Водород - это что такое? Свойства и значение. Смотреть что такое "водород" в других словарях

взаимодействии с водой образуют щелочь; в) пассивные, неактивные; б) при взаимодействии с металлами образуют соли; г) типичные металлы; 2. Металл, который можно использовать для получения водорода (путем взаимодействия его с водой при н. у.): а) Zn; б) Mg; в) Au; г) Hg; д) К; 3. Оксиды и гидроксиды, которые способны реагировать и кислотами, и со щелочами, называют: а) амфотерными б) кислотными в) основными 4. Слева направо в периодах металлические свойства: а) усиливаются б) ослабляются в) остаются неизменными 5. Элемент побочной подгруппы VII группы: а) хлор б) фосфор в) марганец г) франций 6. Заряд ядра атома определяется: а) по номеру периода б) по номеру группы в) по порядковому номеру 7. Одинаковое в строении атомов элементов с порядковыми номерами 17 и 35: а) общее количество электронов; в) количество электронных уровней; г) число электронов на последнем энергетическом уровне; б) количество нейтронов; 8. Элемент с электронной формулой 1s22s2р63s2p4: а) углерод; б) сера; в) хлор; г) натрий; 9. Атом углерода имеет электронную формулу: а) 1s22s22р3 б) 1s22s2 в) 1s22s22p2 10. Атом какого элемента имеет следующее строение последнего энергетического уровня…3s23p5: а) фосфор; б) фтор; в) хлор; г) магний; 11. Число неспаренных электронов в электронной оболочке элемента № 19: а) 1; б) 2; в) 3; г) 4; 12. Порядковый номер элемента, атомы которого способны образовывать высший оксид типа RO3: а) № 11 (натрий); б) № 14 (кремний); в) № 16 (сера); 13. Элемент с электронной формулой 1s22s22p63s23p5 образует летучее водородное соединение типа: а) RH4; б) RH3; в) H2R; г) HR; 14. Объем 3 моль водорода при нормальных условиях: а) 22,4 л; б) 44,8 л; в) 67,2 л; г) 89,6 л; д) 112 л; 15. Элемент четвертого периода, расположен в побочной подгруппе; оксид и гидроксид проявляют амфотерный характер. Этот элемент образует оксид типа RO и гидроксид R(OH)2. а) магний б) кальций в) цинк г) углерод 16. Максимальная валентность кремния: а) IV б) V в) VI г) VII 17. Минимальная валентность селена (№ 34): а) I б) II в) III г) IV 18. Молекулярная масса соли, полученной взаимодействием двух высших оксидов элементов с конфигурацией атома в них соответственно 1s22s22p63s23p64s1 и 1s22s22p3 равна: а) 85; б) 111; в) 63; г) 101; д) 164; 19. Продукт «Х», который получается в результате превращений: Al соль Al(OH)3 Х а) Al Cl3 б) Al H3 в) Na Al O2 г) Al д) Al2O3 20. Сумма коэффициентов в уравнении реакции, схема которой H2S + O2 → SO2 + H2O а) 5; б) 6; в) 7; г) 8; д) 9; 21. Молярная масса оксида магния (в г/моль): а) 24; б) 36; в) 40; г) 80; д) 82; 22. Количество молей оксида железа (III), составляющих 800 г данного соединения: а) 1; б) 2; в) 3; г) 4; д) 5; 23. При сгорании 8 г. метана СН4 выделилось 401 кДж теплоты. Вычислите тепловой эффект (Q) химической реакции CH4 (г) + 2O2 (г) = CO2 (г) + 2H2O (г) + Q: а) + 401 кДж; б) + 802 кДж; в) - 802 кДж; г) + 1604 кДж; д) - 1604 кДж; 24. При нормальных условиях 128 г кислорода занимают объем: а) 11,2 л; б) 22,4 л; в) 44,8 л; г) 67,2 л; д) 89,6 л; 25. Массовая доля водорода в соединении SiH4 составляет: а) 30%; б) 12,5%; в) 40%; г) 60%; д) 65%; 26. Массовая доля кислорода в соединении ЭО2 равна 50%. Название элемента Э в соединении: а) азот; б) титан; в) сера; г) селен; д) углерод; 27. Количество молей оксида железа (III), взаимодействующих с 44,8 л водорода (н.у.): а) 0,67 моль; б) 2 моль; в) 0,3 моль; г) 0,4 моль; д) 5 моль; 28. Масса соляной кислоты, необходимая для получения 44,8 л водорода (н.у.) (Mg + 2HCl = MgCl2 + H2): а) 146 г; б) 73 г; в) 292 г; г) 219 г; д) 20 г; 29. Масса соли, которая содержится в 400 г 80%-ного раствора хлорида натрия: а) 146 г; б) 320 г; в) 210 г; г) 32 г; д) 200 г; 30. Масса соли, которая образуется при взаимодействии гидроксида калия с 300 г 65%-ного раствора ортофосфорной кислоты: а) 422 г; б) 196 г; в) 360 г; г) 435 г; д) 200 г;

В 1766 г. английский химик Г. Кавендиш собрал вытесняемый металлами из кислот «горючий воздух», исследовал его свойства. Но лишь 15 лет спустя было доказано, что этот «воздух» входит в состав воды, и дано ему название «гидрогениум», т. е. «рождающий воду», «водород».

На долю водорода на Земле, включая воду и воздух, приходится около 1 % по массе. Это весьма распространенный и жизненно важный элемент. Он входит в состав всех растений и животных, а также самого распространенного на Земле вещества - воды.

Водород - самый распространенный элемент Вселенной. Он стоит в начале длинного и сложного процесса синтеза элементов в звездах.

Солнечная энергия - основной источник жизни на Земле. А первооснова этой энергии - термоядерная реакция, происходящая на Солнце в несколько стадий. Результат ее - образование из 4 ядер водорода - протонов одного ядра гелия и двух позитронов. При этом выделяется огромное количество энергии.

Человеку удалось воспроизвести на Земле не очень точное подобие главной солнечной реакции. В земных условиях мы можем заставить вступить в такую реакцию только тяжелые изотопы водорода 2 Н - дейтерий и 3 Н - тритий. Обычный же водород с атомной массой 1 - протий - нам в этом смысле неподвластен. Управляемый термоядерный синтез как безграничный источник мирной энергии пока недоступен человеку.

В периодической системе элементов водород занимает особое место. Это элемент, с которого начинается периодическая таблица Менделеева. Он обычно стоит в I группе над литием. Потому что у атома водорода всего один валентный электрон (и вообще один электрон). Однако в современных изданиях таблицы Менделеева водород помещают также в VII группе над фтором, так как у водорода находят общее с галогенами. К тому же водород способен давать соединения с металлами - гидриды. Практически из них наиболее важно соединение лития с тяжелым водородом дейтерием.

У изотопов всех элементов основные физические и химические свойства практически индентичны. Но у изотопов водорода - протия, дейтерия и трития - они отличаются довольно сильно. Например, температура кипения протия, дейтерия и трития различаются на несколько градусов. Поэтому изотопы водорода разделить легче, чем изотопы любого другого элемента.

Водород - бесцветный газ, без вкуса и запаха. Он самый легкий из всех газов, в 14,4 раза легче воздуха. Водород становится жидким при -252,6° С и твердым при -259,1° С.

В обычных условиях химическая активность водорода невысока, он реагирует с фтором, иодом и хлором. Но при повышенной температуре водород взаимодействует с бромом, иодом, серой, селеном, теллуром, а в присутствии катализаторов - с азотом, образуя аммиак NH3. Смесь 2 объемов Н2 и 1 объема O2 - ее называют гремучим газом - при поджигании сильно взрывается. Водород горит в кислороде несветящимся пламенем, образуя воду.

При высокой температуре водород способен «изъять» кислород из молекул многих соединений, в том числе из большинства оксидов металлов. Для химика водород - это прежде всего великолепный восстановитель, правда пока еще довольно дорогой. Да и работать с ним непросто. Поэтому в промышленных масштабах восстановление водородом (например, металлов из оксидов) применяется весьма ограниченно.

Водород широко используют в процессе гидрогенизации - превращения жидких жиров в твердые, например для получения из растительных масел пищевого маргарина, а также в ряде химических синтезов. Крупнейшими потребителями водорода в химической промышленности до сих пор остаются производства аммиака и метилового спирта.

Все больший интерес в наши дни проявляют к водороду как к источнику тепловой энергии. Действительно, при сгорании чистого водорода выделяется значительно больше тепла, чем при сжигании такого же количества любого горючего. Появились даже конструкции автомобилей на водородном топливе. В большинстве из них источником водорода служат твердые гидриды некоторых металлов, которые при определенных условиях прочно удерживают связанный с ними водород. Но стоит эти условия изменить, например повысить температуру сверх какого-то, обычно довольно невысокого, порога, и водород начинает выделяться в устройство, заменяющее такой машине карбюратор. Конечно, на пути создания массового водородного автомобиля еще стоят многие технические трудности. Но, видимо, они будут преодолены достаточно скоро, так как такое топливо энергетически выгодно. К тому же при сжигании водорода не образуется вредных примесей, загрязняющих атмосферу, а получается только чистая вода.

Жидкий

Водород (лат. Hydrogenium ; обозначается символом H ) — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1 H — протон. Свойства ядра 1 H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Три изотопа водорода имеют собственные названия: 1 H — протий (Н), 2 H — дейтерий (D) и 3 H — тритий (радиоактивен) (T).

Простое вещество водород — H 2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и рядеметаллов: железе, никеле, палладии, платине.

История

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия

Лавуазье дал водороду название hydrogène — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии сломоносовским «кислородом».

Распространённость

Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~ 6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~ 52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

Получение

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 O = CO 2 + 4Н 2 −165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000 °C:

H 2 O + C ? H 2 + CO

3.Из природного газа.

Конверсия с водяным паром:

CH 4 + H 2 O ? CO + 3H 2 (1000 °C)

Каталитическое окисление кислородом:

2CH 4 + O 2 ? 2CO + 4H 2

4. Крекинг и риформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e − → H 2 + 2H 2 O

Физические свойства

Водород может существовать в двух формах (модификациях) — в виде орто- и пара- водорода. В молекуле ортоводорода o -H 2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p -H 2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o -H 2 и p -H 2 при заданной температуре называется равновесный водород e -H 2 .

Разделить модификации водорода можноадсорбциейна активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвездной среды - с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

Водород — самый лёгкийгаз, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Молекула водорода двухатомна — Н 2 . При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н.у.), температура кипения −252,76 °C, удельная теплота сгорания 120.9×10 6 Дж/кг, малорастворим в воде — 18,8 мл/л. Водород хорошо растворим во многих металлах (Ni,Pt,Pdи др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим всеребре.

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см 3) и текучая (вязкость при −253 °C 13,8 спуаз). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н 2 , 0,21 % орто-Н 2 .

Твердый водород, температура плавления −259,2 °C, плотность 0,0807 г/см 3 (при −262 °C) — снегоподобная масса, кристаллы гексогональной сингонии,пространственная группа P6/mmc, параметры ячейки a =3,75 c =6,12. При высоком давлении водород переходит в металлическое состояние.

Изотопы

Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1 H — протий (Н), 2 Н — дейтерий (D), 3 Н — тритий (радиоактивный) (T).

Протий и дейтерий являются стабильными изотопами с массовыми числами 1 и 2. Содержание их в природе соответственно составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 %. Это соотношение может незначительно меняться в зависимости от источника и способа получения водорода.

Изотоп водорода 3 Н (тритий) нестабилен. Его период полураспада составляет 12,32 лет. Тритий содержится в природе в очень малых количествах.

В литературе также приводятся данные об изотопах водорода с массовыми числами 4 — 7 и периодами полураспада 10 −22 — 10 −23 с.

Природный водород состоит из молекул H 2 и HD (дейтероводород) в соотношении 3200:1. Содержание чистого дейтерийного водорода D 2 ещё меньше. Отношение концентраций HD и D 2 , примерно, 6400:1.

Из всех изотопов химических элементов физические и химические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

Температура
плавления,
K

Температура
кипения,
K

Тройная
точка,
K / kPa

Критическая
точка,
K / kPa

Плотность
жидкий / газ,
кг/м³

Дейтерий и тритий также имеют орто- и пара- модификации: p -D 2 , o -D 2 , p -T 2 , o -T 2 . Гетероизотопный водород (HD, HT, DT) не имеют орто- и пара- модификаций.

Химические свойства

Доля диссоциировавших молекул водорода

Молекулы водорода Н 2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н 2 = 2Н − 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н 2 = СаН 2

и с единственным неметаллом — фтором, образуя фтороводород:

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

О 2 + 2Н 2 = 2Н 2 О

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н 2 = Cu + Н 2 O

Записанное уравнение отражает восстановительные свойства водорода.

N 2 + 3H 2 → 2NH 3

С галогенами образует галогеноводороды:

F 2 + H 2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре,

Cl 2 + H 2 → 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

При взаимодействии с активными металлами водород образует гидриды:

2Na + H 2 → 2NaH

Ca + H 2 → CaH 2

Mg + H 2 → MgH 2

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O

Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O

WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования . Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр.Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

Геохимия водорода

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водородпожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75(74) % объёмных.

Экономика

Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2-5$ за кг.

Применение

Атомарный водород используется для атомно-водородной сварки.

Химическая промышленность

  • При производстве аммиака, метанола, мыла и пластмасс
  • При производстве маргарина из жидких растительных масел
  • Зарегистрирован в качестве пищевой добавки E949 (упаковочный газ)

Пищевая промышленность

Авиационная промышленность

Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколькокатастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.

Топливо

Водород используют в качестве ракетного топлива.

Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар.

В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.

«Жидкий водород» («ЖВ») — жидкое агрегатное состояние водорода, с низкой удельной плотностью 0.07 г/см³ и криогенными свойствами с точкой замерзания 14.01 K (−259.14 °C) и точкой кипения 20.28 K (−252.87 °C). Является бесцветной жидкостью без запаха, которая при смешивании с воздухом относится к взрывоопасным веществам с диапазоном коэффициента воспламенения 4-75 %. Спиновое соотношение изомеров в жидком водороде составляет: 99,79 % —параводород; 0,21 % — ортоводород. Коэффициент расширения водорода при смене агрегатного состояния на газообразное составляет 848:1 при 20°C.

Как и для любого другого газа, сжижение водорода приводит к уменьшению его объема. После сжижения «ЖВ» хранится в термически изолированных контейнерах под давлением. Жидкий водород (англ. Liquid hydrogen , LH2 , LH 2 ) активно используется в промышленности, в качестве формы хранения газа, и в космическойотрасли, в качестве ракетного топлива.

История

Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским ученым Вильямом Калленом, Гаспар Монж первым получил жидкое состояние оксида серы в 1784 году, Майкл Фарадей первым получил сжиженный аммиак, американский изобретатель Оливер Эванс первым разработал холодильный компрессор в 1805 году, Яков Перкинс первым запатентовал охлаждающую машину в 1834 году и Джон Гори первым в США запатентовалкондиционер в 1851 году. Вернер Сименс предложил концепцию регенеративного охлаждения в 1857 году, Карл Линде запатентовал оборудование для получения жидкого воздуха с использованием каскадного «эффекта расширения Джоуля — Томсона» и регенеративного охлаждения в 1876 году. В 1885 году польскийфизик и химик Зигмунд Вро?блевский опубликовал критическую температуру водорода 33 K, критическое давление 13.3 атм. и точку кипения при 23 K. Впервыеводород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и своего изобретения, cосуда Дьюара. Первый синтез стабильного изомера жидкого водорода — параводорода — был осуществлен Полом Хартеком и Карлом Бонхеффером в 1929 году.

Спиновые изомеры водорода

Водород при комнатной температуре состоит в основном из спинового изомера, ортоводорода. После производства, жидкий водород находится в метастабильном состоянии и должен быть преобразован в параводородную форму, для того чтобы избежать взрывоопасной экзотермической реакции, которая имеет место при его изменении при низких температурах. Преобразование в параводородную фазу обычно производится с использованием таких катализаторов, как оксид железа, оксид хрома, активированный уголь, покрытых платиной асбестов, редкоземельных металлов или путем использования урановых или никелевых добавок.

Использование

Жидкий водород может быть использован в качестве формы хранения топлива для двигателей внутреннего сгорания и топливных элементов. Различные подлодки(проекты «212А» и «214», Германия) и концепты водородного транспорта были созданы с использованием этой агрегатной формы водорода (см. например «DeepC»или «BMW H2R»). Благодаря близости конструкций, создатели техники на «ЖВ» могут использовать или только модифицировать системы, использующие сжиженный природный газ («СПГ»). Однако из-за более низкой объемной плотности энергии для горения требуется больший объем водорода, чем природного газа. Если жидкий водород используется вместо «СПГ» в поршневых двигателях, обычно требуется более громоздкая топливная система. При прямом впрыске увеличившиеся потери во впускном тракте уменьшают наполнение цилиндров.

Жидкий водород используется также для охлаждения нейтронов в экспериментах по нейтронному рассеянию. Массы нейтрона и ядра водорода практически равны, поэтому обмен энергией при упругом столкновении наиболее эффективен.

Преимущества

Преимуществом использования водорода является «нулевая эмиссия» его применения. Продуктом его взаимодействия с воздухом является вода.

Препятствия

Один литр «ЖВ» весит всего 0.07 кг. То есть его удельная плотность составляет 70.99 г/л при 20 K. Жидкий водород требует криогенной технологии хранения, такой как специальные термически изолированные контейнеры и требует особого обращения, что свойственно для всех криогенных материалов. Он близок в этом отношении к жидкому кислороду, но требует большей осторожности из-за пожароопасности. Даже в случае с контейнерами с тепловой изоляцией, его тяжело содержать при той низкой температуре, которая требуется для его сохранения в жидком состоянии (обычно он испаряется со скоростью 1 % в день). При обращении с ним также нужно следовать обычным мерам безопасности при работе с водородом — он достаточно холоден для сжижения воздуха, что взрывоопасно.

Ракетное топливо

Жидкий водород является распространенным компонентом ракетных топлив, которое используется для реактивного ускорения ракет-носителей и космических аппаратов. В большинстве жидкостных ракетных двигателях на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги. Используемые современные двигатели на компонентах H 2 /O 2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульсадвигателя за счет уменьшения молекулярного веса, это еще сокращает эрозию сопла и камеры сгорания.

Такие препятствия использования «ЖВ» в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель (РН «Дельта-4»), которая целиком является водородной ракетой. В основном «ЖВ» используется либо на верхних ступенях ракет, либо на блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы «ЖВ».

В периодической системе имеет свое определенное место положения, которое отражает проявляемые им свойства и говорит о его электронном строении. Однако есть среди всех один особый атом, который занимает сразу две ячейки. Он располагается в двух совершенно противоположных по проявляемым свойствам группах элементов. Это водород. Такие особенности делают его уникальным.

Водород - это не просто элемент, но и простое вещество, а также составная часть многих сложных соединений, биогенный и органогенный элемент. Поэтому рассмотрим его характеристики и свойства подробнее.

Водород как химический элемент

Водород - это элемент первой группы главной подгруппы, а также седьмой группы главной подгруппы в первом малом периоде. Данный период состоит всего из двух атомов: гелия и рассматриваемого нами элемента. Опишем основные особенности положения водорода в периодической системе.

  1. Порядковый номер водорода - 1, количество электронов такое же, соответственно, протонов столько же. Атомная масса - 1,00795. Существует три изотопа данного элемента с массовыми числами 1, 2, 3. Однако свойства каждого из них очень сильно различаются, так как увеличение массы даже на единицу именно для водорода является сразу двойным.
  2. То, что на внешнем он содержит всего один электрон, позволяет успешно проявлять ему как окислительные, так и восстановительные свойства. Кроме того, после отдачи электрона у него остается свободная орбиталь, которая принимает участие в образовании химических связей по донорно-акцепторному механизму.
  3. Водород - это сильный восстановитель. Поэтому основным местом его считается первая группа главной подгруппы, где он возглавляет самые активные металлы - щелочные.
  4. Однако при взаимодействии с сильными восстановителями, такими как, например, металлы, он может быть и окислителем, принимая электрон. Данные соединения получили название гидридов. По этому признаку он возглавляет подгруппу галогенов, с которыми является схожим.
  5. Благодаря совсем маленькой атомной массе, водород считается самым легким элементом. Кроме того, его плотность также очень мала, поэтому он также является эталоном легкости.

Таким образом, очевидно, что атом водорода - это совершенно уникальный, непохожий на все остальные элемент. Следовательно, свойства его тоже особенные, а образуемые простые и сложные вещества очень важны. Рассмотрим их далее.

Простое вещество

Если говорить о данном элементе как о молекуле, то нужно сказать, что она двухатомна. То есть водород (простое вещество) - это газ. Формула его эмпирическая будет записываться как Н 2 , а графическая - через одинарную сигма-связь Н-Н. Механизм образования связи между атомами - ковалентный неполярный.

  1. Паровая конверсия метана.
  2. Газификация угля - процесс подразумевает нагревание угля до 1000 0 С, в результате чего образуется водород и высокоуглеродный уголь.
  3. Электролиз. Данный метод может использоваться только для водных растворов различных солей, так как расплавы не приводят к разряжению воды на катоде.

Лабораторные способы получения водорода:

  1. Гидролиз гидридов металлов.
  2. Действие разбавленных кислот на активные металлы и средней активности.
  3. Взаимодействие щелочных и щелочноземельных металлов с водой.

Чтобы собрать образующийся водород, необходимо держать пробирку перевернутой вверх дном. Ведь данный газ нельзя собрать так, как, например, углекислый газ. Это водород, он намного легче воздуха. Быстро улетучивается, а в больших количествах при смешении с воздухом взрывается. Поэтому и следует переворачивать пробирку. После ее заполнения ее нужно закрыть резиновой пробкой.

Чтобы проверить чистоту собранного водорода, следует поднести к горлышку зажженную спичку. Если хлопок глухой и тихий - значит газ чистый, с минимальными примесями воздуха. Если же громкий и свистящий - грязный, с большой долей посторонних компонентов.

Области использования

При сгорании водорода выделяется настолько большое количество энергии (теплоты), что данный газ считается самым выгодным топливом. К тому же экологически чистым. Однако на сегодняшний день его применение в данной области ограничено. Это связано с непродуманными до конца и не решенными проблемами синтеза чистого водорода, который был бы пригоден для использования в качестве топлива в реакторах, двигателях и портативных устройствах, а также отопительных котлах жилых домов.

Ведь способы получения данного газа достаточно дорогостоящие, поэтому прежде необходимо разработать особый метод синтеза. Такой, который позволит получать продукт в большом объеме и с минимальными затратами.

Можно выделить несколько основных областей, в которых находит применение рассматриваемый нами газ.

  1. Химические синтезы. На основании гидрирования получают мыла, маргарины, пластмассы. При участии водорода синтезируется метанол и аммиак, а также другие соединения.
  2. В пищевой промышленности - как добавка Е949.
  3. Авиационная промышленность (ракетостроение, самолетостроение).
  4. Электроэнергетика.
  5. Метеорология.
  6. Топливо экологически чистого вида.

Очевидно, что водород так же важен, как и распространен в природе. Еще большую роль играют образуемые им различные соединения.

Соединения водорода

Это сложные, содержащие атомы водорода вещества. Можно выделить несколько основных типов подобных веществ.

  1. Галогеноводороды. Общая формула - HHal. Особое значение среди них имеет хлорид водорода. Это газ, который растворяется в воде с образованием раствора соляной кислоты. Данная кислота находит широкое применение практически во всех химических синтезах. Причем как органических, так и неорганических. Хлорид водорода - это соединение, имеющее эмпирическую формулу HCL и являющееся одним из крупнейших по объемам производства в нашей стране ежегодно. Также к галогеноводородам относятся йодоводород, фтороводород и бромоводород. Все они образуют соответствующие кислоты.
  2. Летучие Практически все они достаточно ядовитые газы. Например, сероводород, метан, силан, фосфин и прочие. При этом очень горючие.
  3. Гидриды - соединения с металлами. Относятся к классу солей.
  4. Гидроксиды: основания, кислоты и амфотерные соединения. В их состав обязательно входят атомы водорода, один или несколько. Пример: NaOH, K 2 , H 2 SO 4 и прочие.
  5. Гидроксид водорода. Это соединение больше известно как вода. Другое название оксид водорода. Эмпирическая формула выглядит так - Н 2 О.
  6. Пероксид водорода. Это сильнейший окислитель, формула которого имеет вид Н 2 О 2 .
  7. Многочисленные органические соединения: углеводороды, белки, жиры, липиды, витамины, гормоны, эфирные масла и прочие.

Очевидно, что разнообразие соединений рассматриваемого нами элемента очень велико. Это еще раз подтверждает его высокое значение для природы и человека, а также для всех живых существ.

- это лучший растворитель

Как уже упоминалось выше, простонародное название данного вещества - вода. Состоит из двух атомов водорода и одного кислорода, соединенных между собой ковалентными полярными связями. Молекула воды является диполем, это объясняет многие проявляемые ею свойства. В частности то, что она является универсальным растворителем.

Именно в водной среде происходят практически все химические процессы. Внутренние реакции пластического и энергетического обмена в живых организмах также осуществляются с помощью оксида водорода.

Вода по праву считается самым важным веществом на планете. Известно, что без нее не сможет жить ни один живой организм. На Земле она способна существовать в трех агрегатных состояниях:

  • жидкость;
  • газ (пар);
  • твердое (лед).

В зависимости от изотопа водорода, входящего в состав молекулы, различают три вида воды.

  1. Легкая или протиевая. Изотоп с массовым числом 1. Формула - Н 2 О. Это привычная форма, которую используют все организмы.
  2. Дейтериевая или тяжелая, ее формула - D 2 O. Содержит изотоп 2 Н.
  3. Сверхтяжелая или тритиевая. Формула выглядит как Т 3 О, изотоп - 3 Н.

Очень важны запасы пресной протиевой воды на планете. Уже сейчас во многих странах ощущается ее недостаток. Разрабатываются способы обработки соленой воды с целью получения питьевой.

Пероксид водорода - это универсальное средство

Данное соединение, как уже упоминалось выше, прекрасный окислитель. Однако с сильными представителями может вести себя и как восстановитель тоже. Кроме того, обладает выраженным бактерицидным эффектом.

Другое название данного соединения - перекись. Именно в таком виде его используют в медицине. 3% раствор кристаллогидрата рассматриваемого соединения - это медицинское лекарство, которое применяют для обработки небольших ран с целью их обеззараживания. Однако доказано, что при этом заживление ранения по времени увеличивается.

Также пероксид водорода используется в ракетном топливе, в промышленности для дезинфекции и отбеливания, в качестве пенообразователя для получения соответствующих материалов (пенопласта, например). Кроме того, перекись помогает очищать аквариумы, обесцвечивать волосы и отбеливать зубы. Однако при этом наносит вред тканям, поэтому специалистами в этих целях не рекомендуется.