Как решается система уравнений с двумя неизвестными. Решение уравнений с двумя переменными

Более надежные, чем графический метод, который рассмотрели в предыдущем параграфе.

Метод подстановки

Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).

Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.

1. Выразить у через х из одного уравнения системы.
2. Подставить полученное выражение вместо у в другое уравнение системы.
3. Решить полученное уравнение относительно х.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.
5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.


4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если то
5) Пары (2; 1) и решения заданной системы уравнений.

Ответ: (2; 1);

Метод алгебраического сложения

Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.

Пример 2. Решить систему уравнений


Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения:
Вычтем второе уравнение системы из ее первого уравнения:


В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:


Эту систему можно решить методом подстановки. Из второго уравнения находим Подставив это выражение вместо у в первое уравнение системы, получим


Осталось подставить найденные значения х в формулу

Если х = 2, то

Таким образом, мы нашли два решения системы:

Метод введения новых переменных

С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.

Пример 3. Решить систему уравнений

Введем новую переменную Тогда первое уравнение системы можно будет переписать в более простом виде: Решим это уравнение относительно переменной t:


Оба эти значения удовлетворяют условию , а потому являются корнями рационального уравнения с переменной t. Но значит, либо откуда находим, что х = 2у, либо
Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:

х = 2 у; у - 2х.

Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х 2 - у 2 = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений :

Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений:

Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим


Так как х = 2у, то находим соответственно х 1 = 2, х 2 = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений:

Снова воспользуемся методом подстановки : подставим выражение 2х вместо у во второе уравнение системы. Получим


Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.

Ответ: (2; 1); (-2;-1).

Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.

Пример 4. Решить систему уравнений

Введем две новые переменные:

Учтем, что тогда

Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b:


Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение:

Возвращаясь к переменным х и у, получаем систему уравнений


Применим для решения этой системы метод алгебраического сложения:


Так как то из уравнения 2x + y = 3 находим:
Таким образом, относительно переменных х и у мы получили одно решение:


Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных . Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.

Определение.

Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.

Графический метод решения систем уравнений

Мы уже с вами научились решать системы уравнений такими распространенными и надежными способами, как метод подстановки, алгебраического сложения и введения новых переменных. А теперь давайте с вами вспомним, метод, который вы уже изучали на предыдущем уроке. То есть давайте повторим, что вы знаете о графическом методе решения.

Метод решения систем уравнения графическим способом представляет собой построение графика для каждого из конкретных уравнений, которые входят в данную систему и находятся в одной координатной плоскости, а также где требуется найти пересечения точек этих графиков. Для решения данной системы уравнений являются координаты этой точки (x; y).

Следует вспомнить, что для графической системы уравнений свойственно иметь либо одно единственное верное решение, либо бесконечное множество решений, либо же не иметь решений вообще.

А теперь на каждом из этих решений остановимся подробнее. И так, система уравнений может иметь единственное решение в случае, если прямые, которые являются графиками уравнений системы, пересекаются. Если же эти прямые параллельны, то такая система уравнений абсолютно не имеет решений. В случае же совпадения прямых графиков уравнений системы, то тогда такая система позволяет найти множество решений.

Ну а теперь давайте с вами рассмотрим алгоритм решения системы двух уравнений с 2-мя неизвестными графическим методом:

Во-первых, вначале мы с вами строим график 1-го уравнения;
Вторым этапом будет построение графика, который относится ко второму уравнению;
В-третьих, нам необходимо найти точки пересечения графиков.
И в итоге мы получаем координаты каждой точки пересечения, которые и будут решением системы уравнений.

Давайте этот метод рассмотрим более подробно на примере. Нам дана система уравнений, которую необходимо решить:


Решение уравнений

1. Вначале мы с вами будем строить график данного уравнения: x2+y2=9.

Но следует заметить, что данным графиком уравнений будет окружность, имеющая центр в начале координат, а ее радиус будет равен трем.

2. Следующим нашим шагом будет построение графика такого уравнения, как: y = x – 3.

В этом случае, мы должны построить прямую и найти точки (0;−3) и (3;0).


3. Смотрим, что у нас получилось. Мы видим, что прямая пересекает окружность в двух ее точках A и B.

Теперь мы с вами ищем координаты этих точек. Мы видим, что координаты (3;0) соответствуют точке А, а координаты (0;−3) соответственно точке В.

И что мы получаем в итоге?

Получившиеся при пересечении прямой с окружностью числа (3;0) и (0;−3), как раз и являются решениями обоих уравнений системы. А из этого следует, что данные числа являются и решениями этой системы уравнений.

То есть, ответом этого решения являются числа: (3;0) и (0;−3).

КВАДРАТНЫЙ ТРЕХЧЛЕН III

§ 63. Решение некоторых систем уравнений

В этом параграфе мы рассмотрим некоторые типичные системы уравнений, решение которых сводится к решению квадратных уравнений.

Пример 1. Решить систему уравнений

Поскольку второе уравнение этой системы линейно относительно каждой из переменных х и у , то одна из этих переменных,; например у , легко выражается через другую:

у = х - 1.

Подставляя это выражение для у в первое уравнение системы, получаем:

x 2 + 3 (х - 1) 2 - х (х - 1) - 2х + 1 = 0,

3x 2 - 7x +4 = 0; x 1 = 4 / 3 ; x 2 = 1

Этим значениям х согласно второму уравнению системы соответствуют следующие значения у : y 1 = 1 / 3 ; y 2 = 0.

Таким образом, данная система уравнений имеет два решения:

x 1 = 4 / 3 ; y 1 = 1 / 3 ; и x 2 = 1; y 2 = 0.

Пример 2. Решить систему уравнений

(1)

Характерная особенность этой системы уравнений состоит в том, что она содержит лишь выражения x 2 , y 2 и ху , суммарная степень х и у в которых постоянна и равна 2.

Для решения данной системы выполним следующие преобрaзования. Из первого уравнения системы (1) вычтем второе, умноженное на 2. В результате получим уравнение

2x 2 - 3ху + y 2 = 0, (2)

правая часть которого равна 0.

Заметим, что х =/= 0. В противном случае из (2) вытекало бы, что у = 0, а это явно противоречит уравнениям системы (1). Но если х =/= 0, то уравнение (2) можно почленно разделить на x 2 , что дает

2- 3 y / x + ( y / x ) 2 = 0.

Мы получили квадратное уравнение относительно y / x . Из него следует, что либо y / x = 1, либо y / x = 2.

Рассмотрим эти два случая отдельно.

1) Если y / x = 1, то у = х . Замена у в первом уравнении данной системы на х приводит к следующему результату:

4x 2 + 5x 2 + 3x 2 = 16,

12x 2 = 16.

Следовательно,

Отсюда получаем следующие два решения данной системы:

x 1 = 2 / √ 3 , y 1 = 2 / √ 3 ; x 2 = - 2 / √ 3 , y 2 = - 2 / √ 3

2) Если y / x = 2, то у = 2х . Заменяя у в первом уравнении данной системы на 2х , получаем:

14x 2 - 10x 2 + 12x 2 = 16,

16x 2 = 16.

Следовательно, х = ±1. Отсюда, учитывая, что у = 2х , получаем еще два решения данной системы:

x 1 = 1, y 1 = 2; x 2 = - 1 , y 2 = - 2

Проверка показывает, что ни одно из полученных четырех решений системы (1) не является "посторонним".

Ответ. Данная система уравнений имеет 4 решения:

1) x 1 = 2 / √ 3 , y 1 = 2 / √ 3 ; 2) x 2 = - 2 / √ 3 , y 2 = - 2 / √ 3

3) x 1 = 1, y 1 = 2; 4) x 2 = - 1 , y 2 = - 2

Пример 3. Решить систему уравнений

Если только данная система уравнений имеет решение, то по теореме, обратной теореме Виета, это решение должно состоять из корней квадратного уравнения (см. § 52):

x 2 - 6x - 7 = 0.

Это уравнение имеет корни x 1 = -1, x 2 = +7. Следовательно, в роли решений данной системы уравнений могут выступать только следующие две пары чисел:

x 1 = - 1, y 1 = 7 и x 2 = 7, y 2 = - 1.

Элементарная проверка показывает, что каждая из этих пар чисел является решением нашей системы.

Ответ. Данная система уравнений имеет два решения:

x 1 = - 1, y 1 = 7 и x 2 = 7, y 2 = - 1.

Пример 4. Решить систему уравнений

Из второго уравнения следует, что х (-у )= 7. Поэтому

Мы получили систему уравнений, вполне аналогичную системе, рассмотренной в примере 3. Только роль неизвестных играют не х и у , как в примере. 3, а х и - у . Поэтому дальнейший ход решения этой системы такой же, как в примере 3. Учащимся предлагается провести его самостоятельно.

Пример 5. Решить систему уравнений

Из второго уравнения получаем x 2 y 2 = 4. Но в таком случае по теореме, обратной теореме Виета, x 2 и y 2 можно рассматривать как корни квадратного уравнения

z 2 - 5z + 4 = 0,

откуда z 1 = 4, z 2 = 1. Поэтому возможны два случая: 1) x 2 = 4, и тогда y 2 = 1; 2) x 2 = 1, и тогда y 2 = 4.

Случай 1 . Если х = + 2, то у = -1 (согласно второму уравнению исходной системы ху = - 2). Если х =- 2, то у = 1.

Случай 2. Если x = 1, то у = - 2, если же x = - 1, то у = 2.

Мы получили 4 решения данной системы уравнений:

x 1 = 2, y 1 = - 1 ; x 2 = - 2, y 2 = 1;

x 3 = 1, y 3 = - 2 ; x 4 = - 1, y 4 = 2.

Упражнения

Решить данные системы уравнений:

Решение уравнений в целых числах является одной из древнейших математических задач. Уже в начале 2 тысячелетия до н. э. Вавилоняне умели решать системы таких уравнений с двумя переменными. Наибольшего расцвета эта область математики достигла в Древней Греции. Основным источником для нас является «Арифметика» Диофанта, содержащая различные типы уравнений. В ней Диофант (по его имени и название уравнений – диофантовы уравнения) предвосхищает ряд методов исследования уравнений 2-ой и 3-ой степеней, развившихся только в 19 веке.

Простейшие диофантовы уравнения ах + ву = 1(уравнение с двумя переменными, первой степени) х2 + у2 = z2 (уравнение с тремя переменными, второй степени)

Наиболее полно изучены алгебраические уравнения, их решение было одной из важнейших задач алгебры в 16-17 вв.

К началу 19 века трудами П. Ферма, Л. Эйлера, К. Гаусса было исследовано диофантово уравнение вида: ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные.

Это уравнение 2-ой степени с двумя неизвестными.

К. Гаусс построил общую теорию квадратичных форм, являющуюся основой решения некоторых типов уравнений с двумя переменными (диофантовых уравнений). Существует большое число конкретных диофантовых уравнений, решаемых элементарными способами. /p>

Теоретический материал.

В этой части работы будут описаны основные математические понятия, даны определения терминов, сформулирована теорема о разложении с использованием метода неопределенных коэффициентов, которые были изучены и рассмотрены при решении уравнений с двумя переменными.

Определение 1: Уравнение вида ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные называется уравнением второй степени с двумя переменными.

В школьном курсе математики изучается квадратное уравнение ах2+вх +с=0 , где а,в,с числа х переменная, с одной переменной. Существует много способов решения такого уравнения:

1. Нахождение корней, используя дискриминант;

2. Нахождение корней для четного коэффициента в (по Д1=);

3. Нахождение корней по теореме Виета;

4. Нахождение корней с помощью выделения полного квадрата двучлена.

Решить уравнение – значит, найти все его корни или доказать, что их нет.

Определение 2: Корень уравнения – это число, которое при подстановке в уравнение образует верное равенство.

Определение 3: Решение уравнения с двумя переменными называется пара чисел (х,у) при подстановки которых в уравнение, оно превращается в верное равенство.

Процесс разыскивания решений уравнения очень часто заключается обычно в замене уравнения равносильным уравнением, но более простым при решении. Такие уравнения называются равносильными.

Определение 4: Два уравнения называются равносильными, если каждое решение одного уравнения является решением другого уравнения, и наоборот, причем оба уравнения рассматриваются в одной и той же области.

Для решения уравнений с двумя переменными используют теорему о разложении уравнения на сумму полных квадратов (методом неопределенных коэффициентов).

Для уравнения второго порядка ах2 + вху + су2 + dx + ey + f = 0 (1) имеет место разложение а(х +ру +q)2 + r(y+s)2 +h (2)

Сформулируем условия, при которых имеет место разложение (2) для уравнения (1) двух переменных.

Теорема: Если коэффициенты а,в,с уравнения (1) удовлетворяют условиям а0 и 4ав – с20, то разложение (2) определяется единственным способом.

Другими словами уравнение (1) с двумя переменными можно с помощью метода неопределенных коэффициентов привести к виду (2), если выполнены условия теоремы.

Рассмотрим на примере, как реализуется метод неопределенных коэффициентов.

СПОСОБ №1. Решить уравнение методом неопределенных коэффициентов

2 х2 + у2 + 2ху + 2х +1= 0.

1. Проверим выполнение условия теоремы, а=2, в=1, с=2, значит, а=2,4ав – с2= 4∙2∙1- 22= 40.

2. Условия теоремы выполнены, можно разложить по формуле (2).

3. 2 х2 + у2 + 2ху + 2х +1= 2(х + py + q)2 + r(y +s)2 +h, исходя из условий теоремы обе части тождества равносильны. Упростим правую часть тождества.

4. 2(х + py + q)2 + r(y +s)2 +h =

2(х2+ p2y2 + q2 + 2pxy + 2pqy + 2qx) + r(y2 + 2sy + s2) + h =

2х2+ 2p2y2 + 2q2 + 4pxy + 4pqy + 4qx + ry2 + 2rsy + rs2 + h =

X2(2) + y2(2p2 + r) + xy(4p) + x(4q) + y(4pq + 2rs) + (2q2 + rs2 + h).

5. Приравниваем коэффициенты при одинаковых переменных с их степенями.

х2 2 = 2 у21 = 2p2 + r) ху2 = 4p х2 = 4q у0 = 4pq + 2rs х01 = 2q2 + rs2 + h

6. Получим систему уравнений, решим ее и найдем значения коэффициентов.

7. Подставим коэффициенты в (2), тогда уравнение примет вид

2 х2 + у2 + 2ху + 2х +1= 2(х + 0,5y + 0,5)2 + 0,5(y -1)2 +0

Таким образом, исходное уравнение равносильно уравнению

2(х + 0,5y + 0,5)2 + 0,5(y -1)2 = 0 (3), это уравнение равносильно системе двух линейных уравнений.

Ответ: (-1; 1).

Если обратить внимание на вид разложения (3), то можно заметить, что оно по форме идентично выделению полного квадрата из квадратного уравнения с одной переменной: ах2 + вх + с = а(х +)2 +.

Применим этот прием при решении уравнения с двумя переменными. Решим с помощью выделения полного квадрата уже решенное с использованием теоремы квадратное уравнение с двумя переменными.

СПОСОБ №2: Решить уравнение 2 х2 + у2 + 2ху + 2х +1= 0.

Решение: 1. Представим 2х2 в виде суммы двух слагаемых х2 + х2 + у2 + 2ху + 2х +1= 0.

2. Сгруппируем слагаемые таким образом, чтобы можно было свернуть по формуле полного квадрата.

(х2 + у2 + 2ху) + (х2 + 2х +1)= 0.

3. Выделим полные квадраты из выражений в скобках.

(х + у)2 + (х + 1)2 = 0.

4. Данное уравнение равносильно системе линейных уравнений.

Ответ: (-1;1).

Если сравнить результаты, то видно, что уравнение, решенное способом №1 с использованием теоремы и методом неопределенных коэффициентов и уравнение, решенное способом №2, с помощью выделения полного квадрата имеют одинаковые корни.

Вывод: Квадратное уравнение с двумя переменными можно разлагать на сумму квадратов двумя способами:

➢ Первый способ – это метод неопределенных коэффициентов, в основе которого лежит теорема и разложение (2).

➢ Второй способ – с помощью тождественных преобразований, позволяющих выделить последовательно полные квадраты.

Конечно же, при решении задач второй способ является предпочтительнее, т. к. не требует запоминания разложения (2) и условия.

Этот метод можно применять и для квадратных уравнений с тремя переменными. Выделение полного квадрата в таких уравнениях более трудоемко. Такого вида преобразованиями я буду заниматься в следующем году.

Интересно заметить, что функцию, имеющую вид: f(х,у)= ах2 + вху + су2 + dx + ey + f, называют квадратичной функцией двух переменных. Квадратичным функциям принадлежит важная роль в различных разделах математики:

В математическом программировании (квадратичное программирование)

В линейной алгебре и геометрии (квадратичные формы)

В теории дифференциальных уравнений (приведение линейного уравнения второго порядка к каноническому виду).

При решении этих различных задач, приходится, по сути, применять процедуру выделения полного квадрата из квадратного уравнения (одной, двух и более переменных).

Линии, уравнения которых, описываются квадратным уравнением двух переменных, называются кривыми второго порядка.

Это окружность, эллипс, гипербола.

При построении графиков этих кривых так же используется метод последовательного выделения полного квадрата.

Рассмотрим, как работает метод последовательного выделения полного квадрата на конкретных примерах.

Практическая часть.

Решить уравнения, методом последовательного выделения полного квадрата.

1. 2х2 + у2 + 2ху + 2х + 1 = 0; х2 + х2 + у2 + 2ху + 2х + 1 = 0;

(х +1)2 + (х + у)2 = 0;

Ответ:(-1;1).

2. х2 + 5у2 + 2ху + 4у + 1 = 0; х2 + 4у2 + у2 + 2ху + 4у + 1 = 0;

(х + у)2 + (2у + 1)2 = 0;

Ответ:(0,5; - 0,5).

3. 3х2 + 4у2 - 6ху - 2у + 1 = 0;

3х2 + 3у2 + у2 – 6ху – 2у +1 = 0;

3х2 +3у2 – 6ху + у2 –2у +1 = 0;

3(х2 - 2ху +у2) + у2 - 2у + 1 = 0;

3(х2 - 2ху + у2)+(у2 - 2у + 1)=0;

3(х-у)2 + (у-1)2 = 0;

Ответ:(-1;1).

Решить уравнения:

1. 2х2 + 3у2 – 4ху + 6у +9 =0

(привести к виду: 2(х-у)2 + (у +3)2 = 0)

Ответ: (-3; -3)

2. – 3х2 – 2у2 – 6ху –2у + 1=0

(привести к виду: -3(х+у)2 + (у –1)2= 0)

Ответ: (-1; 1)

3. х2 + 3у2+2ху + 28у +98 =0

(привести к виду: (х+у)2 +2(у+7)2 =0)

Ответ: (7; -7)

Заключение.

В данной научной работе были изучены уравнения с двумя переменными второй степени, рассмотрены способы их решения. Поставленная задача выполнена, сформулирован и описан более краткий способ решения, основанный на выделении полного квадрата и замене уравнения на равносильную систему уравнений, в результате упрощена процедура нахождения корней уравнения с двумя переменными.

Важным моментом работы является то, что рассматриваемый прием применяется при решении различных математических задач связанных с квадратичной функцией, построением кривых второго порядка, нахождением наибольшего (наименьшего) значения выражений.

Таким образом, прием разложения уравнения второго порядка с двумя переменными на сумму квадратов имеет самые многочисленные применения в математике.

Инструкция

Способ сложения.
Нужно записать два строго друг под другом:

549+45у+4у=-7, 45у+4у=549-7, 49у=542, у=542:49, у≈11.
В произвольно выбранное (из системы) уравнение вставить вместо уже найденного «игрека» число 11 и вычислить второе неизвестное:

Х=61+5*11, х=61+55, х=116.
Ответ данной системы уравнений: х=116, у=11.

Графический способ.
Заключается в практическом нахождении координаты точки, в которой прямые, математически записанные в системе уравнений. Следует начертить графики обоих прямых по отдельности в одной системе координат. Общий вид : – у=kх+b. Чтобы построить прямую, достаточно найти координаты двух точек, причем, х выбирается произвольно.
Пусть дана система: 2х – у=4

У=-3х+1.
Строится прямая по первому , для удобства его нужно записать: у=2х-4. Придумать (полегче) значения для икс, подставляя его в уравнение, решив его, найти игрек. Получаются две точки, по которым строится прямая. (см рис.)
х 0 1

у -4 -2
Строится прямая по второму уравнению: у=-3х+1.
Так же построить прямую. (см рис.)

у 1 -5
Найти координаты точки пересечения двух построенных прямых на графике (если прямые не пересекаются, то система уравнений не имеет – так ).

Видео по теме

Полезный совет

Если одну и ту же систему уравнений решить тремя разными способами, ответ получится одинаковый (если решение верно).

Источники:

  • Алгебра 8 класса
  • решить уравнение с двумя неизвестными онлайн
  • Примеры решения систем линейных уравнений с двумя

Система уравнений представляет собой совокупность математических записей, каждая из которых содержит некоторое количество переменных. Существует несколько способов их решения.

Вам понадобится

  • -линейка и карандаш;
  • -калькулятор.

Инструкция

Рассмотрим последовательность решения системы, которая состоит из линейных уравнений имеющих вид: a1x + b1y = c1 и a2x + b2y = c2. Где x и y – неизвестные переменные, а b,c – свободные члены. При применении данного способа каждое системы представляет собой координаты точек , соответствующих каждому уравнению. Для начала в каждом случае выразите одну переменную через другую. Затем задайте переменной х несколько любых значений. Достаточно два. Подставьте в уравнение и найдите y. Постройте систему координат, отметьте на ней полученные точки и проведите через них прямую. Аналогичные расчеты необходимо провести и для других частей системы.

Система имеет единственное решение, если построенные прямые пересекаются и одну общую точку. Она несовместна, если параллельны друг другу. И имеет бесконечно много решений, когда прямые сливаются друг с другом.

Данный способ считается очень наглядным. Главным недостатком то, что вычисленные неизвестные имеют приближенные значения. Более точный результат дают так называемые алгебраические методы.

Любое решение системы уравнений стоит проверить. Для этого подставьте вместо переменных полученные значения. Так же можно найти его решение несколькими методами. Если решение системы верное, то все должны получиться одинаковыми.

Часто встречаются уравнения, в которых одно из слагаемых неизвестно. Чтобы решить уравнение, нужно запомнить и проделать с данными числами определенный набор действий.

Вам понадобится

  • - лист бумаги;
  • - ручка или карандаш.

Инструкция

Представьте, что перед вами 8 кроликов, а у вас есть только 5 морковок. Подумайте, морковок вам нужно еще купить, чтобы каждому кролику досталось по морковке.

Представим эту задачу в виде уравнения: 5 + x = 8. Подставим на место x число 3. Действительно, 5 + 3 = 8.

Когда вы подставляли число на место x, вы проделывали ту же операцию, что и при вычитании 5 из 8. Таким образом, чтобы найти неизвестное слагаемое, вычтите из суммы известное слагаемое.

Допустим, у вас 20 кроликов и только 5 морковок. Составим . Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, значения которых требуется отыскать, называются . Составьте уравнение с одним неизвестным, назовите его x. При решении нашей задачи про кроликов получается следующее уравнение: 5 + x = 20.

Найдем разницу между 20 и 5. При вычитании то число, из которого вычитают, уменьшаемое. То число, которое вычитают, называется , а конечный результат называется разностью. Итак, x = 20 – 5; x = 15. Нужно купить 15 морковок для кроликов.

Сделайте проверку: 5 + 15 = 20. Уравнение решено верно. Разумеется, когда речь идет о таких простых , проверку выполнять необязательно. Однако когда приходится уравнения с трехзначными, четырехзначными и тому числами, обязательно нужно выполнять проверку, чтобы быть абсолютно уверенным в результате своей работы.

Видео по теме

Полезный совет

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.

Совет 4: Как решить систему из трёх уравнений с тремя неизвестными

Система из трех уравнений с тремя неизвестными может и не иметь решений, несмотря на достаточное количество уравнений. Можно пытаться решить ее с помощью метода подстановки или с помощью метода Крамера. Метод Крамера помимо решения системы позволяет оценить, является ли система разрешимой, до того, как отыскать значения неизвестных.

Инструкция

Метод подстановки заключается в последовательном одной неизвестной через две других и подстановке полученного результата в уравнения системы. Пусть дана система из трех уравнений в общем виде:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

Выразите из первого уравнения x: x = (d1 - b1y - c1z)/a1 - и подставьте во второе и третье уравнения, затем из второго уравнения выразите y и подставьте в третье. Вы получите линейное выражение для z через коэффициенты уравнений системы. Теперь идите "обратно": подставьте z во второе уравнение и найдите y, а затем z и y подставьте в первое и найдите x. Процесс в общем виде отображен на рисунке до нахождения z. Дальше запись в общем виде будет слишком громоздкой, на практике, подставив , вы довольно легко найдете все три неизвестные.

Метод Крамера заключается в составлении матрицы системы и вычислении определителя этой матрицы, а также еще трех вспомогательных матриц. Матрица системы составляется из коэффициентов при неизвестных членах уравнений. Столбец, содержащий числа, стоящие в правых частях уравнений, столбцом правых частей. В системы он не используется, но используется при решении системы.

Видео по теме

Обратите внимание

Все уравнения в системе должны поставлять дополнительную независимую от других уравнений информацию. Иначе система будет недоопределена и однозначного решения найти будет не возможно.

Полезный совет

После решения системы уравнений подставьте найденные значения в исходную систему и проверьте, что они удовлетворяют всем уравнениям.

Само по себе уравнение с тремя неизвестными имеет множество решений, поэтому чаще всего оно дополняется еще двумя уравнениями или условиями. В зависимости от того, каковы исходные данные, во многом будет зависеть ход решения.

Вам понадобится

  • - система из трех уравнений с тремя неизвестными.

Инструкция

Если два из трех системы имеют лишь две неизвестные из трех, попытайтесь выразить одни переменные через другие и подставить их в уравнение с тремя неизвестными . Ваша цель при этом – превратить его в обычное уравнение с неизвестной. Если это , дальнейшее решение довольно просто – подставьте найденное значение в другие уравнения и найдите все остальные неизвестные.

Некоторые системы уравнений можно вычитанием из одного уравнения другого. Посмотрите, нет ли возможности умножить одно из на или переменную так, чтобы сократились сразу две неизвестные. Если такая возможность есть, воспользуйтесь ею, скорее всего, последующее решение не составит труда. Не забывайте, что при умножении на число необходимо умножать как левую часть, так и правую. Точно также, при вычитании уравнений необходимо помнить о том, что правая часть должна также вычитаться.

Если предыдущие способы не помогли, воспользуйтесь общим способом решений любых уравнений с тремя неизвестными . Для этого перепишите уравнения в виде а11х1+a12х2+а13х3=b1, а21х1+а22х2+а23х3=b2, а31х1+а32х2+а33х3=b3. Теперь составьте матрицу коэффициентов при х (А), матрицу неизвестных (Х) и матрицу свободных (В). Обратите внимание, умножая матрицу коэффициентов на матрицу неизвестных, вы получите матрицу, матрице свободных членов, то есть А*Х=В.

Найдите матрицу А в степени (-1) предварительно отыскав , обратите внимание, он не должен быть равен нулю. После этого умножьте полученную матрицу на матрицу В, в результате вы получите искомую матрицу Х, с указанием всех значений.

Найти решение системы из трех уравнений можно также с помощью метода Крамера. Для этого найдите определитель третьего порядка ∆, соответствующий матрице системы. Затем последовательно найдите еще три определителя ∆1, ∆2 и ∆3, подставляя вместо значений соответствующих столбцов значения свободных членов. Теперь найдите х: х1=∆1/∆, х2=∆2/∆, х3=∆3/∆.

Источники:

  • решений уравнений с тремя неизвестными

Приступая к решению системы уравнений, разберитесь с тем, какие это уравнения. Достаточно хорошо изучены способы решения линейных уравнений. Нелинейные уравнения чаще всего не решаются. Имеются лишь одни частные случаи, каждый из которых практически индивидуален. Поэтому изучение приемов решения следует начать с уравнений именно линейных. Такие уравнения можно решать даже чисто алгоритмически.

Инструкция

Начните процесс обучения с изучения способов решения системы двух линейных уравнений с двумя неизвестными X и Y методом исключения. a11*X+a12*Y=b1 (1); a21*X+a22*Y=b2 (2). Коэффициенты уравнений обозначены индексами, указывающими их месторасположения. Так коэффициент a21 подчеркивает тот факт, что он записан во втором уравнении на первом месте. В общепринятых обозначениях система записывается уравнениями расположенными друг под другом совместно обозначаемых фигурной скобкой справа или слева (подробнее см. рис. 1а).

Нумерация уравнений произвольна. Выберите из них самое простое, например то, в котором перед одной из переменных стоит коэффициент 1 или по крайней мере целое число. Если это уравнение (1), то далее выразите, скажем, неизвестное Y через X (случай исключения Y). Для этого преобразуйте (1) к виду a12*Y=b1-a11*X (или a11*X=b1-a12*Y при исключении Х)), а затем Y=(b1-a11*X)/a12. Подставив последнее в уравнение (2) запишите a21*X+a22*(b1-a11*X)/a12=b2. Решите это уравнение относительно X.
a21*X+a22*b1/a12-a11*a22*X/a12=b2; (a21-a11*a22/a12)*X=b2-a22*b1/a12;
X=(a12* b2-a22*b1)/(a12*a21-a11*a22) или X=(a22* b1-a12*b2)/(a11*a22-a12*a21).
Воспользовавшись найденной связью между Y и Х, окончательно получите и второе неизвестное Y=(a11* b2-a21*b1)/(a11*a22-a12*a21).

Если бы система была задана с конкретными числовыми коэффициентами, то и выкладки были бы менее громоздки. Зато общее решение дает возможность рассмотреть тот факт, что при найденных неизвестных совершено одинаковы. Да и у числителей просматриваются некоторые закономерности их построения. Если размерность системы уравнений была бы большей двух, то метод исключения приводил бы к весьма громоздким выкладкам. Чтобы их избежать, разработаны чисто алгоритмические способы решения. Самый простой из них алгоритм Крамера (формулы Крамера). Для следует узнать, общая система уравнений из n уравнений.

Система n линейных алгебраических уравнений с n неизвестными имеет вид (см. рис. 1a). В ней аij – коэффициенты системы,
хj – неизвестные, bi – свободные члены (i=1, 2, ... , n; j=1, 2, ... , п). Компактно такую систему можно записывать в матричной форме АХ=B. Здесь А – матрица коэффициентов системы, Х – матрица-столбец неизвестных, B – матрица-столбец свободных членов (см. рис 1b). По методу Крамера каждое неизвестное xi =∆i/∆ (i=1,2…,n). Определитель ∆ матрицы коэффициентов называют главным, а ∆i вспомогательным. Для каждой неизвестной вспомогательный определитель находят с помощью замены i-го столбца главного определителя на столбец свободных членов. Подробно метод Крамера для случая систем второго и третьего порядка представлен на рис. 2.

Система представляет собой объединение двух или более равенств, в каждом из которых имеется по два или более неизвестных. Существуют два основных способа решения систем линейных уравнений, которые используются в рамках школьной программы. Один из них носит название метода , другой - метода сложения.

Стандартный вид системы из двух уравнений

При стандартном виде первое уравнение имеет вид a1*x+b1*y=с1, второе уравнение имеет вид a2*x+b2*y=c2 и так далее. Например, в случае с двумя частями системы в обоих приведенных a1, a2, b1, b2, c1, c2 - некоторые числовые коэффициенты, представленные в конкретных уравнениях. В свою очередь, x и у представляют собой неизвестные, значения которых нужно определить. Искомые значения обращают оба уравнения одновременно в верные равенства.

Решение системы способом сложения

Для того чтобы решить систему , то есть найти те значения x и y, которые превратят их в верные равенства, необходимо предпринять несколько несложных шагов. Первый из них заключается в преобразовании любого из уравнений таким образом, чтобы числовые коэффициенты для переменной x или y в обоих уравнениях совпадали по модулю, но различались по знаку.

Например, пусть задана система, состоящая из двух уравнений. Первое из них имеет вид 2x+4y=8, второе имеет вид 6x+2y=6. Одним из вариантов выполнения поставленной задачи является домножение второго уравнения на коэффициент -2, которое приведет его к виду -12x-4y=-12. Верный выбор коэффициента является одной из ключевых задач в процессе решения системы способом сложения, поскольку он определяет весь дальнейший ход процедуры нахождения неизвестных.

Теперь необходимо осуществить сложение двух уравнений системы. Очевидно, взаимное уничтожение переменных с равными по значению, но противоположными по знаку коэффициентами приведет его к виду -10x=-4. После этого необходимо решить это простое уравнение, из которого однозначно следует, что x=0,4.

Последним шагом в процессе решения является подстановка найденного значения одной из переменных в любое из первоначальных равенств, имеющихся в системе. Например, подставляя x=0,4 в первое уравнение, можно получить выражение 2*0,4+4y=8, откуда y=1,8. Таким образом, x=0,4 и y=1,8 являются корнями приведенной в примере системы.

Для того чтобы убедиться, что корни были найдены верно, полезно произвести проверку, подставив найденные значения во второе уравнение системы. Например, в данном случае получается равенство вида 0,4*6+1,8*2=6, которое является верным.

Видео по теме

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода уравнений

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки . При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p - 2&1/8q)


Решить систему уравнений

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;



$$ \left\{ \begin{array}{l} 3x+y=7 \\ -5x+2y=3 \end{array} \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\{ \begin{array}{l} y = 7-3x \\ -5x+2(7-3x)=3 \end{array} \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) - решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными . Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений - способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\{ \begin{array}{l} 2x+3y=-5 \\ x-3y=38 \end{array} \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\{ \begin{array}{l} 3x=33 \\ x-3y=38 \end{array} \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \(x-3y=38 \) получим уравнение с переменной y: \(11-3y=38 \). Решим это уравнение:
\(-3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \(x=11; y=-9 \) или \((11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач