Теория струн кратко. Теория струн и скрытые измерения вселенной - доказательства существования

Экология познания: Самая большая проблема у теоретических физиков - как объединить все фундаментальные взаимодействия (гравитационное, электромагнитное, слабое и сильное) в единую теорию. Теория суперструн как раз претендует на роль Теории Всего

Считаем от трёх до десяти

Самая большая проблема у теоретических физиков - как объединить все фундаментальные взаимодействия (гравитационное, электромагнитное, слабое и сильное) в единую теорию. Теория суперструн как раз претендует на роль Теории Всего.

Но оказалось, что самое удобное количество измерений, необходимое для работы этой теории - целых десять (девять из которых - пространственные, и одно - временное)! Если измерений больше или меньше, математические уравнения дают иррациональные результаты, уходящие в бесконечность - сингулярность.

Следующий этап развития теории суперструн - М-теория - насчитала уже одиннадцать размерностей. А ещё один её вариант - F-теория - все двенадцать. И это вовсе не усложнение. F-теория описывает 12-мерное пространство более простыми уравнениями, чем М-теория - 11-мерное.

Конечно, теоретическая физика не зря называется теоретической. Все её достижения существуют пока что только на бумаге. Так, чтобы объяснить почему же мы можем перемещаться только в трёхмерном пространстве, учёные заговорили о том, как несчастным остальным измерениям пришлось скукожиться в компактные сферы на квантовом уровне. Если быть точными, то не в сферы, а в пространства Калаби-Яу. Это такие трёхмерные фигурки, внутри которых свой собственный мир с собственной размерностью. Двухмерная проекция подобный многообразий выглядит приблизительно так:

Таких фигурок известно более 470 миллионов. Которая из них соответствует нашей действительности, в данный момент вычисляется. Нелегко это - быть теоретическим физиком.

Да, это кажется немного притянутым за уши. Но может, именно этим и объясняется, почему квантовый мир так отличается от воспринимаемого нами.

Точка, точка, запятая

Начнём с начала. Нулевое измерение - это точка. У неё нет размеров. Двигаться некуда, никаких координат для обозначения местонахождения в таком измерении не нужно.

Поставим рядом с первой точкой вторую и проведём через них линию. Вот вам и первое измерение. У одномерного объекта есть размер - длина, но нет ни ширины, ни глубины. Движение в рамках одномерного пространства очень ограничено, ведь возникшее на пути препятствие не обойдёшь. Чтобы определить местонахождение на этом отрезке, понадобится всего одна координата.

Поставим рядом с отрезком точку. Чтобы уместить оба эти объекта, нам потребуется уже двумерное пространство, обладающее длиной и шириной, то есть, площадью, однако без глубины, то есть, объёма. Расположение любой точки на этом поле определяется двумя координатами.

Третье измерение возникает, когда мы добавляем к этой система третью ось координат. Нам, жителям трёхмерной вселенной, очень легко это представить.

Попробуем вообразить, как видят мир жители двухмерного пространства. Например, вот эти два человечка:

Каждый из них увидит своего товарища вот таким:

А при вот таком раскладе:

Наши герои увидят друг друга такими:


Именно смена точки обзора позволяет нашим героям судить друг о друге как о двумерных объектах, а не одномерных отрезках.

А теперь представим, что некий объёмный объект движется в третьем измерении, которое пересекает этот двумерный мир. Для стороннего наблюдателя, это движение выразится в смене двумерных проекций объекта на плоскости, как у брокколи в аппарате МРТ:

Но для обитателя нашей Флатландии такая картинка непостижима! Он не в состоянии даже представить её себе. Для него каждая из двумерных проекций будет видеться одномерным отрезком с загадочно переменчивой длиной, возникающим в непредсказуемом месте и также непредсказуемо исчезающим. Попытки просчитать длину и место возникновения таких объектов с помощью законов физики двумерного пространства, обречены на провал.

Мы, обитатели трёхмерного мира, видим всё двумерным. Только перемещение предмета в пространстве позволяет нам почувствовать его объём. Любой многомерный объект мы увидим также двумерным, но он будет удивительным образом меняться в зависимости от нашего с ним взаиморасположения или времени.

С этой точки зрения интересно думать, например, про гравитацию. Все, наверное, видели, подобные картинки:


На них принято изображать, как гравитация искривляет пространство-время. Искривляет... куда? Точно ни в одно из знакомых нам измерений. А квантовое туннелирование, то есть, способность частицы исчезать в одном месте и появляться совсем в другом, причём за препятствием, сквозь которое в наших реалиях она не смогла бы проникнуть, не проделав в нём дыру? А чёрные дыры? А что, если все эти и другие загадки современной науки объясняются тем, что геометрия пространства совсем не такая, какой мы привыкли её воспринимать?

Тикают часики

Время добавляет к нашей Вселенной ещё одну координату. Для того, чтобы вечеринка состоялась, нужно знать не только в каком баре она произойдёт, но и точное время этого события.

Исходя из нашего восприятия, время - это не столько прямая, как луч. То есть, у него есть отправная точка, а движение осуществляется только в одном направлении - из прошлого в будущее. Причём реально только настоящее. Ни прошлое, ни будущее не существуют, как не существуют завтраки и ужины с точки зрения офисного клерка в обеденный перерыв.

Но теория относительности с этим не согласна. С её точки зрения, время - это полноценное измерение. Все события, которые существовали, существуют и будут существовать, одинаково реальны, как реален морской пляж, независимо от того, где именно мечты о шуме прибоя захватили нас врасплох. Наше восприятие - это всего лишь что-то вроде прожектора, который освещает на прямой времени какой-то отрезок. Человечество в его четвёртом измерении выглядит приблизительно так:


Но мы видим только проекцию, срез этого измерения в каждый отдельный момент времени. Да-да, как брокколи в аппарате МРТ.

До сих пор все теории работали с большим количеством пространственных измерений, а временное всегда было единственным. Но почему пространство допускает появление множественных размерностей для пространства, но время только одно? Пока учёные не смогут ответить на этот вопрос, гипотеза о двух или более временных пространствах будет казаться очень привлекательной всем философам и фантастам. Да и физикам, чего уж там. Скажем, американский астрофизик Ицхак Барс корнем всех бед с Теорией Всего видит как раз упущенное из виду второе временное измерение. В качестве умственного упражнения, попробуем представить себе мир с двумя временами.

Каждое измерение существует отдельно. Это выражается в том, что если мы меняем координаты объекта в одной размерности, координаты в других могут оставаться неизменными. Так, если вы движетесь по одной временной оси, которая пересекает другую под прямым углом, то в точке пересечения время вокруг остановится. На практике это будет выглядеть приблизительно так:


Всё, что Нео нужно было сделать - это разместить свою одномерную временную ось перпендикулярно временной оси пуль. Сущий пустяк, согласитесь. На самом деле всё намного сложнее.

Точное время во вселенной с двумя временными измерениями будет определяться двумя значениями. Слабо представить себе двумерное событие? То есть, такое, которое протяжённо одновременно по двум временным осям? Вполне вероятно, что в таком мире потребуются специалисты по составлению карты времени, как картографы составляют карты двухмерной поверхности земного шара.

Что ещё отличает двумерное пространство от одномерного? Возможность обходить препятствие, например. Это уже совсем за границами нашего разума. Житель одномерного мира не может представить себе как это - завернуть за угол. Да и что это такое - угол во времени? Кроме того, в двумерном пространстве можно путешествовать вперёд, назад, да хоть по диагонали. Я без понятия как это - пройти через время по диагонали. Я уж не говорю о том, что время лежит в основе многих физических законов, и как изменится физика Вселенной с появлением ещё одного временного измерения, невозможно представить. Но размышлять об этом так увлекательно!

Очень большая энциклопедия

Другие измерения ещё не открыты, и существуют только в математических моделях. Но можно попробовать представить их так.

Как мы выяснили раньше, мы видим трёхмерную проекцию четвёртого (временного) измерения Вселенной. Другими словами, каждый момент существования нашего мира - это точка (аналогично нулевому измерению) на отрезке времени от Большого взрыва до Конца Света.

Те из вас, кто читал про перемещения во времени, знают какую важную роль в них играет искривление пространственно-временного континуума. Вот это и есть пятое измерение - именно в нём «сгибается» четырёхмерное пространство-время, чтобы сблизить две какие-то точки на этой прямой. Без этого путешествие между этими точками было бы слишком длительным, или вообще невозможным. Грубо говоря, пятое измерение аналогично второму - оно перемещает «одномерную» линию пространства-времени в «двумерную» плоскость со всеми вытекающими в виде возможности завернуть за угол.

Наши особо философско-настроенные читатели чуть ранее, наверное, задумались о возможности свободной воли в условиях, где будущее уже существует, но пока ещё не известно. Наука на этот вопрос отвечает так: вероятности. Будущее - это не палка, а целый веник из возможных вариантов развития событий. Какой из них осуществится - узнаем когда доберёмся.

Каждая из вероятностей существует в виде «одномерного» отрезка на «плоскости» пятого измерения. Как быстрее всего перескочить из одного отрезка на другой? Правильно - согнуть эту плоскость, как лист бумаги. Куда согнуть? И снова правильно - в шестом измерении, которое придаёт всей этой сложной структуре «объём». И, таким образом, делает её, подобно трёхмерному пространству, «законченной», новой точкой.

Седьмое измерение - это новая прямая, которая состоит из шестимерных «точек». Что представляет собой какая-либо другая точка на этой прямой? Весь бесконечный набор вариантов развития событий в другой вселенной, образованной не в результате Большого Взрыва, а в других условиях, и действующей по другим законам. То есть, седьмое измерение - это бусы из параллельных миров. Восьмое измерение собирает эти «прямые» в одну «плоскость». А девятое можно сравнить с книгой, которая уместила в себя все «листы» восьмого измерения. Это совокупность всех историй всех вселенных со всеми законами физики и всеми начальными условиями. Снова точка.

Тут мы упираемся в предел. Чтобы представить себе десятое измерение, нам нужна прямая. А какая может быть другая точка на этой прямой, если девятое измерение уже покрывает всё, что только можно себе представить, и даже то, что и представить невозможно? Получается, девятое измерение - это не очередная отправная точка, а финальная - для нашей фантазии, во всяком случае.

Теория струн утверждает, что именно в десятом измерении совершают свои колебания струны - базовые частицы, из которых состоит всё. Если десятое измерение содержит себе все вселенные и все возможности, то струны существуют везде и всё время. В смысле, каждая струна существует и в нашей вселенной, и любой другой. В любой момент времени. Сразу. Круто, да? опубликовано

Теория относительности представляет Вселенную «плоской», но квантовая механика утверждает, что на микроуровне происходит бесконечное движение, искривляющее пространство. Теория струн объединяет эти идеи и представляет микрочастицы как следствие объединения тончайших одномерных струн, которые будут иметь вид точечных микрочастиц, следовательно, не могут наблюдаться экспериментально.

Данная гипотеза позволяет представить элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами.

Все свойства элементарных частиц объясняются резонансным колебанием волокон, их образующих. Эти волокна могут совершать бесконечное множество вариантов вибраций. Данная теория предполагает объединение идей квантовой механики и теории относительности. Но из-за наличия множества проблем в подтверждении мыслей заложенных в ее основе большая часть современных ученых считают, что предложенные идеи не более чем самая обыкновенная профанация или другими словами — теория струн для чайников, то есть для людей, которые совершенно не разбираются в науке и строении окружающего мира.

Свойства ультрамикроскопических волокон

Чтобы понять их суть, можно представить струны музыкальных инструментов – они могут вибрировать, изгибаться, сворачиваться. Тоже происходит и с этими нитями, которые издавая определенные вибрации, взаимодействуют друг с другом, сворачиваются в петли и образуют более крупные частицы (электроны, кварки), масса которых зависит от частоты вибрации волокон и их натянутости – эти показатели определяют энергию струн. Чем больше излучаемая энергия, тем выше масса элементарной частицы.

Инфляционная теория и струны

Согласно инфляционной гипотезе, Вселенная была создана благодаря расширению микро пространства, размером в струну (длина Планка). По мере увеличения этой области растягивались и так называемые ультрамикроскопические волокна, теперь их длина соизмерима с размерами Вселенной. Они точно так же взаимодействуют между собой и производят те же вибрации и колебания. Выглядит это как производимый ими эффект гравитационных линз, искажающих лучи света дальних галактик. А продольные колебания порождают гравитационное излучение.

Математическая несостоятельность и другие проблемы

Одной из проблем считается математическая несостоятельность теории — физикам, изучающим ее, не хватает формул для приведения ее в завершенный вид. А вторая заключается в том, что данная теория полагает, о существовании 10 измерений, но мы ощущаем всего 4 – высота, ширина, длина и время. Ученые предполагают, что остальные 6 — в скрученном состоянии, наличие которых не ощущается в реальном времени. Также проблемой является не возможность экспериментального подтверждения этой теории, но и опровергнуть ее никто не может.

Красивым поэтическим словосочетанием «теория струн» названо одно из направлений в теоретической физики, объединяющее в себе идеи теории относительности и квантовую механику. Данное направление физики занимается изучением квантовых струн – то есть одномерных протяженных объектов. В этом состоит его основное отличие от множества других разделов физики, в которых изучается динамика точечных частиц.

В своей основе Теория струн отрицает и утверждает, что Вселенная существовала всегда. То есть, Вселенная представляла собой не бесконечно малую точку, а струну с бесконечно малой длиной, при этом теория струн гласит о том, что мы живем в десятимерном пространстве, хотя ощущаем всего лишь 3-4. Остальные существуют в свернутом состоянии, и если вы решили задать вопрос: «Когда же они будут разворачиваться, и произойдет ли это вообще когда-нибудь?», то ответа вы не получите.

Математика его попросту не нашла – струнную теорию невозможно доказать опытным путем. Правда, были попытки разработать универсальную теорию, чтобы можно было проверять ее практически. Но чтобы это случилось, ее нужно сделать настолько упрощенной, чтобы она доходила до нашего уровня восприятия реальности. Тогда идея проверки полностью лишается смысла.

Основные критерии и понятия теории струн

Теория относительности говорит о том, что наша Вселенная – это плоскость, а квантовая механика заявляет, что на микроуровне происходит бесконечное движение, из-за которого искривляется пространство. А теория струн пытается соединить эти два предположения, и в соответствии с ней, элементарные частицы представляются в виде специальных компонентов в составе каждого атома – оригинальных струн, являющихся своеобразными ультрамикроскопическими волокнами. Элементарные частицы при этом обладают свойствами, которые объясняет резонансное колебание образующих эти частицы волокон. Подобными типами волокон осуществляются вибрации в бесконечном количестве.

Для более точного понимания сути, простой обыватель может представить себе струны обычных музыкальных инструментов, которые могут в разное время натягиваться, успешно сворачиваться, постоянно вибрировать. Такими же свойствами обладают нити, взаимодействующие друг с другом при определенных вибрациях.

Сворачиваясь в стандартные петли, нити образуют более крупные разновидности частиц – кварки, электроны, чья масса уже будет напрямую зависеть от уровня натянутости и частоты вибрации волокон. Так что энергию струн соотносят именно с этими критериями. Масса элементарных частиц будет выше при большем количестве излучаемой энергии.

Насущные проблемы теории струн

При изучении теории струн ученые многих стран периодически сталкивались с целым рядом проблем и нерешаемых вопросов. Самым важным моментом можно считать недостаток математических формул, поэтому придать теории завершенный вид специалистам пока не удается.

Второй существенной проблемой является подтверждение сутью теории наличия 10-ти измерений, когда на самом деле ощутить мы можем всего 4 из них. Предположительно остальные 6 из них существуют в скрученном состоянии, и в реальном времени ощутить их не представляется возможным. Поэтому, хотя опровержение теории в корне невозможно, экспериментальное подтверждение пока тоже представляется довольно затруднительным.

При этом исследование теории струн стало явным толчком для развития оригинальных математических конструкций, а также топологии. Физика с ее теоретическими направлениями довольно прочно укоренилась в математике также с помощью изучаемой теории. Более того, сущность современной квантовой гравитации и материи смогли досконально понять, начав изучать гораздо глубже, чем было возможно до этого.

Поэтому исследования теории струн продолжаются непрерывно, а результатом многочисленных экспериментов, включая испытания на Большом адронном коллайдере, могут стать недостающие понятия и элементы. В этом случае физическая теория будет абсолютно доказанным и общепринятым явлением.

Ключевые вопросы:

Каковы фундаментальные компоненты Вселенной -«первокирпичики материи»? Существуют ли теории, способные объяснить все основные физические явления?

Вопрос: это реально?

На сегодняшний день и в обозримом будущем, непосредственное наблюдение в столь малых масштабах не представляется возможным. Физика находится в поиске, и проводимые эксперименты, например, по обнаружению суперсимметричных частиц или поиску дополнительных измерений на ускорителях могут указать, что теория струн находится на верном пути.

Является теория струн теорией всего, или нет, она дает нам в руки уникальный набор инструментов, позволяющий заглянуть в глубинные структуры реальности.

Теория струн


Макро и микро


При описании Вселенной, физика делит ее на две, казалось-бы, несовместимых половинки - квантовый микромир, и макромир, в рамках которого описывается гравитация.


Теория струн это противоречивая попытка объединения этих половинок в «Теорию всего».


Частицы и взаимодействия


Мир сделан из двух видов элементарных частиц - фермионов и бозонов. Фермионы это всё наблюдаемое вещество, а бозоны являются переносчиками четырех известных фундаментальных взаимодействий: слабого, электромагнитного, сильного и гравитационного. В рамках теории, называемой «Стандартно моделью», физикам удалось изящно описать и проверить три фундаментальных взаимодействи все, кроме самого слабого - гравитационного. Hа сегодняшний день Стандартная модель является наиболее точной и экспериментально подтвержденной моделью нашего мира.


Зачем нужна теория струн


Стандартная модель не включает гравитацию, не может описать центр черной дыры и Большой взрыв, не объясняет результаты некоторых экспериментов. Теория струн - это попытка разрешить эти проблемы и унифицировать материю и взаимодействия, заменив элементарные частицы крошечными вибрирующими струнами.



В основе теории струн лежит идея, что все элементарные частицы можно представить в виде одного элементарного «первокирпичика» - струны. Струны могут вибрировать, и разные моды таких колебании на большом удалении будут выглядеть для нас как различные элементарные частицы. Одна мода вибрации заставит струну выглядеть как фотон, другая - как электрон.


Существует даже мода, описывающая переносчик гра в ита цио н но го взаимодействия - гравитон! Варианты теории струн описывают струны двух видов: открытые (1) и замкнутые (2). Открытые струны имеют два конца (3), расположенных на мембрано-подобных структурах, называемых D-бранами, и их динамикой описываются три из четырех фундаментальных взаимодействии - все, за исключением гравитационного.


Замкнутые струны напоминают петли, они не привязаны к D- бранам - именно колебательные моды замкнутых струн представляются безмассовым гравитоном. Концы открытой струны могут соединяться, образуя замкнутую струну, которая, в свою очередь, может разрываться, превратившись в открытую, или сойтись и расщепиться на две замкнутые струны (5) - таким образом в теории струн гравитационное взаимодействие объединяется со всеми остальными



Струны - самые маленькие из всех объектов, которыми оперирует физика. Диапазон размеров V объектов, представленных на картинке выше, простирается на 34 порядка - если бы атом был размером с солнечную систему, то размер струны мог бы быть чуть больше атомного ядра.



Дополнительные измерения


Непротиворечивые теории струн возможны лишь в пространстве высшей размерности, где в дополнение к знакомым нам 4м пространственно-временным измерениям требуется 6 дополнительных. Теоретики полагают, что эти дополнительные измерения свернуты в неуловимо малые формы -пространства Калаби-Яу. Одной из проблем теории струн является то, что существует почти бесконечное количество вариантов свертки (ком пактификации) Калаби-Яу, позволяющее описать какой угодно мир, и пока нет никакой возможности найти тот вариант ко м па ктифи ка ци и, который бы позволял описать то, что мы видим вокруг.


Суперсимметрия


Большинство версий теории струн требует понятия суперсимметрии, в основе которого лежит идея о том, что фермионы (вещество) и бозоны (взаимодействия) суть есть проявления одного и того-же объекта, и могут превращаться друг в друга.


Теория всего?


Суперсимметрию в теорию струн можно включить 5ю различными способами, что приводит к 5 различным видам теории струн, из чего следует, что сама по себе теория струн не может претендовать на звание «теории всего». Все эти пять видов связаны между собой математическими преобразованиями, называемыми дуальностями, и это привело к пониманию, что все эти виды являются аспектами чего-то более общего. Эту более общую теорию называют М-Теорией.



Известно 5 различных формулировок теории струн, однако при ближайшем рассмотрении, выясняется что все они являются проявлениями более общей теории

В данном блоге приводится отрывок из статьи одного из крупнейших специалистов в области объединения всех физических взаимодействий в рамках единой теории, лауреата Нобелевской премии Стивена Вайнберга, где он в популярной форме излагает фундаментальные проблемы современной физики высоких энергий. Примечания приводятся курсивом. Возможно наличие формул кого то введет в смуту, если такое желание возникнет просто не вникайте в них, а читайте текст.

Уровни строения мира: 1. Макроскопический уровень - вещество 2. Молекулярный уровень 3. Атомный уровень - протоны, нейтроны и электроны 4. Субатомный уровень - электрон 5. Субатомный уровень - кварки 6. Струнный уровень

Большинство физиков-теоретиков сейчас пришли к выводу, что варианты квантовой теории поля для сильного, электромагнитного и слабого взаимодействий – это всего лишь низкоэнергетическое приближение для более глубокой и совершенной теории. Имеются два указания на то, что простота законов природы сможет обнаружиться лишь при неизмеримо больших энергиях в диапазоне 10 15 – 10 19 ГэВ. Одно из них состоит в следующем. Если посмотреть, что происходит с константами взаимодействия электрослабого и сильного взаимодействий при значительно более высоких энергиях, чем те, при которых их сегодня измеряют, то мы обнаружим, что их значения сближаются и становятся равными друг другу при энергиях, примерно на пятнадцать порядков превосходящих массу протона (10 15 ГэВ). Кроме того, величина гравитационной постоянной, которая ответственна за возникновение расходимостей в теории гравитации, в физических единицах составляет (10 19 ГэВ) –2 . Все это говорит о том, что если бы мы были в состоянии ставить эксперименты при очень высоких энергиях, то мы смогли бы обнаружить по-настоящему простую картину мира, в которой все теории сливаются воедино и которая, возможно, даже вызовет у нас чувство фатальной неизбежности, обрести которое мы так стремимся.

Объединение гравитации с другими взаимодействиями до сих пор сопряжено с рядом трудностей . Причина заключается в том, что любая квантовая теория, оперирующая точечными объектами, содержит расходимости на энергиях выше масштаба Планка. Масштаб или масса Планка представляет собой энергию, на которой возникает необходимость в квантовой теории гравитации. Это происходит, когда радиус Шварцшильда :

R = 2Gm/ c 2 , (1.12а)

где m – масса тела;

G – гравитационная постоянная, и комптоновская длина волны

l= h /(mc) (1.12б)

становятся величинами одного порядка. То есть когда очень высокая плотность массы сконцентрирована в очень маленьком объеме. Разумное описание на таких масштабах можно получить, применяя как общую теорию относительности, так и квантовую теорию. Приравнивая l к R из (1.12а) и (1.12б), получим

m Р l =(hc /G) ? ? 1,2 ?10 19 Гэв,

что соответствует длине и времени Планка:

l Р l = =(h G/ c 3) ? ? 1,6?10 – 33 см; t Р l ? 5,4? 10 – 44 с.

Забегая вперед, отметим, что Алгебра сигнатур строится на несколько других исходных принципах и не разделяет беспокойств современных квантовых теорий. С точки зрения Алгебры сигнатур дифференциальная геометрия, лежащая в основании ОТО, применима не только для космических объектов и для процессов, протекаемых в планковских масштабах длины, но и ко многим другим уровням организации Естества с учетом различных модификаций абсолютных дифференциальных геометрий, адаптированных под характерные особенности описываемого масштаба протяженности. В отличие от главенствующей ныне доктрины проквантовать ОТО и подравнять ее под отработанные квантово-полевые схемы, Алсигна придерживается взглядов тех редких ныне ученых, которые не оставляют попыток уместить кантовую физику в рамки модифицированных ОТО. В данном пункте мы заняты лишь тем, что приводим мнение ведущего специалиста по современному положению дел на передовых рубежах официальной физики.

Рис. 1.17. Диаграмма, описывающая один из вкладов в процесс превращения двух частиц в три частицы

Пока у нас нет возможности подняться до таких энергий. Несмотря на это в течение нескольких последних лет физики-теоретики были крайне воодушевлены идеей, что фундаментальными составляющими природы при энергиях 10 15 – 10 19 ГэВ являются не поля или частицы, а струны. Чтобы упростить рассмотрение этого вопроса, упомянем здесь только об одном типе струн. Струна такого типа представляет собой маленькую петлю, нарушающую непрерывность пространства-времени, маленький дефект пространства-времени, свернутый в колечко. Струна обладает натяжением и может колебаться, как обычная струна. Колебания струны образуют бесконечную последовательность нормальных мод, каждой из которых отвечает определенный тип частиц. Низшей моде струны отвечает наилегчайшая частица, следующей моде отвечает более тяжелая частица и т. д. Взаимодействие между частицами выглядит так, как будто эти колечки сливаются, а затем опять расходятся. Этот процесс можно описать с помощью поверхности, поскольку при движении в пространстве-времени струна заметает двухмерную мировую поверхность (трубку). Взаимодействие между частицами представляется в виде двумерной мировой поверхности, которая может расщепляться и вновь воссоединяться, поглощая «колечки», имевшиеся в начальном состоянии, и испуская «колечки», отвечающие конечному состоянию. Например, процесс рассеяния, при котором в начальном состоянии было две частицы, а в конечном – три, будет описываться поверхностью, в которую входят две длинные трубки (описывающие частицы в начальном состоянии) и из которой выходят три длинные трубки (описывающие частицы в конечном состоянии). Сама эта поверхность может иметь довольно сложную топологию (рис. 1.17).

Поверхность можно описать, задав на ней координатную сетку. Поскольку поверхность двумерна, то положение произвольной точки на ней задается двумя координатами, которые можно обозначить как? 1 и? 2 . Теперь нужно каким-то образом указать, где находится произвольно выбранная точка струны в любой задан­ный момент времени. Для этого необходимо задать правило, которое ставит в соответствие каждой точке? = (? 1 , ? 2) на поверхности точку х m в пространстве-времени. Математически это правило записывается в виде х m = х m (? 1 ,? 2). Геометрия поверхности определяется заданной на ней метрикой. Как и в случае общей теории относительности, метрика задается с помощью метрического тензора q a b (?), элементы которого зависят от координат; поскольку мы имеет дело с двумерной поверхностью, то индексы a и b могут принимать значения, равные единице или двойке. Метрика определяет, как вычисляется расстояние между двумя бесконечно близко расположенными точками? и?+d? на поверхности:

d ? = [q a b (?) d ? a d ? b ] ? . (1.13)

Согласно принципам квантовой механики в фейнмановской интерпретации для вычисления амплитуды вероятности (это та самая величина, которую надо возвести в квадрат, чтобы получить вероятность процесса) нужно просуммировать амплитуды для всех возможных путей перехода из начального состояния в конечное. В теории струн нужно просуммировать по всем двумерным поверхностям, описывающим данный процесс. Каждая поверхность задается двумя функциями х m = х m (? ) и q a b (?), которые были определены выше. Все, что осталось сделать для вычисления вероятности, – это найти для каждой поверхности значение величины I [х, q ], а затем просуммировать е – I [х, q ], по всем поверхностям. Функционал I [х, q ] называется действием, оно функционально зависит от х m = х m (?) и q a b (?) и определяется выражением:

На самом деле здесь должен присутствовать еще один член, который нужен для того, чтобы задать относительную шкалу различных порядков теории возмущений.

Оживленный интерес к струнам обусловлен тем, что они впервые позволили построить теорию гравитации без расходимостей, которые возникали в более ранних теориях. Основы этой теории были заложены на рубеже 60-х и 70-х годов, а ее по­явление связано с попытками объяснить природу сильного взаимодействия в ядре.

Рисунок 1.18. Пересечение струн с испусканием и поглощением безмассовой частицы со спином 2.

Вскоре выяснилось, что поверхности с длинными тонкими трубками (рис.1.18) отвечают безмассовой частице со спином 2, испускаемой в виде кванта излучения в промежутке, разделяющем начальные и конечные состояния частиц. (Безмассовые частицы – это просто частицы, движущиеся со скоростью света, а их спин измеряется в тех же единицах, в которых спин электрона равен одной второй.) Появление этой частицы вызвало тогда ужасное замешательство. К тому времени уже было известно, что такими же свойствами должен обладать квант гравитационного поля – гравитон. Но, несмотря на это, в конце 60-х и 70-х годов основные усилия были направлены на исследования сильных взаимодействий, а вовсе не на гравитацию. Эти обстоятельства обусловили утрату интереса к теории струн в начале 70-х годов.

В 1974 г. Шерк и Шварц выдвинули гипотезу о том, что струнную теорию следует рассматривать в качестве теории гравитации, однако тогда никто не воспринял это всерьез. Лишь благодаря работам Грина, Гросса, Полякова, Шварца, Виттена и их коллег физики начали постепенно соглашаться с тем, что теория струн подходит на роль окончательной единой физической теории с энергетической шкалой порядка 10 15 – 10 19 ГэВ.

Теория струн имеет вполне рациональное объяснение в терминах используемых в ней симметрий. С действием (1.14) связано несколько симметрий. Так же как и в случае общей теории относительности, задание метрики порождает симметрию по отношению к преобразованиям координат. Имеется также и другая, менее очевидная симметрия, справедливая только в двухмерном случае. Эта симметрия связана с локальным изменением масштаба расстояний – так называемым преобразования Вейля, при котором метрический тензор умножается на произвольную функцию координат q a b (?) ? f(?) q a b (?). И, наконец, имеется еще одна довольно очевидная симметрия по отношению к преобразованиям Лоренца:

х m ? L m n х n + а m .

Эти две симметрии кажутся совершенно необходимыми. Без этих симметрий попытки вычислить сумму по всем поверхностям приводили бы к бессмысленным результатам. Без этих двух симметрий получаются либо отрицательные вероятности, либо полная вероятность не будет равна единице. На самом деле есть очень тонкие квантово-механические эффекты, способные нарушить эти симметрии. Квантовые аномалии будут «портить» эти симметрии до тех пор, пока не начинают использовать подходящую комбинацию обычных и спиновых координат.

Теорию, описывающую свойства двухмерных поверхностей, инвариантных по отношению к координатным преобразованиям и преобразованию Вейля, создал Бернхард Риман в начале XIX столетия. Большинство ее результатов оказались совершенно необходимыми для понимания физики струн. Например, все, что требуется для описания топологии произвольной двумерной поверхности (точнее, произвольно ориентированной замкнутой поверхности), – это указать количество ее «ручек». Если число «ручек» задано, то для описания геометрии достаточно задать конечное число параметров. Проводя суммирование по поверхностям, по этим параметрам нужно будет проинтегрировать. Число этих параметров равно нулю, если «ручек» нет, двум – если есть одна «ручка», и 6 h – 6, если число ручек h > 2.

Именно эти старые теоремы позволяют провести суммирование по всем поверхностям. Если бы не было симметрии, невозможно было бы проделать необходимые вычисления, а если бы что-нибудь и получилось, то результат, скорее всего, оказался бы бессмысленным. Вот почему симметрии представляются совершенно необходимыми. Мы вплотную подошли к самому главному: структура функционала действия (1.14) и, следовательно, сама динамика струн однозначно определяются этими симметриями.

Существует несколько различных теорий струн, которые совместимы со всеми указанными выше симметриями и различаются числом пространственно-временных координат х* и спиновых переменных. К сожалению, во всех этих теориях число пространственно-временных измерений больше четырех. Один из способов преодолеть эту трудность основан на предположении, что лишние пространственные измерения «компактифицируются», т. е. «свертываются» на очень малых расстояниях. Однако такой подход не исчерпывает всех возможностей. Более последовательные теории основаны на предположении, что число дополнительных пространственных и спиновых переменных может быть любым, а Лоренц – инвариантность относится только к четырем обычным пространственно-временным измерениям. Действие и число переменных затем определяются из требования, чтобы остальные симметрии (при преобразовании координат и преобразовании Вейля) сохранялись, несмотря на квантовые флуктуации. Исследования в этом направлении только что начались.

Теория струн использовалась еще в 60-х годах 20-го столетия для объяснения адронной физики, но в связи с успехами стандартной модели они в основном были забыты. Возрождение интереса к струнам произошло, когда Грин и Шварц показали, что калибровочная и свободная от гравитационных аномалий суперструнная теория может быть описана в десяти измерениях с помощью группы внутренней симметрии SO(32) или Е8 ? Е8. Из прежних теорий было известно, что достижение унитарности и лоренц-инвареантности для суперструнных теорий возможно только в пространствах высших размерностей.

Не существует никаких дополнительных членов, которые были бы совместимы с данными симметриями. С динамической теорией такое случилось впервые, когда задание симметрии полностью определяет характер динамики, т. е. полностью определяет изменение вектора состояния со временем. Это одна из причин воодушевления испытываемого современными физиками. Эта теория выглядит фатально неизбежной. В неё нельзя внести никаких изменений, не испортив ее, не говоря уже о способности теории струн описывать гравитационные явления.

В 20-х годах ХХ столетия Калуца и Клейн использовали идею трактовки сил как проявления искривления пространств высших размерностей для описания электромагнетизма и гравитации на чисто геометрической единой основе (теории Калуца-Клейна) . Новые теории, включающие суперсиметрию, носят название суперструных теорий. В рамках данных теорий некоторые квантово-механические возбуждения струн (обычные моды) интерпретируются как экспериментально наблюдаемые элементарные частицы. Возбуждения представляют собой вращения, вибрации или возбуждения внутренних степеней свободы. Таким образом, весь спектр элементарных частиц получается на основе единственной, фундаментальной струны. Число состояний с массами, меньшими массы Планка, соответствует числу наблюдаемых частиц. Имеется также бесконечное число возбуждений с массами выше массы Планка. Обычно эти моды не стабильны и распродаются на более легкие. Однако в рамках суперструнных теорий существуют стабильные решения с экзотическими характеристиками, такими, как магнитный заряд, экзотические значения электрического заряда. Примечательно, что во всем спектре частиц, соответствующих классическим решениям суперструнных теорий, появляется в точности один безмассовый гравитон со спином 2.

Струны возникают в двух различных топологиях: в форме открытых струн со свободными концами и в форме замкнутых петель (о которых идет речь в цитируемой здесь статье). Помимо этого они могут обладать внутренней ориентацией. Квантовые числа открытых струн расположены на их концах, тогда как в замкнутых петлях квантовые числа размазаны по струне .

Теория струн претендует на роль окончательной теории, объединяющей всю совокупность наших представлений о материальном мире. Именно по этим причинам многие современные физики испытывают воодушевление. Лучшие физические и математические умы планеты штурмуют ныне этот, казалось бы, последний бастион научного осознания материальной природы.

На данном этапе основная задача заключается в том, чтобы выяснить, смогут ли теории струн привести к стандартной модели, описывающей слабое, электромагнитное и сильное взаимодействия. Если да, то возникает второй вопрос: что теория струн сможет сказать о семнадцати параметрах, содержащихся в стандартной модели? Сможем ли мы с ее помощью непосредственно вычислить массу электрона, кварков и т. д.? Если да, то проблема будет решена.

Как считают многие из ученые, теория струн настолько изящна, что обязательно войдет в число окончательных, фундаментальных законов физики, и это самое важное, что у нас есть на данный момент.

Оптимистическая нота, на которой заканчивается выдержка из статьи С. Вайнберга, вовсе не разделяется Алгеброй сигнатур. Господствующая ныне научная парадигма сковала возможности развития наших представлений об окружающей действительности. Принципы, лежащие в основе квантовой механики, по-прежнему не допускают возможности исследования структуры элементарных и фундаментальных частиц. Все, на что способна современная квантовая физика,– это вычислять вероятности исходов тех или иных процессов и получать усредненные динамические характеристики квантовых объектов. Неискушенный человек, интересующийся основами мироздания, взяв в руки любую серьезную книгу по квантовой теории поля или теории струн, может подумать, что в ней на марсианском языке записан кладезь человеческой мудрости в отношении к природе материальности. На самом деле передовые рубежи Науки отошли далеко от истинного пути познания. Вместо того чтобы просветлять материю знанием, Наука запуталась в паутине собственных математезированных хитросплетений, от которых темнота становится еще темнее. Квантовые теории погружают сознание во мрак математического тумана, за которым не видно не только Основополагающего ТВОРЦА, но и самой материи. Сознание слепо блуждает в замкнутом пространстве бездуховной парадигмы, пытаясь зацепиться за островки целесообразности в виде законов сохранения, вариационных принципов и совпадения результатов расчетов с экспериментальными данными. Если ясные представления о сущности распространения Света (одного из Б-ЖЕСТВЕННЫХ Начал) позволили человечеству развить индустрию информационных технологий, то замутненные представления об атомных и ядерных явлениях не дали человечеству ничего, кроме оружия, несущего страшную смерть, и зловещей атомной энергетики. В этом и заключается кризис современной квантовой науки – она больше ничего не в состоянии дать миру, кроме разрушения и смерти. Утешает лишь то, что Наука молода, и только в начале пути.

Взято из книги Гаухмана «Алгебра сигнатур» (Алсигна)

Более полную версию можно найти по адресу http://ru.wikipedia.org/wiki/Теория_струн

А также видеоролики в Разделе — Медиа — Видео или по ссылке