმდევრობის პირველი წევრი არის ნული;

განსხვავება არის 0.5.

პრობლემაში საჭიროა სერიის ტერმინების ჯამის დადგენა 56-დან 101-მდე.

გამოსავალი. მოდით გამოვიყენოთ ფორმულა პროგრესიის ჯამის დასადგენად:

s(n) = (2∙a1 + d∙(n-1))∙n/2

პირველ რიგში, ჩვენ განვსაზღვრავთ პროგრესიის 101 წევრის მნიშვნელობების ჯამს ჩვენი პრობლემის მოცემული პირობების ფორმულით ჩანაცვლებით:

s 101 = (2∙0 + 0.5∙(101-1))∙101/2 = 2 525

ცხადია, 56-დან 101-მდე პროგრესირების ტერმინების ჯამის გასარკვევად საჭიროა S 101-ს გამოვაკლოთ S 55.

s 55 = (2∙0 + 0.5∙(55-1))∙55/2 = 742.5

ასე რომ, არითმეტიკული პროგრესიის ჯამი ამ მაგალითისთვის არის:

s 101 - s 55 \u003d 2,525 - 742,5 \u003d 1,782.5

არითმეტიკული პროგრესიის პრაქტიკული გამოყენების მაგალითი

სტატიის ბოლოს დავუბრუნდეთ პირველ აბზაცში მოცემულ არითმეტიკული თანმიმდევრობის მაგალითს - ტაქსიმეტრი (ტაქსი მანქანის მრიცხველი). განვიხილოთ ასეთი მაგალითი.

ტაქსიში ჩაჯდომა (რომელიც მოიცავს 3 კმ-ს) 50 მანეთი ღირს. ყოველი მომდევნო კილომეტრის გადახდა ხდება 22 რუბლი / კმ. მგზავრობის მანძილი 30 კმ. გამოთვალეთ მოგზაურობის ღირებულება.

1. გადავაგდოთ პირველი 3 კმ, რომლის ფასიც შედის სადესანტო ღირებულებაში.

30 - 3 = 27 კმ.

2. შემდგომი გამოთვლა სხვა არაფერია, თუ არა არითმეტიკული რიცხვების სერიის გარჩევა.

წევრის ნომერი არის გავლილი კილომეტრების რაოდენობა (გამოკლებული პირველი სამი).

წევრის ღირებულება არის ჯამი.

ამ პრობლემის პირველი ვადა იქნება 1 = 50 რუბლის ტოლი.

პროგრესირების სხვაობა d = 22 p.

ჩვენთვის საინტერესო რაოდენობა - არითმეტიკული პროგრესიის (27 + 1)-ე წევრის მნიშვნელობა - მეტრის ჩვენება 27-ე კილომეტრის ბოლოს - 27,999 ... = 28 კმ.

a 28 \u003d 50 + 22 ∙ (28 - 1) \u003d 644

კალენდარული მონაცემების გამოთვლები თვითნებურად ხანგრძლივი პერიოდისთვის ეფუძნება ფორმულებს, რომლებიც აღწერს გარკვეულ რიცხვობრივ თანმიმდევრობას. ასტრონომიაში, ორბიტის სიგრძე გეომეტრიულად არის დამოკიდებული ციური სხეულის მანძილს მნათობამდე. გარდა ამისა, სხვადასხვა რიცხვითი სერიები წარმატებით გამოიყენება სტატისტიკაში და მათემატიკის სხვა გამოყენებითი დარგებში.

რიცხვების მიმდევრობის კიდევ ერთი სახეობაა გეომეტრიული

გეომეტრიულ პროგრესიას ახასიათებს ცვლილების დიდი, არითმეტიკასთან შედარებით. შემთხვევითი არ არის, რომ პოლიტიკაში, სოციოლოგიაში, მედიცინაში ხშირად, კონკრეტული ფენომენის გავრცელების მაღალი სიჩქარის საჩვენებლად, მაგალითად, დაავადების ეპიდემიის დროს, ამბობენ, რომ პროცესი ექსპონენტურად ვითარდება.

გეომეტრიული რიცხვების სერიის N-ე წევრი განსხვავდება წინასგან იმით, რომ ის მრავლდება რაიმე მუდმივ რიცხვზე - მნიშვნელი, მაგალითად, პირველი წევრი არის 1, მნიშვნელი არის 2, შესაბამისად, შემდეგ:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - გეომეტრიული პროგრესიის მიმდინარე წევრის მნიშვნელობა;

b n+1 - გეომეტრიული პროგრესიის შემდეგი წევრის ფორმულა;

q არის გეომეტრიული პროგრესიის (მუდმივი რიცხვის) მნიშვნელი.

თუ არითმეტიკული პროგრესიის გრაფიკი არის სწორი ხაზი, მაშინ გეომეტრიული ხაზს ოდნავ განსხვავებულ სურათს:

როგორც არითმეტიკის შემთხვევაში, გეომეტრიულ პროგრესიას აქვს თვითნებური წევრის მნიშვნელობის ფორმულა. გეომეტრიული პროგრესიის ნებისმიერი n-ე წევრი უდრის პირველი წევრის ნამრავლს და პროგრესიის მნიშვნელს n-ის ხარისხზე შემცირებული ერთით:

მაგალითი. გვაქვს გეომეტრიული პროგრესია, რომლის პირველი წევრი უდრის 3-ს და პროგრესიის მნიშვნელი უდრის 1,5-ს. იპოვეთ პროგრესიის მე-5 წევრი

b 5 \u003d b 1 ∙ q (5-1) \u003d 3 ∙ 1.5 4 \u003d 15.1875

წევრების მოცემული რაოდენობის ჯამი ასევე გამოითვლება სპეციალური ფორმულით. გეომეტრიული პროგრესიის პირველი n წევრის ჯამი უდრის სხვაობას პროგრესიის n-ე წევრისა და მისი მნიშვნელის ნამრავლსა და პროგრესიის პირველ წევრს შორის, გაყოფილი მნიშვნელზე შემცირებული ერთით:

თუ b n ჩანაცვლებულია ზემოთ განხილული ფორმულით, განხილული რიცხვების სერიის პირველი n წევრის ჯამის მნიშვნელობა მიიღებს ფორმას:

მაგალითი. გეომეტრიული პროგრესია იწყება პირველი წევრით 1-ის ტოლი. მნიშვნელი დაყენებულია 3-ის ტოლი. ვიპოვოთ პირველი რვა წევრის ჯამი.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280


დიახ, დიახ: არითმეტიკული პროგრესია თქვენთვის სათამაშო არ არის :)

კარგი, მეგობრებო, თუ თქვენ კითხულობთ ამ ტექსტს, მაშინ შიდა ქუდის მტკიცებულება მეუბნება, რომ თქვენ ჯერ კიდევ არ იცით რა არის არითმეტიკული პროგრესია, მაგრამ ნამდვილად (არა, ასე: SOOOOO!) გსურთ იცოდეთ. ამიტომ, მე არ დაგტანჯავთ ხანგრძლივი შესავლებით და მაშინვე საქმეს გადავალ.

დასაწყისისთვის, რამდენიმე მაგალითი. განვიხილოთ რიცხვების რამდენიმე ნაკრები:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

რა საერთო აქვს ყველა ამ კომპლექტს? ერთი შეხედვით არაფერი. მაგრამ რეალურად არის რაღაც. კერძოდ: ყოველი შემდეგი ელემენტი წინადან ერთი და იგივე რაოდენობით განსხვავდება.

თავად განსაჯეთ. პირველი ნაკრები არის მხოლოდ თანმიმდევრული რიცხვები, თითოეული წინაზე მეტი. მეორე შემთხვევაში, სხვაობა მეზობელ რიცხვებს შორის უკვე უდრის ხუთს, მაგრამ ეს სხვაობა მაინც მუდმივია. მესამე შემთხვევაში ზოგადად ფესვებია. თუმცა, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, ხოლო $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, ე.ი. ამ შემთხვევაში ყოველი შემდეგი ელემენტი უბრალოდ იზრდება $\sqrt(2)$-ით (და არ შეგეშინდეთ, რომ ეს რიცხვი ირაციონალურია).

ასე რომ: ყველა ასეთ მიმდევრობას უბრალოდ არითმეტიკული პროგრესია ეწოდება. მოდით მივცეთ მკაცრი განმარტება:

განმარტება. რიცხვების თანმიმდევრობას, რომლებშიც ყოველი შემდეგი განსხვავდება წინადან ზუსტად იმავე რაოდენობით, არითმეტიკული პროგრესია ეწოდება. იმ რაოდენობას, რომლითაც რიცხვები განსხვავდება, ეწოდება პროგრესირების განსხვავება და ყველაზე ხშირად აღინიშნება ასო $d$-ით.

აღნიშვნა: $\left(((a)_(n)) \right)$ არის თავად პროგრესია, $d$ არის მისი განსხვავება.

და მხოლოდ რამდენიმე მნიშვნელოვანი შენიშვნა. პირველ რიგში, მხოლოდ პროგრესირება განიხილება მოწესრიგებულირიცხვების თანმიმდევრობა: ნებადართულია მათი წაკითხვა მკაცრად იმ თანმიმდევრობით, რომლითაც ისინი იწერება - და სხვა არაფერი. თქვენ არ შეგიძლიათ ნომრების გადაწყობა ან გაცვლა.

მეორეც, თანმიმდევრობა თავისთავად შეიძლება იყოს სასრული ან უსასრულო. მაგალითად, სიმრავლე (1; 2; 3) აშკარად სასრულ არითმეტიკული პროგრესიაა. მაგრამ თუ რამეს წერთ სულით (1; 2; 3; 4; ...) - ეს უკვე არის უსასრულო პროგრესი. ელიფსისი ოთხის შემდეგ, თითქოსდა, მიანიშნებს, რომ საკმაოდ ბევრი რიცხვი უფრო შორს მიდის. უსაზღვროდ ბევრი, მაგალითად. :)

ასევე მინდა აღვნიშნო, რომ პროგრესი იზრდება და კლებულობს. ჩვენ უკვე ვნახეთ მზარდი - იგივე ნაკრები (1; 2; 3; 4; ...). აქ მოცემულია პროგრესირების შემცირების მაგალითები:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

კარგი, კარგი: ბოლო მაგალითი შეიძლება ზედმეტად რთული ჩანდეს. მაგრამ დანარჩენი, ვფიქრობ, გესმით. ამიტომ, ჩვენ შემოგთავაზებთ ახალ განმარტებებს:

განმარტება. არითმეტიკული პროგრესია ეწოდება:

  1. იზრდება, თუ ყოველი შემდეგი ელემენტი მეტია წინაზე;
  2. მცირდება, თუ პირიქით, ყოველი მომდევნო ელემენტი წინაზე ნაკლებია.

გარდა ამისა, არსებობს ეგრეთ წოდებული "სტაციონარული" მიმდევრობები - ისინი შედგება ერთი და იგივე განმეორებადი რიცხვისგან. მაგალითად, (3; 3; 3; ...).

რჩება მხოლოდ ერთი კითხვა: როგორ განვასხვავოთ მზარდი პროგრესი კლებისგან? საბედნიეროდ, აქ ყველაფერი დამოკიდებულია მხოლოდ $d$ რიცხვის ნიშანზე, ე.ი. პროგრესირების განსხვავებები:

  1. თუ $d \gt 0$, მაშინ პროგრესი იზრდება;
  2. თუ $d \lt 0$, მაშინ პროგრესი აშკარად მცირდება;
  3. და ბოლოს, არის შემთხვევა $d=0$ - ამ შემთხვევაში მთელი პროგრესია მცირდება იდენტური რიცხვების სტაციონარული მიმდევრობით: (1; 1; 1; 1; ...) და ა.შ.

შევეცადოთ გამოვთვალოთ სხვაობა $d$ ზემოთ სამი კლებადი პროგრესიისთვის. ამისათვის საკმარისია აიღოთ ნებისმიერი ორი მომიჯნავე ელემენტი (მაგალითად, პირველი და მეორე) და გამოვაკლოთ რიცხვს მარჯვნივ, რიცხვს მარცხნივ. ეს ასე გამოიყურება:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

როგორც ხედავთ, სამივე შემთხვევაში განსხვავება მართლაც უარყოფითი აღმოჩნდა. ახლა კი, როცა მეტ-ნაკლებად გავარკვიეთ განმარტებები, დროა გავიგოთ, როგორ არის აღწერილი პროგრესიები და რა თვისებები აქვთ მათ.

პროგრესიისა და განმეორებითი ფორმულის წევრები

ვინაიდან ჩვენი თანმიმდევრობის ელემენტების შეცვლა შეუძლებელია, მათი დანომრვა შესაძლებელია:

\[\left(((a)_(n)) \მარჯვნივ)=\მარცხნივ\(((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \მარჯვნივ\)\]

ამ ნაკრების ცალკეულ ელემენტებს პროგრესიის წევრებს უწოდებენ. ისინი ამ გზით მითითებულია რიცხვის დახმარებით: პირველი წევრი, მეორე წევრი და ა.შ.

გარდა ამისა, როგორც უკვე ვიცით, პროგრესიის მეზობელი წევრები დაკავშირებულია ფორმულით:

\[((a)_(n))-((a)_(n-1))=d\მარჯვენა ისარი ((a)_(n))=((a)_(n-1))+d \]

მოკლედ, პროგრესიის $n$th ტერმინის საპოვნელად, თქვენ უნდა იცოდეთ $n-1$th წევრი და სხვაობა $d$. ასეთ ფორმულას ეწოდება განმეორებადი, რადგან მისი დახმარებით შეგიძლიათ იპოვოთ ნებისმიერი რიცხვი, მხოლოდ წინას (და სინამდვილეში, ყველა წინას) ცოდნა. ეს ძალიან მოუხერხებელია, ამიტომ არსებობს უფრო რთული ფორმულა, რომელიც ამცირებს ნებისმიერ გამოთვლას პირველ ტერმინამდე და განსხვავებას:

\[((a)_(n))=((a)_(1))+\მარცხნივ(n-1 \მარჯვნივ)d\]

თქვენ ალბათ ადრე შეგხვედრიათ ეს ფორმულა. მათ მოსწონთ მისი მიცემა ყველა სახის საცნობარო წიგნში და რეებნიკებში. და მათემატიკის ნებისმიერ გონივრული სახელმძღვანელოში ის ერთ-ერთი პირველია.

თუმცა, გირჩევთ, ცოტა ივარჯიშოთ.

დავალება ნომერი 1. ჩაწერეთ არითმეტიკული პროგრესიის პირველი სამი წევრი $\left(((a)_(n)) \right)$ თუ $((a)_(1))=8,d=-5$.

გამოსავალი. ასე რომ, ჩვენ ვიცით პირველი წევრი $((a)_(1))=8$ და პროგრესიის სხვაობა $d=-5$. მოდით გამოვიყენოთ მოცემული ფორმულა და ჩავანაცვლოთ $n=1$, $n=2$ და $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \მარჯვნივ)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \მარჯვნივ)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\მარცხნივ(2-1 \მარჯვნივ)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\მარცხნივ(3-1 \მარჯვნივ)d=((a)_(1))+2d=8-10= -2. \\ \ბოლო (გასწორება)\]

პასუხი: (8; 3; -2)

Სულ ეს არის! გაითვალისწინეთ, რომ ჩვენი პროგრესი მცირდება.

რა თქმა უნდა, $n=1$-ის ჩანაცვლება არ შეიძლებოდა - ჩვენ უკვე ვიცით პირველი ტერმინი. თუმცა, ერთეულის ჩანაცვლებით, ჩვენ დავრწმუნდით, რომ პირველი ტერმინისთვისაც კი ჩვენი ფორმულა მუშაობს. სხვა შემთხვევებში ყველაფერი ბანალურ არითმეტიკამდე მიდიოდა.

დავალება ნომერი 2. ჩაწერეთ არითმეტიკული პროგრესიის პირველი სამი წევრი, თუ მისი მეშვიდე წევრია −40 და მეჩვიდმეტე წევრი არის −50.

გამოსავალი. ჩვენ ვწერთ პრობლემის მდგომარეობას ჩვეულებრივი პირობებით:

\[((a)_(7))=-40;\ quad ((a)_(17))=-50.\]

\[\მარცხნივ\( \დაწყება(გასწორება) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=(a) _(1))+16d \\ \ბოლო (გასწორება) \მარჯვნივ.\]

\[\მარცხნივ\( \დაწყება(გასწორება) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \ბოლო (გასწორება) \მარჯვნივ.\]

სისტემის ნიშანი იმიტომ დავდე, რომ ეს მოთხოვნები ერთდროულად უნდა დაკმაყოფილდეს. ახლა კი აღვნიშნავთ, რომ თუ პირველ განტოლებას გამოვაკლებთ მეორე განტოლებას (ჩვენ გვაქვს ამის უფლება, რადგან გვაქვს სისტემა), მივიღებთ ამას:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \მარჯვნივ); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \ბოლო (გასწორება)\]

სწორედ ასე, ჩვენ აღმოვაჩინეთ პროგრესის განსხვავება! რჩება აღმოჩენილი რიცხვის ჩანაცვლება სისტემის რომელიმე განტოლებაში. მაგალითად, პირველში:

\[\ დასაწყისი(მატრიცა) ((a)_(1))+6d=-40;\quad d=-1 \\ \ქვემოთ \\ ((a)_(1))-6=-40; \\ ((ა)_(1))=-40+6=-34. \\ \დასრულება (მატრიცა)\]

ახლა, პირველი ტერმინისა და განსხვავების ცოდნით, რჩება მეორე და მესამე ტერმინების პოვნა:

\[\ დასაწყისი(გასწორება) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \ბოლო (გასწორება)\]

მზადაა! პრობლემა მოგვარებულია.

პასუხი: (-34; -35; -36)

ყურადღება მიაქციეთ პროგრესიის კურიოზულ თვისებას, რომელიც აღმოვაჩინეთ: თუ ავიღებთ $n$th და $m$th ტერმინებს და გამოვაკლებთ მათ ერთმანეთს, მაშინ მივიღებთ პროგრესიის სხვაობას გამრავლებული $n-m$ რიცხვზე:

\[((a)_(n))-((a)_(m))=d\cdot \მარცხნივ(n-m \მარჯვნივ)\]

მარტივი, მაგრამ ძალიან სასარგებლო თვისება, რომელიც აუცილებლად უნდა იცოდეთ - მისი დახმარებით შეგიძლიათ მნიშვნელოვნად დააჩქაროთ პროგრესირების მრავალი პრობლემის გადაჭრა. აი ამის ნათელი მაგალითი:

დავალება ნომერი 3. არითმეტიკული პროგრესიის მეხუთე წევრია 8,4, ხოლო მისი მეათე წევრი არის 14,4. იპოვეთ ამ პროგრესიის მეთხუთმეტე წევრი.

გამოსავალი. ვინაიდან $((a)_(5))=8.4$, $((a)_(10))=14.4$ და ჩვენ უნდა ვიპოვოთ $((a)_(15))$, აღვნიშნავთ შემდეგს:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5დ. \\ \ბოლო (გასწორება)\]

მაგრამ პირობით $((a)_(10))-((a)_(5))=14.4-8.4=6$, ანუ $5d=6$, საიდანაც გვაქვს:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \ბოლო (გასწორება)\]

პასუხი: 20.4

Სულ ეს არის! ჩვენ არ დაგვჭირდა განტოლებათა სისტემის შედგენა და პირველი წევრისა და სხვაობის გამოთვლა - ყველაფერი რამდენიმე სტრიქონში გადაწყდა.

ახლა განვიხილოთ სხვა ტიპის პრობლემა - პროგრესის უარყოფითი და პოზიტიური წევრების ძიება. საიდუმლო არ არის, რომ თუ პროგრესი იზრდება, ხოლო მისი პირველი ტერმინი უარყოფითია, ადრე თუ გვიან მასში დადებითი ტერმინები გამოჩნდება. და პირიქით: კლებადი პროგრესირების პირობები ადრე თუ გვიან გახდება უარყოფითი.

ამავდროულად, ყოველთვის არ არის შესაძლებელი ამ მომენტის პოვნა "შუბლზე", ელემენტების თანმიმდევრულად დახარისხება. ხშირად, პრობლემები ისეა შექმნილი, რომ ფორმულების ცოდნის გარეშე, გამოთვლებს რამდენიმე ფურცელი დასჭირდება - უბრალოდ ვიძინებდით, სანამ პასუხს არ ვიპოვით. ამიტომ ვეცდებით ამ პრობლემების უფრო სწრაფად გადაჭრას.

დავალება ნომერი 4. რამდენი უარყოფითი წევრია არითმეტიკული პროგრესიაში -38,5; -35,8; …?

გამოსავალი. ასე რომ, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, საიდანაც დაუყოვნებლივ ვპოულობთ განსხვავებას:

გაითვალისწინეთ, რომ განსხვავება დადებითია, ამიტომ პროგრესი იზრდება. პირველი წევრი უარყოფითია, ასე რომ, რაღაც მომენტში ჩვენ წავაწყდებით დადებით რიცხვებს. ერთადერთი საკითხია, როდის მოხდება ეს.

შევეცადოთ გავარკვიოთ: რამდენ ხანს (ე.ი. რომელ ბუნებრივ რიცხვამდე $n$) არის დაცული ტერმინების ნეგატიურობა:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\მარცხნივ(n-1 \მარჯვნივ)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \მარჯვნივ. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\rightarrow ((n)_(\max ))=15. \\ \ბოლო (გასწორება)\]

ბოლო სტრიქონი დაზუსტებას საჭიროებს. ასე რომ, ჩვენ ვიცით, რომ $n \lt 15\frac(7)(27)$. მეორეს მხრივ, რიცხვის მხოლოდ მთელი მნიშვნელობები მოგვწონს (უფრო მეტიც: $n\in \mathbb(N)$), ამიტომ ყველაზე დიდი დასაშვები რიცხვია ზუსტად $n=15$ და არავითარ შემთხვევაში 16.

დავალება ნომერი 5. არითმეტიკული პროგრესიით $(()_(5))=-150,(()_(6))=-147$. იპოვეთ ამ პროგრესიის პირველი დადებითი წევრის რიცხვი.

ეს იქნება ზუსტად იგივე პრობლემა, როგორც წინა, მაგრამ ჩვენ არ ვიცით $((a)_(1))$. მაგრამ მეზობელი ტერმინები ცნობილია: $((a)_(5))$ და $((a)_(6))$, ასე რომ, ჩვენ შეგვიძლია მარტივად ვიპოვოთ პროგრესიის განსხვავება:

გარდა ამისა, შევეცადოთ გამოვხატოთ მეხუთე ტერმინი პირველის და სხვაობის თვალსაზრისით სტანდარტული ფორმულის გამოყენებით:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \ბოლო (გასწორება)\]

ახლა ჩვენ გავაგრძელებთ წინა პრობლემის ანალოგიით. ჩვენ გავარკვიეთ, რომელ მომენტში გამოჩნდება ჩვენი მიმდევრობის დადებითი რიცხვები:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \მარჯვნივ)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \ბოლო (გასწორება)\]

ამ უტოლობის მინიმალური მთელი რიცხვი არის რიცხვი 56.

გთხოვთ გაითვალისწინოთ, რომ ბოლო ამოცანაში ყველაფერი დაყვანილ იქნა მკაცრ უთანასწორობამდე, ამიტომ ვარიანტი $n=55$ არ გამოგვდის.

ახლა, როდესაც ვისწავლეთ მარტივი პრობლემების გადაჭრა, მოდით გადავიდეთ უფრო რთულზე. მაგრამ ჯერ გავიგოთ არითმეტიკული პროგრესიების კიდევ ერთი ძალიან სასარგებლო თვისება, რომელიც დაგვიზოგავს უამრავ დროს და არათანაბარ უჯრედებს მომავალში. :)

საშუალო არითმეტიკული და ტოლი შეწევა

განვიხილოთ მზარდი არითმეტიკული პროგრესიის რამდენიმე თანმიმდევრული წევრი $\left(((a)_(n)) \right)$. შევეცადოთ აღვნიშნოთ ისინი რიცხვით ხაზზე:

არითმეტიკული პროგრესიის წევრები რიცხვთა წრფეზე

მე კონკრეტულად აღვნიშნე თვითნებური წევრები $((a)_(n-3)),...,((a)_(n+3))$, და არა $((a)_(1)) , \ ((ა)_(2)),\ ((ა)_(3))$ და ა.შ. რადგან წესი, რომელსაც ახლა გეტყვით, ნებისმიერ „სეგმენტზე“ ერთნაირად მუშაობს.

და წესი ძალიან მარტივია. გავიხსენოთ რეკურსიული ფორმულა და ჩავწეროთ ყველა მონიშნული წევრისთვის:

\[\ დასაწყისი(გასწორება) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \ბოლო (გასწორება)\]

თუმცა, ეს თანასწორობები შეიძლება სხვაგვარად გადაიწეროს:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \ბოლო (გასწორება)\]

აბა, მერე რა? მაგრამ ის ფაქტი, რომ ტერმინები $((a)_(n-1))$ და $((a)_(n+1))$ $((a)_(n)) $-დან ერთსა და იმავე მანძილზე მდებარეობს. . და ეს მანძილი $d$-ის ტოლია. იგივე შეიძლება ითქვას ტერმინებზე $((a)_(n-2))$ და $((a)_(n+2))$ - ისინი ასევე ამოღებულია $((a)_(n)-დან. )$ იგივე მანძილით უდრის $2d$-ს. შეგიძლიათ გააგრძელოთ განუსაზღვრელი ვადით, მაგრამ სურათი კარგად ასახავს მნიშვნელობას


პროგრესიის წევრები ცრუობენ ცენტრიდან იმავე მანძილზე

რას ნიშნავს ეს ჩვენთვის? ეს ნიშნავს, რომ თქვენ შეგიძლიათ იპოვოთ $((a)_(n))$, თუ ცნობილია მეზობელი ნომრები:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

ჩვენ გამოვიტანეთ შესანიშნავი განცხადება: არითმეტიკული პროგრესიის თითოეული წევრი უდრის მეზობელი წევრების საშუალო არითმეტიკულს! უფრო მეტიც, ჩვენ შეგვიძლია გადავუხვიოთ $((a)_(n))$-დან მარცხნივ და მარჯვნივ არა ერთი ნაბიჯით, არამედ $k$ ნაბიჯებით - და მაინც ფორმულა სწორი იქნება:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

იმათ. ჩვენ მარტივად შეგვიძლია ვიპოვოთ $((a)_(150))$ თუ ვიცით $((a)_(100))$ და $((a)_(200))$, რადგან $((a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. ერთი შეხედვით შეიძლება მოგვეჩვენოს, რომ ეს ფაქტი არაფერს არ გვაძლევს სასარგებლო. თუმცა, პრაქტიკაში, არითმეტიკული საშუალო გამოსაყენებლად სპეციალურად „გამახვილებულია“ მრავალი დავალება. Შეხედე:

დავალება ნომერი 6. იპოვეთ $x$-ის ყველა მნიშვნელობები ისე, რომ რიცხვები $-6((x)^(2))$, $x+1$ და $14+4((x)^(2))$ იყოს თანმიმდევრული წევრები არითმეტიკული პროგრესია (მითითებული თანმიმდევრობით).

გამოსავალი. ვინაიდან ეს რიცხვები პროგრესიის წევრები არიან, მათთვის საშუალო არითმეტიკული პირობა დაკმაყოფილებულია: ცენტრალური ელემენტი $x+1$ შეიძლება გამოისახოს მეზობელი ელემენტების მიხედვით:

\[\begin(გასწორება) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \ბოლო (გასწორება)\]

კლასიკური აღმოჩნდა კვადრატული განტოლება. მისი ფესვები: $x=2$ და $x=-3$ არის პასუხები.

პასუხი: -3; 2.

დავალება ნომერი 7. იპოვეთ $$-ის მნიშვნელობები ისე, რომ რიცხვებმა $-1;4-3;(()^(2))+1$ შექმნან არითმეტიკული პროგრესია (ამ თანმიმდევრობით).

გამოსავალი. კვლავ გამოვხატავთ შუა ტერმინს მეზობელი ტერმინების საშუალო არითმეტიკული თვალსაზრისით:

\[\begin(გასწორება) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \მარცხნივ| \cdot 2\right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \ბოლო (გასწორება)\]

კიდევ ერთი კვადრატული განტოლება. და ისევ ორი ​​ფესვი: $x=6$ და $x=1$.

პასუხი: 1; 6.

თუ პრობლემის გადაჭრის პროცესში მიიღებთ რამდენიმე ბრუტალურ რიცხვს, ან ბოლომდე დარწმუნებული არ ხართ ნაპოვნი პასუხების სისწორეში, მაშინ არსებობს შესანიშნავი ხრიკი, რომელიც საშუალებას გაძლევთ შეამოწმოთ: სწორად გადავჭრით პრობლემა?

ვთქვათ, მე-6 ამოცანაში მივიღეთ პასუხები -3 და 2. როგორ შევამოწმოთ, რომ ეს პასუხები სწორია? მოდით შევაერთოთ ისინი თავდაპირველ მდგომარეობაში და ვნახოთ რა მოხდება. შეგახსენებთ, რომ გვაქვს სამი რიცხვი ($-6(()^(2))$, $+1$ და $14+4(()^(2))$), რომლებიც არითმეტიკულ პროგრესიას უნდა ქმნიდნენ. ჩანაცვლება $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \ბოლო (გასწორება)\]

მივიღეთ ნომრები -54; −2; 50, რომელიც განსხვავდება 52-ით, უდავოდ არის არითმეტიკული პროგრესია. იგივე ხდება $x=2$-ზე:

\[\ დასაწყისი(გასწორება) & x=2\მარჯვენა ისარი \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \ბოლო(გასწორება)\]

ისევ პროგრესია, მაგრამ 27-ის სხვაობით. ამგვარად, პრობლემა სწორად მოგვარებულია. მსურველებს შეუძლიათ დამოუკიდებლად შეამოწმონ მეორე დავალება, მაგრამ მე მაშინვე ვიტყვი: იქაც ყველაფერი სწორია.

ზოგადად, ბოლო პრობლემების გადაჭრისას, ჩვენ წავაწყდით კიდევ ერთ საინტერესო ფაქტს, რომელიც ასევე უნდა გვახსოვდეს:

თუ სამი რიცხვი ისეთია, რომ მეორე არის პირველი და ბოლო საშუალო, მაშინ ეს რიცხვები ქმნიან არითმეტიკულ პროგრესიას.

მომავალში, ამ განცხადების გაგება საშუალებას მოგვცემს ფაქტიურად „ავაშენოთ“ საჭირო პროგრესი პრობლემის მდგომარეობიდან გამომდინარე. მაგრამ სანამ ასეთ „მშენებლობას“ მივაქცევთ, ყურადღება უნდა მივაქციოთ კიდევ ერთ ფაქტს, რომელიც პირდაპირ გამომდინარეობს უკვე განხილულიდან.

ელემენტების დაჯგუფება და ჯამი

დავუბრუნდეთ ისევ რიცხვთა ხაზს. ჩვენ აღვნიშნავთ პროგრესის რამდენიმე წევრს, რომელთა შორის, შესაძლოა. ღირს ბევრი სხვა წევრი:

რიცხვთა ხაზზე მონიშნულია 6 ელემენტი

შევეცადოთ გამოვხატოთ "მარცხენა კუდი" $((a)_(n))$-ით და $d$-ით, ხოლო "მარჯვენა კუდი" $((a)_(k))$-ით და $-ით. d$. ძალიან მარტივია:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((ა)_(კ-1))=((ა)_(კ))-დ; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \ბოლო (გასწორება)\]

ახლა გაითვალისწინეთ, რომ შემდეგი ჯამები ტოლია:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((ა)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= ს. \ბოლო(გასწორება)\]

მარტივად რომ ვთქვათ, თუ საწყისად განვიხილავთ პროგრესიის ორ ელემენტს, რომლებიც საერთო ჯამში $S$-ის რაღაც რიცხვის ტოლია და შემდეგ ამ ელემენტებიდან დავიწყებთ ნაბიჯს საპირისპირო მიმართულებით (ერთმანეთისკენ ან პირიქით გადასაადგილებლად), მაშინ ტოლი იქნება ელემენტების ჯამებიც, რომლებსაც წავაწყდებით$S$. ეს შეიძლება იყოს საუკეთესოდ წარმოდგენილი გრაფიკულად:


იგივე აბზაცები იძლევა თანაბარ ჯამებს

ამ ფაქტის გაგება საშუალებას მოგვცემს გადავჭრათ ფუნდამენტურად უფრო მაღალი დონის სირთულის პრობლემები, ვიდრე ზემოთ განვიხილეთ. მაგალითად, ესენი:

დავალება ნომერი 8. დაადგინეთ არითმეტიკული პროგრესიის სხვაობა, რომელშიც პირველი წევრი არის 66, ხოლო მეორე და მეთორმეტე წევრის ნამრავლი არის უმცირესი.

გამოსავალი. მოდით დავწეროთ ყველაფერი, რაც ვიცით:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\წთ. \ბოლო(გასწორება)\]

ასე რომ, ჩვენ არ ვიცით $d$ პროგრესიის განსხვავება. სინამდვილეში, მთელი გამოსავალი აგებული იქნება სხვაობის გარშემო, რადგან პროდუქტი $((a)_(2))\cdot ((a)_(12))$ შეიძლება გადაიწეროს შემდეგნაირად:

\[\ დასაწყისი(გასწორება) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\მარცხნივ(66+d \მარჯვნივ)\cdot \left(66+11d \მარჯვნივ)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \მარჯვნივ). \ბოლო(გასწორება)\]

ავზში მყოფთათვის: მე ავიღე საერთო ფაქტორი 11 მეორე ფრჩხილიდან. ამრიგად, სასურველი პროდუქტი არის კვადრატული ფუნქცია $d$ ცვლადის მიმართ. ამიტომ, განიხილეთ ფუნქცია $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - მისი გრაფიკი იქნება პარაბოლა ტოტებით ზემოთ, რადგან თუ ფრჩხილებს გავხსნით, მივიღებთ:

\[\ დასაწყისი (გასწორება) & f\ მარცხნივ(d \მარჯვნივ)=11\მარცხნივ(((დ)^(2))+66d+6d+66\cdot 6 \მარჯვნივ)= \\ & =11(( დ)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end (გასწორება)\]

როგორც ხედავთ, ყველაზე მაღალი წევრის კოეფიციენტი არის 11 - ეს არის დადებითი რიცხვი, ასე რომ, ჩვენ ნამდვილად გვაქვს საქმე პარაბოლასთან ტოტებით ზემოთ:


კვადრატული ფუნქციის გრაფიკი - პარაბოლა

გთხოვთ გაითვალისწინოთ: ეს პარაბოლა იღებს თავის მინიმალურ მნიშვნელობას თავის წვეროზე $((d)_(0))$ აბსცისით. რა თქმა უნდა, ჩვენ შეგვიძლია გამოვთვალოთ ეს აბსციზა სტანდარტული სქემის მიხედვით (არსებობს ფორმულა $((d)_(0))=(-b)/(2a)\;$), მაგრამ ბევრად უფრო გონივრული იქნება გაითვალისწინეთ, რომ სასურველი წვერო დევს პარაბოლას ღერძის სიმეტრიაზე, ამიტომ წერტილი $((d)_(0))$ თანაბარი მანძილით არის დაშორებული $f\left(d \right)=0$ განტოლების ფესვებისგან:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((დ)_(1))=-66;\ოთხი ((დ)_(2))=-6. \\ \ბოლო (გასწორება)\]

ამიტომაც არ ვჩქარობდი ფრჩხილების გახსნას: თავდაპირველი სახით ფესვების პოვნა ძალიან, ძალიან ადვილი იყო. მაშასადამე, აბსციზა უდრის −66 და −6 რიცხვების საშუალო არითმეტიკულს:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

რა გვაძლევს აღმოჩენილ რიცხვს? მასთან ერთად, საჭირო პროდუქტი იღებს უმცირეს მნიშვნელობას (სხვათა შორის, ჩვენ არ გამოვთვალეთ $((y)_(\min ))$ - ეს ჩვენგან არ არის საჭირო). ამავდროულად, ეს რიცხვი არის საწყისი პროგრესიის სხვაობა, ე.ი. ვიპოვეთ პასუხი. :)

პასუხი: -36

დავალება ნომერი 9. ჩასვით სამი რიცხვი $-\frac(1)(2)$ და $-\frac(1)(6)$ რიცხვებს შორის ისე, რომ მოცემულ რიცხვებთან ერთად შექმნან არითმეტიკული პროგრესია.

გამოსავალი. სინამდვილეში, ჩვენ უნდა შევქმნათ ხუთი რიცხვის მიმდევრობა, პირველი და ბოლო რიცხვი უკვე ცნობილია. გამოტოვებული რიცხვების აღნიშვნა $x$, $y$ და $z$ ცვლადებით:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \მარჯვნივ\ )\]

გაითვალისწინეთ, რომ რიცხვი $y$ არის ჩვენი მიმდევრობის „შუა“ - ის თანაბარი მანძილით არის დაშორებული $x$ და $z$ რიცხვებისგან და $-\frac(1)(2)$ და $-\frac რიცხვებისგან. (1)(6)$. და თუ ამ მომენტში ჩვენ ვერ მივიღებთ $y$ რიცხვებიდან $x$ და $z$, მაშინ სიტუაცია განსხვავებულია პროგრესიის ბოლოებში. გახსოვდეთ საშუალო არითმეტიკული:

ახლა, ვიცით $y$, ჩვენ ვიპოვით დარჩენილ ნომრებს. გაითვალისწინეთ, რომ $x$ დევს $-\frac(1)(2)$-სა და $y=-\frac(1)(3)$-ს შორის. Ამიტომაც

ანალოგიურად კამათით, ჩვენ ვპოულობთ დარჩენილ რიცხვს:

მზადაა! სამივე ნომერი ვიპოვეთ. ჩავწეროთ ისინი პასუხში იმ თანმიმდევრობით, რომლითაც ისინი უნდა იყოს ჩასმული თავდაპირველ რიცხვებს შორის.

პასუხი: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

დავალება ნომერი 10. 2 და 42 რიცხვებს შორის ჩასვით რამდენიმე რიცხვი, რომლებიც მოცემულ რიცხვებთან ერთად ქმნიან არითმეტიკულ პროგრესიას, თუ ცნობილია, რომ ჩასმული რიცხვების პირველი, მეორე და ბოლო ჯამი არის 56.

გამოსავალი. კიდევ უფრო რთული ამოცანა, რომელიც, თუმცა, წყდება ისევე, როგორც წინა - საშუალო არითმეტიკული გზით. პრობლემა ის არის, რომ ზუსტად არ ვიცით რამდენი რიცხვის ჩასმა. მაშასადამე, განსაზღვრულობისთვის, ჩვენ ვვარაუდობთ, რომ ჩასმის შემდეგ იქნება ზუსტად $n$ რიცხვები და მათგან პირველი არის 2, ხოლო ბოლო არის 42. ამ შემთხვევაში, სასურველი არითმეტიკული პროგრესია შეიძლება წარმოდგენილი იყოს როგორც:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( ა)_(n-1));42 \მარჯვნივ\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

თუმცა გაითვალისწინეთ, რომ რიცხვები $((a)_(2))$ და $((a)_(n-1))$ მიიღება კიდეებზე მდგომი რიცხვებიდან 2 და 42 ერთი ნაბიჯით ერთმანეთისკენ. , ე.ი. მიმდევრობის ცენტრამდე. და ეს იმას ნიშნავს

\[((a)_(2))+((a)_(n-1))=2+42=44\]

მაგრამ შემდეგ ზემოაღნიშნული გამოთქმა შეიძლება გადაიწეროს ასე:

\[\ დასაწყისი(გასწორება) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \მარჯვნივ)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \ბოლო (გასწორება)\]

თუ ვიცით $((a)_(3))$ და $((a)_(1))$, ჩვენ მარტივად შეგვიძლია ვიპოვოთ პროგრესირების განსხვავება:

\[\ დასაწყისი(გასწორება) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\მარცხნივ(3-1 \მარჯვნივ)\cdot d=2d; \\ & 2d=10\მარჯვენა ისარი d=5. \\ \ბოლო (გასწორება)\]

რჩება მხოლოდ დარჩენილი წევრების პოვნა:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \ბოლო (გასწორება)\]

ამრიგად, უკვე მე-9 საფეხურზე მივალთ მიმდევრობის მარცხენა ბოლოში - რიცხვი 42. ჯამში მხოლოდ 7 რიცხვის ჩასმა იყო საჭირო: 7; 12; 17; 22; 27; 32; 37.

პასუხი: 7; 12; 17; 22; 27; 32; 37

ტექსტური ამოცანები პროგრესიით

დასასრულს, მსურს განვიხილო რამდენიმე შედარებით მარტივი პრობლემა. ისე, როგორც მარტივი: სტუდენტების უმრავლესობისთვის, რომლებიც მათემატიკას სწავლობენ სკოლაში და არ წაკითხული აქვთ ზემოთ დაწერილი, ეს ამოცანები შეიძლება ჟესტივით ჩანდეს. მიუხედავად ამისა, სწორედ ასეთი ამოცანები გვხვდება OGE-ში და მათემატიკაში USE-ში, ამიტომ გირჩევთ გაეცნოთ მათ.

დავალება ნომერი 11. გუნდმა იანვარში დაამზადა 62 ნაწილი, ხოლო ყოველ მომდევნო თვეში 14-ით მეტი ნაწილი გამოუშვა, ვიდრე წინა. რამდენი ნაწილი გამოუშვა ბრიგადამ ნოემბერში?

გამოსავალი. ცხადია, თვეების მიხედვით დახატული ნაწილების რაოდენობა მზარდი არითმეტიკული პროგრესია იქნება. და:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\მარცხნივ(n-1 \მარჯვნივ)\cdot 14. \\ \end (გასწორება)\]

ნოემბერი არის წლის მე-11 თვე, ამიტომ უნდა ვიპოვოთ $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

შესაბამისად, ნოემბერში 202 ნაწილის დამზადება მოხდება.

დავალება ნომერი 12. იანვარში წიგნების აკინძვის სახელოსნომ 216 წიგნი შეკრა და ყოველთვიურად წინა თვესთან შედარებით 4 წიგნით მეტი აკრა. რამდენი წიგნი შეიკრა სახელოსნომ დეკემბერში?

გამოსავალი. Ერთი და იგივე:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\მარცხნივ(n-1 \მარჯვნივ)\cdot 4. \\ \end (გასწორება)$

დეკემბერი არის წლის ბოლო, მე-12 თვე, ამიტომ ჩვენ ვეძებთ $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

ეს არის პასუხი - დეკემბერში 260 წიგნი იკვრება.

აბა, თუ აქამდე წაიკითხეთ, მეჩქარება მოგილოცოთ: თქვენ წარმატებით დაასრულეთ არითმეტიკული პროგრესიების "ახალგაზრდა მებრძოლების კურსი". ჩვენ შეგვიძლია უსაფრთხოდ გადავიდეთ შემდეგ გაკვეთილზე, სადაც შევისწავლით პროგრესირების ჯამის ფორმულას, ასევე მისგან მნიშვნელოვან და ძალიან სასარგებლო შედეგებს.


მაგალითად, თანმიმდევრობა \(2\); \(5\); \(რვა\); \(თერთმეტი\); \(14\)… არის არითმეტიკული პროგრესია, რადგან ყოველი შემდეგი ელემენტი განსხვავდება წინადან სამით (შეიძლება მიიღოთ წინადან სამის მიმატებით):

ამ პროგრესიაში სხვაობა \(d\) დადებითია (ტოლია \(3\)) და ამიტომ ყოველი შემდეგი წევრი წინაზე მეტია. ასეთ პროგრესებს ე.წ იზრდება.

თუმცა, \(d\) ასევე შეიძლება იყოს უარყოფითი რიცხვი. Მაგალითად, არითმეტიკული პროგრესიაში \(16\); \(ათი\); \(ოთხი\); \(-2\); \(-8\)… პროგრესიის სხვაობა \(d\) უდრის მინუს ექვსი.

და ამ შემთხვევაში, ყოველი შემდეგი ელემენტი წინაზე ნაკლები იქნება. ამ პროგრესირებას ე.წ მცირდება.

არითმეტიკული პროგრესიის აღნიშვნა

პროგრესირება აღინიშნება პატარა ლათინური ასოებით.

რიცხვებს, რომლებიც ქმნიან პროგრესიას, მას უწოდებენ წევრები(ან ელემენტები).

ისინი აღინიშნება იგივე ასოებით, როგორც არითმეტიკული პროგრესია, მაგრამ რიცხვითი ინდექსით, რომელიც ტოლია ელემენტის რიცხვის თანმიმდევრობით.

მაგალითად, არითმეტიკული პროგრესია \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) შედგება ელემენტებისაგან \(a_1=2\); \(a_2=5\); \(a_3=8\) და ასე შემდეგ.

სხვა სიტყვებით რომ ვთქვათ, პროგრესიისთვის \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

ამოცანების ამოხსნა არითმეტიკული პროგრესიით

პრინციპში, ზემოთ მოყვანილი ინფორმაცია უკვე საკმარისია არითმეტიკული პროგრესიის თითქმის ნებისმიერი პრობლემის გადასაჭრელად (მათ შორის OGE-ში შემოთავაზებული).

მაგალითი (OGE). არითმეტიკული პროგრესია მოცემულია პირობებით \(b_1=7; d=4\). იპოვეთ \(b_5\).
გამოსავალი:

პასუხი: \(b_5=23\)

მაგალითი (OGE). არითმეტიკული პროგრესიის პირველი სამი წევრი მოცემულია: \(62; 49; 36…\) იპოვეთ ამ პროგრესიის პირველი უარყოფითი წევრის მნიშვნელობა..
გამოსავალი:

ჩვენ მოცემულია მიმდევრობის პირველი ელემენტები და ვიცით, რომ ეს არის არითმეტიკული პროგრესია. ანუ, თითოეული ელემენტი განსხვავდება მეზობელისაგან ერთი და იგივე რაოდენობით. გაარკვიეთ რომელი გამოკლებით წინა ელემენტს: \(d=49-62=-13\).

ახლა ჩვენ შეგვიძლია აღვადგინოთ ჩვენი პროგრესი სასურველ (პირველ უარყოფით) ელემენტამდე.

მზადაა. შეგიძლიათ დაწეროთ პასუხი.

პასუხი: \(-3\)

მაგალითი (OGE). მოცემულია არითმეტიკული პროგრესიის რამდენიმე თანმიმდევრული ელემენტი: \(...5; x; 10; 12.5...\) იპოვეთ ელემენტის მნიშვნელობა, რომელიც აღინიშნება ასო \(x\).
გამოსავალი:


\(x\) საპოვნელად უნდა ვიცოდეთ, რამდენად განსხვავდება შემდეგი ელემენტი წინა ელემენტისგან, სხვა სიტყვებით რომ ვთქვათ, პროგრესირების განსხვავება. ვიპოვოთ ის ორი ცნობილი მეზობელი ელემენტიდან: \(d=12.5-10=2.5\).

ახლა კი უპრობლემოდ ვპოულობთ იმას, რასაც ვეძებთ: \(x=5+2.5=7.5\).


მზადაა. შეგიძლიათ დაწეროთ პასუხი.

პასუხი: \(7,5\).

მაგალითი (OGE). არითმეტიკული პროგრესია მოცემულია შემდეგი პირობებით: \(a_1=-11\); \(a_(n+1)=a_n+5\) იპოვეთ ამ პროგრესიის პირველი ექვსი წევრის ჯამი.
გამოსავალი:

ჩვენ უნდა ვიპოვოთ პროგრესიის პირველი ექვსი წევრის ჯამი. მაგრამ ჩვენ არ ვიცით მათი მნიშვნელობები, ჩვენ მხოლოდ პირველი ელემენტია მოცემული. ამიტომ, ჩვენ ჯერ რიგრიგობით ვიანგარიშებთ მნიშვნელობებს ჩვენთვის მოცემულის გამოყენებით:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
და ჩვენ გვჭირდება ექვსი ელემენტის გამოთვლის შემდეგ, ვპოულობთ მათ ჯამს.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

მოთხოვნილი თანხა ნაპოვნია.

პასუხი: \(S_6=9\).

მაგალითი (OGE). არითმეტიკული პროგრესიით \(a_(12)=23\); \(a_(16)=51\). იპოვნეთ ამ პროგრესის განსხვავება.
გამოსავალი:

პასუხი: \(d=7\).

მნიშვნელოვანი არითმეტიკული პროგრესის ფორმულები

როგორც ხედავთ, ბევრი არითმეტიკული პროგრესიის ამოცანის ამოხსნა შეიძლება უბრალოდ მთავარის გაგებით - რომ არითმეტიკული პროგრესია არის რიცხვების ჯაჭვი და ამ ჯაჭვის ყოველი შემდეგი ელემენტი მიიღება იმავე რიცხვის წინას მიმატებით (განსხვავება პროგრესირება).

თუმცა, ზოგჯერ არის სიტუაციები, როდესაც ძალიან მოუხერხებელია გადაჭრა "შუბლზე". მაგალითად, წარმოიდგინეთ, რომ პირველ მაგალითში უნდა ვიპოვოთ არა მეხუთე ელემენტი \(b_5\), არამედ სამას ოთხმოცდამეექვსე \(b_(386)\). რა არის, ჩვენ \ (385 \) ჯერ დავამატოთ ოთხი? ან წარმოიდგინეთ, რომ ბოლო მაგალითში თქვენ უნდა იპოვოთ პირველი სამოცდასამი ელემენტის ჯამი. დათვლა დამაბნეველია...

ამიტომ, ასეთ შემთხვევებში, ისინი არ ხსნიან "შუბლზე", არამედ იყენებენ სპეციალურ ფორმულებს, რომლებიც მიღებულია არითმეტიკული პროგრესიისთვის. და მთავარია პროგრესიის n-ე წევრის ფორმულა და პირველი წევრის \(n\) ჯამის ფორმულა.

\(n\)-ე წევრის ფორმულა: \(a_n=a_1+(n-1)d\), სადაც \(a_1\) არის პროგრესიის პირველი წევრი;
\(n\) – საჭირო ელემენტის ნომერი;
\(a_n\) არის პროგრესიის წევრი ნომრით \(n\).


ეს ფორმულა საშუალებას გვაძლევს სწრაფად ვიპოვოთ მინიმუმ სამასი, თუნდაც მემილიონე ელემენტი, მხოლოდ პირველისა და პროგრესირების განსხვავების ცოდნით.

მაგალითი. არითმეტიკული პროგრესია მოცემულია პირობებით: \(b_1=-159\); \(d=8,2\). იპოვეთ \(b_(246)\).
გამოსავალი:

პასუხი: \(b_(246)=1850\).

პირველი n წევრის ჯამის ფორმულა არის: \(S_n=\frac(a_1+a_n)(2) \cdot n\), სადაც



\(a_n\) არის ბოლო შეჯამებული ტერმინი;


მაგალითი (OGE). არითმეტიკული პროგრესია მოცემულია პირობებით \(a_n=3.4n-0.6\). იპოვეთ ამ პროგრესიის პირველი \(25\) წევრთა ჯამი.
გამოსავალი:

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\)

პირველი ოცდახუთი ელემენტის ჯამის გამოსათვლელად, უნდა ვიცოდეთ პირველი და ოცდამეხუთე წევრის მნიშვნელობა.
ჩვენი პროგრესირება მოცემულია n-ე წევრის ფორმულით მისი რიცხვიდან გამომდინარე (იხილეთ დეტალები). მოდით გამოვთვალოთ პირველი ელემენტი \(n\) ერთით ჩანაცვლებით.

\(n=1;\) \(a_1=3.4 1-0.6=2.8\)

ახლა ვიპოვოთ ოცდამეხუთე წევრი \(n\)-ის ნაცვლად ოცდახუთის ჩანაცვლებით.

\(n=25;\) \(a_(25)=3.4 25-0.6=84.4\)

აბა, ახლა უპრობლემოდ ვიანგარიშებთ საჭირო თანხას.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

პასუხი მზადაა.

პასუხი: \(S_(25)=1090\).

პირველი ტერმინების ჯამისთვის \(n\) შეგიძლიათ მიიღოთ სხვა ფორმულა: თქვენ უბრალოდ გჭირდებათ \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) ნაცვლად \(a_n\) შეცვალეთ მისი ფორმულა \(a_n=a_1+(n-1)d\). ჩვენ ვიღებთ:

პირველი n წევრის ჯამის ფორმულა არის: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), სადაც

\(S_n\) – პირველი ელემენტების საჭირო ჯამი \(n\);
\(a_1\) არის პირველი წევრი, რომელიც შეჯამდება;
\(d\) – პროგრესირების განსხვავება;
\(n\) - ელემენტების რაოდენობა ჯამში.

მაგალითი. იპოვეთ არითმეტიკული პროგრესიის პირველი \(33\)-ექს წევრთა ჯამი: \(17\); \(15,5\); \(თოთხმეტი\)…
გამოსავალი:

პასუხი: \(S_(33)=-231\).

უფრო რთული არითმეტიკული პროგრესირების პრობლემები

ახლა თქვენ გაქვთ ყველა ინფორმაცია, რომელიც გჭირდებათ თითქმის ნებისმიერი არითმეტიკული პროგრესიის პრობლემის გადასაჭრელად. მოდით დავასრულოთ თემა იმ პრობლემების გათვალისწინებით, რომლებშიც საჭიროა არა მხოლოდ ფორმულების გამოყენება, არამედ ცოტათი ფიქრიც (მათემატიკაში ეს შეიძლება იყოს სასარგებლო ☺)

მაგალითი (OGE). იპოვეთ პროგრესიის ყველა უარყოფითი წევრის ჯამი: \(-19.3\); \(-19\); \(-18.7\)…
გამოსავალი:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

დავალება ძალიან ჰგავს წინას. ჩვენ ვიწყებთ ამოხსნას იგივე გზით: ჯერ ვპოულობთ \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

ახლა ჩვენ შევცვლით \(d\) ჯამის ფორმულაში ... და აქ ჩნდება პატარა ნიუანსი - ჩვენ არ ვიცით \(n\). სხვა სიტყვებით რომ ვთქვათ, ჩვენ არ ვიცით რამდენი ტერმინის დამატება იქნება საჭირო. როგორ გავარკვიოთ? მოდი ვიფიქროთ. ჩვენ შევწყვეტთ ელემენტების დამატებას, როდესაც მივიღებთ პირველ დადებით ელემენტს. ანუ, თქვენ უნდა გაარკვიოთ ამ ელემენტის რაოდენობა. Როგორ? მოდით ჩამოვწეროთ არითმეტიკული პროგრესიის ნებისმიერი ელემენტის გამოთვლის ფორმულა: \(a_n=a_1+(n-1)d\) ჩვენი შემთხვევისთვის.

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1) 0.3\)

ჩვენ გვჭირდება \(a_n\) იყოს ნულზე მეტი. მოდით გავარკვიოთ რისთვის \(n\) მოხდება ეს.

\(-19.3+(n-1) 0.3>0\)

\((n-1) 0.3>19.3\) \(|: 0.3\)

უტოლობის ორივე მხარეს ვყოფთ \(0,3\)-ზე.

\(n-1>\)\(\frac(19,3)(0,3)\)

ჩვენ გადავცემთ მინუს ერთს, არ გვავიწყდება ნიშნების შეცვლა

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

გამოთვლა...

\(n>65,333…\)

...და გამოდის, რომ პირველ დადებით ელემენტს ექნება რიცხვი \(66\). შესაბამისად, ბოლო უარყოფითს აქვს \(n=65\). ყოველი შემთხვევისთვის, მოდით შევამოწმოთ.

\(n=65;\) \(a_(65)=-19.3+(65-1) 0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1) 0.3=0.2\)

ამრიგად, ჩვენ უნდა დავამატოთ პირველი \(65\) ელემენტები.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

პასუხი მზადაა.

პასუხი: \(S_(65)=-630.5\).

მაგალითი (OGE). არითმეტიკული პროგრესია მოცემულია პირობებით: \(a_1=-33\); \(a_(n+1)=a_n+4\). იპოვეთ ჯამი \(26\)-დან \(42\) ელემენტის ჩათვლით.
გამოსავალი:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

ამ პრობლემაში თქვენ ასევე უნდა იპოვოთ ელემენტების ჯამი, მაგრამ დაწყებული არა პირველიდან, არამედ \(26\)-დან. ჩვენ არ გვაქვს ამის ფორმულა. როგორ გადავწყვიტოთ?
მარტივი - რომ მიიღოთ ჯამი \(26\)-დან \(42\)-მდე, ჯერ უნდა იპოვოთ ჯამი \(1\)-დან \(42\)-მდე და შემდეგ გამოაკლოთ ჯამი. პირველი \ (25 \)-მდე (იხ. სურათი).


ჩვენი პროგრესიისთვის \(a_1=-33\) და სხვაობისთვის \(d=4\) (ბოლოს და ბოლოს, წინა ელემენტს ვამატებთ ოთხს, რომ ვიპოვოთ შემდეგი). ამის ცოდნა ჩვენ ვპოულობთ პირველი \(42\)-uh ელემენტების ჯამს.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

ახლა პირველი \(25\)-ე ელემენტების ჯამი.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

და ბოლოს, ჩვენ ვიანგარიშებთ პასუხს.

\(S=S_(42)-S_(25)=2058-375=1683\)

პასუხი: \(S=1683\).

არითმეტიკული პროგრესიისთვის, არის კიდევ რამდენიმე ფორმულა, რომლებიც ჩვენ არ განვიხილეთ ამ სტატიაში მათი დაბალი პრაქტიკული სარგებლობის გამო. თუმცა, თქვენ შეგიძლიათ მარტივად იპოვოთ ისინი.

ინსტრუქცია

არითმეტიკული პროგრესია არის a1, a1+d, a1+2d..., a1+(n-1)d ფორმის მიმდევრობა. ნომერი d ნაბიჯი პროგრესიები.ცხადია, არითმეტიკის თვითნებური n-ე წევრის ჯამი პროგრესიებიაქვს ფორმა: An = A1+(n-1)d. მაშინ ერთ-ერთი წევრის გაცნობა პროგრესიები, წევრი პროგრესიებიდა ნაბიჯი პროგრესიები, შეიძლება იყოს , ანუ პროგრესირების ტერმინის რიცხვი. ცხადია, ის განისაზღვრება ფორმულით n = (An-A1+d)/d.

დაე, მთვარის ტერმინი ახლა იყოს ცნობილი პროგრესიებიდა კიდევ რამდენიმე წევრი პროგრესიები- n-th, მაგრამ n , როგორც წინა შემთხვევაში, მაგრამ ცნობილია, რომ n და m არ ემთხვევა. ნაბიჯი პროგრესიებიშეიძლება გამოითვალოს ფორმულით: d = (An-Am)/(n-m). შემდეგ n = (An-Am+md)/d.

თუ არითმეტიკის რამდენიმე ელემენტის ჯამი პროგრესიები, ისევე როგორც მისი პირველი და უკანასკნელი , შემდეგ ამ ელემენტების რაოდენობაც შეიძლება განისაზღვროს არითმეტიკის ჯამი პროგრესიებიტოლი იქნება: S = ((A1+An)/2)n. მაშინ n = 2S/(A1+An) არის chdenov პროგრესიები. იმ ფაქტის გამოყენებით, რომ An = A1+(n-1)d, ეს ფორმულა შეიძლება გადაიწეროს შემდეგნაირად: n = 2S/(2A1+(n-1)d). აქედან შეიძლება n-ის გამოხატვა კვადრატული განტოლების ამოხსნით.

არითმეტიკული თანმიმდევრობა არის რიცხვების ისეთი დალაგებული ნაკრები, რომლის თითოეული წევრი, გარდა პირველისა, იგივე რაოდენობით განსხვავდება წინადან. ეს მუდმივიეწოდება პროგრესიის განსხვავებას ან მის საფეხურს და შეიძლება გამოითვალოს არითმეტიკული პროგრესიის ცნობილი წევრებიდან.

ინსტრუქცია

თუ პირველი და მეორე ან მეზობელი ტერმინების სხვა წყვილის მნიშვნელობები ცნობილია ამოცანის პირობებიდან, სხვაობის გამოსათვლელად (დ), უბრალოდ გამოვაკლოთ წინა წევრი მომდევნო წევრს. შედეგად მიღებული მნიშვნელობა შეიძლება იყოს დადებითი ან უარყოფითი - ეს დამოკიდებულია იმაზე, იზრდება თუ არა პროგრესი. AT ზოგადი ფორმაჩაწერეთ პროგრესიის მეზობელი წევრების თვითნებური წყვილის (aᵢ და aᵢ₊1) ამონახსნი შემდეგნაირად: d = aᵢ₊₁ - aᵢ.

ასეთი პროგრესიის წევრების წყვილისთვის, რომელთაგან ერთი არის პირველი (a1), ხოლო მეორე არის ნებისმიერი სხვა თვითნებურად არჩეული, შეიძლება ასევე შექმნას ფორმულა სხვაობის საპოვნელად (d). თუმცა, ამ შემთხვევაში, უნდა იყოს ცნობილი მიმდევრობის თვითნებურად არჩეული წევრის სერიული ნომერი (i). სხვაობის გამოსათვლელად, დაამატეთ ორივე რიცხვი და გაყავით შედეგი თვითნებური წევრის რიგით რიცხვზე, რომელიც შემცირებულია ერთით. AT ზოგადი ხედიდაწერეთ ეს ფორმულა ასე: d = (a1+ aᵢ)/(i-1).

თუ არითმეტიკული პროგრესიის თვითნებური წევრის გარდა რიგითი რიცხვით i, ცნობილია სხვა წევრი რიგითი ნომრით, შეცვალეთ წინა საფეხურის ფორმულა შესაბამისად. ამ შემთხვევაში პროგრესიის სხვაობა (დ) იქნება ამ ორი წევრის ჯამი გაყოფილი მათი რიგითი რიცხვების სხვაობაზე: d = (aᵢ+aᵥ)/(i-v).

სხვაობის (d) გამოთვლის ფორმულა გარკვეულწილად უფრო რთული ხდება, თუ პრობლემის პირობებში მისი პირველი წევრის (a1) მნიშვნელობა და მოცემული რიცხვის (i) პირველი წევრების ჯამი (Sᵢ). მოცემულია არითმეტიკული თანმიმდევრობა. სასურველი მნიშვნელობის მისაღებად ჯამი გავყოთ მის შედგენილ ტერმინთა რაოდენობაზე, გამოვაკლოთ პირველი რიცხვის მნიშვნელობა მიმდევრობით და გავაორმაგოთ შედეგი. მიღებული მნიშვნელობა გაყავით ტერმინების რაოდენობაზე, რომლებიც შეადგენდნენ ჯამს შემცირებული ერთით. ზოგადად, ჩამოწერეთ დისკრიმინანტის გამოთვლის ფორმულა შემდეგნაირად: d = 2*(Sᵢ/i-a1)/(i-1).

არითმეტიკული პროგრესირების პრობლემები უკვე არსებობდა ანტიკური დრო. გამოჩნდნენ და გამოსავალი მოითხოვეს, რადგან პრაქტიკული საჭიროება ჰქონდათ.

ასე რომ, ერთ-ერთ პაპირუსში უძველესი ეგვიპტე, რომელსაც აქვს მათემატიკური შინაარსი - რინდის პაპირუსი (ძვ. წ. XIX ს.) - შეიცავს შემდეგ დავალებას: ათი საზომი პური დაყავით ათ ადამიანად, იმ პირობით, რომ თითოეულ მათგანს შორის სხვაობა იყოს საზომის მერვედი.

ხოლო ძველი ბერძნების მათემატიკური ნაშრომებში არის ელეგანტური თეორემები, რომლებიც დაკავშირებულია არითმეტიკულ პროგრესირებასთან. ასე რომ, ალექსანდრიის გიფსიკულები (II საუკუნე, რომელიც ბევრს შეადგენდა საინტერესო ამოცანებიდა ევკლიდეს „პრინციპებს“ მეთოთხმეტე წიგნი დაუმატა, ჩამოაყალიბა იდეა: „არითმეტიკული პროგრესიით, რომელსაც აქვს ლუწი რიცხვიწევრები, მე-2 ნახევრის წევრთა ჯამი მეტია 1-ლი ნახევრის წევრთა ჯამი წევრთა რაოდენობის 1/2 კვადრატით.

თანმიმდევრობა an აღინიშნება. მიმდევრობის ნომრებს უწოდებენ მის წევრებს და ჩვეულებრივ აღინიშნება ასოებით ინდექსებით, რომლებიც მიუთითებს ამ წევრის სერიულ ნომერზე (a1, a2, a3 ... იკითხება: "a 1st", "a 2nd", "a3". ”და ასე შემდეგ).

თანმიმდევრობა შეიძლება იყოს უსასრულო ან სასრული.

რა არის არითმეტიკული პროგრესია? ის გასაგებია, როგორც მიღებული წინა ტერმინის (n) იმავე რიცხვით d-ის მიმატებით, რაც არის პროგრესიის სხვაობა.

თუ დ<0, то мы имеем убывающую прогрессию. Если d>0, მაშინ ასეთი პროგრესი ითვლება მზარდად.

არითმეტიკული პროგრესია ითვლება სასრულად, თუ მხედველობაში მიიღება მხოლოდ მისი რამდენიმე პირველი წევრი. ძალიან დიდი რაოდენობითწევრები უკვე უსასრულო პროგრესია.

ნებისმიერი არითმეტიკული პროგრესია მოცემულია შემდეგი ფორმულით:

an =kn+b, ხოლო b და k არის რამდენიმე რიცხვი.

განცხადება, რომელიც საპირისპიროა, აბსოლუტურად მართალია: თუ მიმდევრობა მოცემულია მსგავსი ფორმულით, მაშინ ეს არის ზუსტად არითმეტიკული პროგრესია, რომელსაც აქვს თვისებები:

  1. პროგრესიის თითოეული წევრი არის წინა და შემდეგი წევრის საშუალო არითმეტიკული.
  2. საპირისპირო: თუ მე-2-დან დაწყებული, ყოველი წევრი არის წინა წევრის საშუალო არითმეტიკული და შემდეგი, ე.ი. თუ პირობა დაკმაყოფილებულია, მაშინ მოცემული თანმიმდევრობა არის არითმეტიკული პროგრესია. ეს თანასწორობა იმავდროულად პროგრესირების ნიშანია, ამიტომ მას ჩვეულებრივ პროგრესირების დამახასიათებელ თვისებას უწოდებენ.
    ანალოგიურად, ჭეშმარიტია თეორემა, რომელიც ასახავს ამ თვისებას: მიმდევრობა არის არითმეტიკული პროგრესია მხოლოდ იმ შემთხვევაში, თუ ეს ტოლობა მართალია მიმდევრობის რომელიმე წევრისთვის, დაწყებული მე-2-დან.

არითმეტიკული პროგრესიის ნებისმიერი ოთხი რიცხვისთვის დამახასიათებელი თვისება შეიძლება გამოისახოს an + am = ak + al ფორმულით, თუ n + m = k + l (m, n, k არის პროგრესიის რიცხვები).

არითმეტიკული პროგრესიის დროს, ნებისმიერი აუცილებელი (Nth) ტერმინი შეიძლება მოიძებნოს შემდეგი ფორმულის გამოყენებით:

მაგალითად: პირველი წევრი (a1) არითმეტიკულ პროგრესიაში მოცემულია და უდრის სამს, ხოლო სხვაობა (d) უდრის ოთხს. თქვენ უნდა იპოვოთ ამ პროგრესიის ორმოცდამეხუთე ტერმინი. a45 = 1+4 (45-1) = 177

ფორმულა an = ak + d(n - k) საშუალებას გვაძლევს განვსაზღვროთ მე-n წევრიარითმეტიკული პროგრესია მისი ნებისმიერი k-ე ტერმინით, იმ პირობით, რომ ის ცნობილია.

არითმეტიკული პროგრესიის წევრთა ჯამი (საბოლოო პროგრესიის 1-ლი n წევრის გათვალისწინებით) გამოითვლება შემდეგნაირად:

Sn = (a1+an) n/2.

თუ პირველი ტერმინი ასევე ცნობილია, მაშინ სხვა ფორმულა მოსახერხებელია გამოსათვლელად:

Sn = ((2a1+d(n-1))/2)*n.

არითმეტიკული პროგრესიის ჯამი, რომელიც შეიცავს n წევრს, გამოითვლება შემდეგნაირად:

გამოთვლებისთვის ფორმულების არჩევანი დამოკიდებულია ამოცანების პირობებზე და საწყის მონაცემებზე.

ნებისმიერი რიცხვის ბუნებრივი რიგი, როგორიცაა 1,2,3,...,n,...- უმარტივესი მაგალითიარითმეტიკული პროგრესია.

არითმეტიკული პროგრესიის გარდა, არსებობს გეომეტრიულიც, რომელსაც აქვს თავისი თვისებები და მახასიათებლები.