Компьютерная филология. Компьютерная лингвистика как прикладная лингвистическая дисциплина

Лингви́стика (от лат. lingua -
язык), языкозна́ние, языкове́дение - наука,
изучающая языки.
Это наука о естественном человеческом языке вообще
и обо всех языках мира как его
индивидуализированных представителях.
В широком смысле слова, лингвистика
подразделяется на научную и практическую. Чаще
всего под лингвистикой подразумевается именно
научная лингвистика. Является частью семиотики как
науки о знаках.
Лингвистикой профессионально занимаются учёныелингвисты.

Лингвистика и Информатика.
В жизни современного общества важную роль играют автоматизированные
информационные технологии. Но развитие информационных технологий происходит
весьма неравномерно: если современный уровень вычислительной техники и
средств связи поражает воображение, то в области смысловой обработки
информации успехи значительно скромнее. Эти успехи зависят, прежде всего, от
достижений в изучении процессов человеческого мышления, процессов речевого
общения между людьми и от умения моделировать эти процессы на ЭВМ. А это задача чрезвычайной сложности.Когда речь идет о создании перспективных
информационных технологий, то проблемы автоматической обработки текстовой
информации, представленной на естественных языках, выступают на передний план.
Это определяется тем, что мышление человека тесно связано с его языком. Более
того, естественный язык является инструментом мышления. Он является также
универсальным средством общения между людьми – средством восприятия,
накопления, хранения, обработки и передачи информации.
Проблемами использования естественного языка в системах автоматической
обработки информации занимается наука компьютерная лингвистика. Эта наука
возникла сравнительно недавно – на рубеже пятидесятых и шестидесятых годов
прошлого столетия. Поначалу, в период своего становления, она имела различные
названия: математическая лингвистика, вычислительная лингвистика, инженерная
лингвистика. Но в начале восьмидесятых годов за ней закрепилось название
компьютерная лингвистика.

Компьютерная лингвистика - это область знаний, связанная с решением задач
автоматической обработки информации, представленной на естественном языке.
Центральными научными проблемами компьютерной лингвистики являются проблема
моделирования процесса понимания смысла текстов (перехода от текста к
формализованному представлению его смысла) и проблема синтеза речи (перехода от
формализованного представления смысла к текстам на естественном языке). Эти проблемы
возникают при решении ряда прикладных задач:
1) автоматического обнаружения и исправления ошибок при вводе текстов в ЭВМ,
2) автоматического анализа и синтеза устной речи,
3) автоматического перевода текстов с одних языков на другие,
4) общения с ЭВМ на естественном языке,
5) автоматической классификации и индексирования текстовых документов, их
автоматического реферирования, поиска документов в полнотекстовых базах данных.
За прошедшие полвека в области компьютерной лингвистики были получены
значительные научные и практические результаты: были созданы системы машинного
перевода текстов с одних естественных языков на другие, системы автоматизированного
поиска информации в текстах, системы автоматического анализа и синтеза устной речи и
многие другие. Но были и разочарования. Например, проблема машинного перевода
текстов с одних языков на другие оказалась значительно сложнее, чем это представляли
себе пионеры машинного перевода и их последователи. То же самое можно сказать об
автоматизированном поиске информации в текстах и о задаче анализа и синтеза устной
речи. Ученым и инженерам придется по-видимому еще немало потрудиться, чтобы
достигнуть нужных результатов.

Обработка естественного языка (англ. natural language processing; синтаксический,
морфологический, семантический анализы текста). Сюда включают также:
Корпусная лингвистика, создание и использование электронных корпусов текстов
Создание электронных словарей, тезаурусов, онтологий. Например, Lingvo. Словари
используют, например, для автоматического перевода, проверки орфографии.
Автоматический перевод текстов. Среди русских переводчиков популярным
является Промт. Среди бесплатных известен переводчик Google Translate
Автоматическое извлечение фактов из текста (извлечение информации) (англ. fact
extraction, text mining)
Автореферирование (англ. automatic text summarization). Эта функция включена,
например, в Microsoft Word.
Построение систем управления знаниями. См. Экспертные системы
Создание вопросно-ответных систем (англ. question answering systems).
Оптическое распознавание символов (англ. OCR). Например, программа FineReader
Автоматическое распознавание речи (англ. ASR). Есть платное и бесплатное ПО
Автоматический синтез речи

Тимофеева Мария Кирилловна
Доктор филологических наук, старший научный сотрудник лаборатории логических систем Института математики им. С.Л. Соболева СО РАН, заведующая кафедрой фундаментальной и прикладной лингвистики Гуманитарного института НГУ. Закончила отделение математической лингвистики Гуманитарного факультета Новосибирского государственного университета.
Сфера научных интересов: философско-методологические основания лингвистики, логические проблемы семантики и прагматики естественного языка, функциональные математические модели естественного языка, естественные и формальные языки.

Стукачев Алексей Ильич
Кандидат физико-математических наук, доцент, старший научный сотрудник Института математики им. С.Л. Соболева СО РАН, доцент кафедры дискретной математики и информатики Механико-математического факультета НГУ, доцент кафедры фундаментальной и прикладной лингвистики Гуманитарного института НГУ
Сфера научных интересов: математическая логика, теория вычислимости (обобщенная вычислимость, вычислимость в допустимых множествах, HF-вычислимость), теория моделей (конструктивные модели, эффективные представления систем, степени представимости), вычислимый анализ. Математическая лингвистика: формальная семантика, семантика Монтегю, дистрибутивная семантика.

Барахнин Владимир Борисович
Ведущий научный сотрудник лаборатории информационных ресурсов Института вычислительных технологий СО РАН, профессор кафедры математического моделирования Механико-математического факультета НГУ, профессор кафедры систем информатики и общей информатики Факультета информационных технологий НГУ.
Сфера научных интересов: построение моделей распределенных информационных систем, создание алгоритмов обработки слабоструктурированных текстовых документов, автоматизация комплексного анализа поэтических текстов, методологические вопросы информатики.

Бручес Елена Павловна
Аспирант Института системы информатики им. А. П. Ершова СО РАН, ассистент кафедры фундаментальной и прикладной лингвистики Гуманитарного института НГУ, компьютерный лингвист в компании "OnPositive".
Сфера научных интересов: обработка естественных языков, машинное обучение, искусственный интеллект.

Павловский Евгений Николаевич
Кандидат физико-математических наук, член Совета молодых учёных и специалистов при Правительстве НСО, член экспертного совета Технопарка новосибирского Академгородка, председатель оргкомитета конференции Siberian Symposium on Data Science and Engineering.
Профессиональная цель: систематизация подходов к формализации бизнес-требований в проектах больших данных.

Пальчунов Дмитрий Евгеньевич
Ведущий научный сотрудник Института математики им. С. Л. Соболева СО РАН, заведующий кафедрой общей информатики НГУ, заведующий отделом "Институт дискретной математики и информатики" Механико-математического факультета НГУ.
Сфера научных интересов: Получены основополагающие результаты по исследованию булевых алгебр с выделенными идеалами (I-алгебр).

Свириденко Дмитрий Иванович
Сотрудник Института математики СО РАН и НГУ, бизнесмен, организатор и совладельц высокотехнологичных компаний, работающих в области информационных, коммуникационных и цифровых технологий. Принимает участие в исследованиях по семантическому моделированию, финансируемых грантом РНФ.
Сфера научных интересов: философия, методология, прикладная математическая логика. Автор концепции и математической теории семантического моделирования, выдвинутой совместно с академиками РАН С.С.Гончаровым и Ю.Л.Ершовым в 80-е годы прошлого столетия. В настоящее время продолжает активно развивать методологию и математическую теорию данной концепции, а также занимается приложениями этой концепции к различным областям. Работает над созданием методологии, математической теории, и языка семантических умных сделок и контрактов, применением идей семантического моделирования применительно к ТРИЗ и другим областям.

Савостьянов Александр Николаевич
Ведущий научный сотрудник в лаборатории дифференциальной психофизиологии Научно-исследовательского института физиологии и фундаментальной медицины, заведующий лабораторией психологической генетики Института цитологии и генетики СО РАН, профессор кафедры общей информатики Факультета информационных технологи НГУ, профессор кафедры фундаментальной и прикладной лингвистики гуманитарного института НГУ.
Научные интересы: нейрофизиология, психогенетика, нейролингвистика, методы компьютерной обработки биологических сигналов. Исследования направлены на выявление факторов риска появления и развития аффективных патологий у человека в зависимости от социальных и климатических условий жизнедеятельности. В рамках исследований проводятся экспедиции в различные регионы России (Новосибирская область, Тыва, Якутия, Республика Алтай) и соседних стран (Монголия, Китай) для сбора биологического материала и коллекции ЭЭГ-записей в различных экспериментальных условиях. Целью исследований является создание диагностических систем, позволяющих оценить риск нарушения эмоционального регулирования поведения человека в условиях повышенной стрессогенной нагрузки.

КОМПЬЮТЕРНАЯ ЛИНГВИСТИКА (калька с английского computational linguistics), одно из направлений прикладной лингвистики, в котором для исследования языка и моделирования функционирования языка в тех или иных условиях, ситуациях и проблемных сферах разрабатываются и используются компьютерные программы, компьютерные технологии организации и обработки данных. С другой стороны, это область применения компьютерных моделей языка в лингвистике и смежных с ней дисциплинах. Как особое научное направление компьютерная лингвистика оформилась в европейских исследованиях в 1960-х годах. Поскольку английское прилагательное computational может переводиться и как «вычислительный», в литературе встречается также термин «вычислительная лингвистика», однако в отечественной науке он приобретает более узкое значение, приближающееся к понятию «квантитативная лингвистика».

Часто к компьютерной лингвистике относят термин «квантитативная лингвистика», который характеризует междисциплинарное направление в прикладных исследованиях, где в качестве основного инструмента изучения языка и речи используются количественные или статистические методы анализа. Иногда квантитативная (или количественная) лингвистика противопоставляется комбинаторной лингвистике. В последней доминирующую роль занимает «неколичественный» математический аппарат - теория множеств, математическая логика, теория алгоритмов и т. д. С теоретической точки зрения использование статистических методов в языкознании позволяет дополнить структурную модель языка вероятностным компонентом, т. е. создать теоретическую структурно-вероятностную модель, обладающую значительным объяснительным потенциалом. В прикладной области квантитативная лингвистика представлена, прежде всего, использованием фрагментов этой модели, используемых для лингвистического мониторинга функционирования языка, дешифровки кодированного текста, авторизации/атрибуции текста и т. п.

Термин «компьютерная лингвистика» и проблематика этого направления часто связываются с моделированием общения, и прежде всего - с обеспечением взаимодействия человека с ЭВМ на естественном или ограниченном естественном языке (для этого создаются специальные системы обработки естественного языка), а также с теорией и практикой информационно-поисковых систем (ИПС). Обеспечение общения человека с ЭВМ на естественном языке иногда обозначается термином «обработка естественного языка» (перевод с английского языка термина Natural Language Processing). Это направление компьютерной лингвистики возникло в конце 1960-х годов за рубежом и развивалось в рамках научно-технологической дисциплины, именуемой искусственным интеллектом (работы Р. Шенка, М. Лебовица, Т. Винограда и др.). По своему смыслу словосочетание «обработка естественного языка» должно охватывать все области, в которых компьютеры используются для обработки языковых данных. На практике, однако, закрепилось более узкое понимание термина - разработка методов, технологий и конкретных систем, обеспечивающих общение человека с ЭВМ на естественном или ограниченном естественном языке.

К компьютерной лингвистике в определённой степени могут быть отнесены работы в области создания гипертекстовых систем, рассматриваемых как особый способ организации текста и даже как принципиально новый вид текста, противопоставленный по многим своим свойствам обычному тексту, сформированному в гутенберговской традиции книгопечатания (смотри Гутенберг).

К компетенции компьютерной лингвистики относится и автоматический перевод.

В рамках компьютерной лингвистики возникло и сравнительно новое, активно развивающееся с 1980-90-х годов направление - корпусная лингвистика, где разрабатываются общие принципы построения лингвистических корпусов данных (в частности, корпусов текстов) с использованием современных компьютерных технологий. Корпуса текстов - это коллекции специально подобранных текстов книг, журналов, газет и т.д., перенесённые на машинные носители и предназначенные для автоматической обработки. Один из первых корпусов текстов был создан для американского варианта английского языка в Брауновском университете (так называемый Брауновский корпус) в 1962-63 под руководством У. Френсиса. В России с начала 2000-х годов в Институте русского языка имени В. В. Виноградова РАН разрабатывается Национальный корпус русского языка, состоящий из представительной выборки русскоязычных текстов объёмом порядка 100 миллионов словоупотреблений. Кроме собственно конструирования корпусов данных, корпусная лингвистика занимается созданием компьютерных инструментов (компьютерных программ), предназначенных для извлечения разнообразной информации из текстовых корпусов. С точки зрения пользователя, к корпусам текстов предъявляются требования представительности (репрезентативности), полноты и экономичности.

Компьютерная лингвистика активно развивается и в России, и за рубежом. Поток публикаций в этой области очень велик. Кроме тематических сборников, в США с 1984 ежеквартально выходит журнал «Computational Linguistics» («Компьютерная лингвистика»). Большую организационную и научную работу проводит Ассоциация по компьютерной лингвистике (The Association for Computational Linguistics), которая имеет региональные структуры по всему миру (в частности, европейское отделение). Каждые два года проходят международные конференции КОЛИНТ (в 2008 конференция проходила в Манчестере). Основные направления компьютерной лингвистики обсуждаются также на ежегодной международной конференции «Диалог», организуемой Российским НИИ искусственного интеллекта, филологическим факультетом МГУ, Яндексом и рядом других организаций. Соответствующая проблематика широко представлена также на международных конференциях по искусственному интеллекту разных уровней.

Лит.: Звегинцев В. А. Теоретическая и прикладная лингвистика. М., 1968; Пиотровский Р. Г., Бектаев К. Б., Пиотровская А. А. Математическая лингвистика. М., 1977; Городецкий Б. Ю. Актуальные проблемы прикладной лингвистики // Новое в зарубежной лингвистике. М., 1983. Вып. 12; Кибрик А. Е. Прикладная лингвистика // Кибрик А. Е. Очерки по общим и прикладным вопросам языкознания. М., 1992; Kennedy G. An introduction to corpus linguistics. L., 1998; Bolshakov I.А., Gelbukh А. Computational linguistics: models, resources, applications. Мех., 2004; Национальный корпус русского языка: 2003-2005. М., 2005; Баранов А. Н. Введение в прикладную лингвистику. 3-е изд. М., 2007; Компьютерная лингвистика и интеллектуальные технологии. М., 2008. Вып. 7.

Введение

Что такое компьютерная лингвистика?

КОМПЬЮТЕРНАЯ ЛИНГВИСТИКА , направление в прикладной лингвистике, ориентированное на использование компьютерных инструментов – программ, компьютерных технологий организации и обработки данных – для моделирования функционирования языка в тех или иных условиях, ситуациях, проблемных сферах и т.д., а также вся сфера применения компьютерных моделей языка в лингвистике и смежных дисциплинах. Собственно, только в последнем случае и идет речь о прикладной лингвистике в строгом смысле, поскольку компьютерное моделирование языка может рассматриваться и как сфера приложения информатики и теории программирования к решению задач науки о языке. На практике, однако, к компьютерной лингвистике относят практически все, что связано с использованием компьютеров в языкознании.

Как особое научное направление компьютерная лингвистика оформилась в 1960-е годы. Русский термин «компьютерная лингвистика» является калькой с английского computational linguistics. Поскольку прилагательное computational по-русски может переводиться и как «вычислительный», в литературе встречается также термин «вычислительная лингвистика», однако в отечественной науке он приобретает более узкое значение, приближающееся к понятию «квантитативной лингвистики». Поток публикаций в этой области очень велик. Кроме тематических сборников, в США ежеквартально выходит журнал «Компьютерная лингвистика». Большую организационную и научную работу проводит Ассоциация по компьютерной лингвистике, которая имеет региональные структуры (в частности, европейское отделение). Каждые два года проходят международные конференции по компьютерной лингвистике – COLING. Соответствующая проблематика обычно бывает широко представлена также на различных конференциях по искусственному интеллекту.

Задачи

Компьютерная лингвистика берет на себя собственно лингвистические проблемы компьютерного моделирования языковой деятельности. Ее задачи – построение более точных и более полных лингвистических моделей и более совершенных алгоритмов анализа и синтеза.

В качестве основных направлений можно выделить:

1) Взаимодействие человека и ЭВМ: управление – языки программирования, передача информации – интерфейс.

2) Работа с текстами: индексирование, анализ и классификация, автоматическое редактирование (исправление ошибок), выявление знаний, машинный перевод.

История

Простое порождение подмножества английского языка для обращения к базам данных было обеспечено одной из ранних американских систем LIFER (Languagе Interface Facility wich Elipsis and Recursion), созданной в 70-е годы. Вслед за ней на компьютерном рынке появились и другие, более гибкие системы, обеспечивающие ограниченный естественно-языковой интерфейс с ЭВМ.

В 80-е годы в США образовался ряд компаний, занимающихся разработкой и продажей естественно-языковых интерфейсов с базами данных, экспертными системами. В 1985г. Корпорация "Семантек" представила такой пакет программ Q&A, компания "Карнеги Группа" предложила аналогичный пакет LanguageCraft.

Ведутся активные работы по созданию систем автоматического перевода. Получила распространение система автоматического перевода SYSTRAN, разработанная под руководством Д. Тома по заказу военно-воздушных сил США. В течение 1974 - 1975 гг. система была использована аэрокосмической ассоциацией NASA для перевода документов по проекту Аполлон-Союз. В наше время она переводит с нескольких языков около 100 000 страниц ежегодно.

В Европе работы по созданию компьютерных систем перевода стимулировались образованием Европейской информационной Сети (EURONET DIANA). В 1982 г. Европейское экономическое сообщество объявило о создании европейской программы EUROTRA, цель которой – разработка системы компьютерного перевода для всех европейских языков. Первоначально проект оценивался в 12 млн долларов, в 1987 г. специалисты определили суммарные расходы по этому проекту более чем в 160 млн долларов.

В Японии исследования по компьютерной лингвистике концентрируются вокруг общенациональной программы создания компьютеров пятого поколения, объявленной в 1981 г.

Существует ряд военных проектов создания человеко-машинных интерфейсов на естественном языке. В США они ведутся в основном в рамках стратегической компьютерной инициативы - десятилетней программы, принятой министерством обороны в 1983 г. Цель ее - создание нового поколения "интеллектуальных" оружия и военных систем с целью обеспечить многолетнее технологическое превосходство США.

Естественно, что специалисты по искусственному интеллекту, прекрасно разбирающиеся в компьютерах и языках программирования, энергично принялись за решение проблемы понимания языка своими методами. Шел поиск алгоритмов естественного языка. Были созданы сложные программы понимания языка для очень узких специальных областей, реализованы программы частичного машинного перевода и ряд других. Но решающего продвижения в решении проблемы понимания языка так и не было. Язык и человек настолько связаны, что ученым пришлось заняться проблемой понимания мира человеком. А это уже область философии.

Базовые понятия лингвистики

Под термином "компьютерная лингвистика" (computational linguistics) обычно понимается широкая область использования компьютерных инструментов - программ, компьютерных технологий организации и обработки данных - для моделирования функционирования языка в тех или иных условиях, ситуациях, проблемных областях, а также сфера применения компьютерных моделей языка не только в лингвистике, но и в смежных с ней дисциплинах. Собственно, только в последнем случае речь идет о прикладной лингвистике в строгом смысле, поскольку компьютерное моделирование языка может рассматриваться и как сфера приложения теории программирования (computer science) в области лингвистики. Тем не менее общая практика такова, что сфера компьютерной лингвистики охватывает практически все, что связано с использованием компьютеров в языкознании: "Термин "компьютерная лингвистика" задает общую ориентацию на использование компьютеров для решения разнообразных научных и практических задач, связанных с языком, никак не ограничивая способы решения этих задач".

Институциональный аспект компьютерной лингвистики . Как особое научное направление компьютерная лингвистика оформилась в 60-е гг. Поток публикаций в этой области очень велик. Кроме тематических сборников, в США ежеквартально выходит журнал "Компьютерная лингвистика". Большую организационную и научную работу проводит Ассоциация по компьютерной лингвистике, которая имеет региональные структуры по всему миру (в частности, европейское отделение). Каждые два года проходят международные конференции по компьютерной лингвистике - КОЛИНГ. Соответствующая проблематика широко представлена также на международных конференциях по искусственному интеллекту разных уровней.

Когнитивный инструментарий компьютерной лингвистики

Компьютерная лингвистика как особая прикладная дисциплина выделяется прежде всего по инструменту - то есть по использованию компьютерных средств обработки языковых данных. Поскольку компьютерные программы, моделирующие те или иные аспекты функционирования языка, могут использовать самые разные средства программирования, то об общем метаязыке говорить вроде бы не приходится. Однако это не так. Существуют общие принципы компьютерного моделирования мышления, которые так или иначе реализуются в любой компьютерной модели. В основе этого языка лежит теория знаний, разработанная в искусственном интеллекте и образующая важный раздел когнитивной науки.

Основной тезис теории знаний гласит, что мышление - это процесс обработки и порождения знаний. "Знания" или "знание" считается неопределяемой категорией. В качестве "процессора", обрабатывающего знания, выступает когнитивная система человека. В эпистемологии и когнитивной науке различают два основных вида знаний - декларативные ("знание что") и процедурные ("знание как"2)). Декларативные знания представляются обычно в виде совокупности пропозиций, утверждений о чем-либо. Типичным примером декларативных знаний можно считать толкования слов в обычных толковых словарях. Например, чашка] - "небольшой сосуд для питья округлой формы, обычно с ручкой, из фарфора, фаянса и т.п. " . Декларативные знания поддаются процедуре верификации в терминах "истина-ложь". Процедурные знания представляются как последовательность (список) операций, действий, которые следует выполнить. Это некоторая общая инструкция о действиях в некоторой ситуации. Характерный пример процедурных знаний - инструкции по пользованию бытовыми приборами.

В отличие от декларативных знаний, процедурные знания невозможно верифицировать как истинные или ложные. Их можно оценивать только по успешности-неуспешности алгоритма.

Большинство понятий когнитивного инструментария компьютерной лингвистики омонимично: они одновременно обозначают некоторые реальные сущности когнитивной системы человека и способы представления этих сущностей на некоторых метаязыках. Иными словами, элементы метаязыка имеют онтологический и инструментальный аспект. Онтологически разделение декларативных и процедурных знаний соответствует различным типам знаний когнитивной системы человека. Так, знания о конкретных предметах, объектах действительности преимущественно декларативны, а функциональные способности человека к хождению, бегу, вождению машины реализуются в когнитивной системе как процедурные знания. Инструментально знание (как онтологически процедурное, так и декларативное) можно представить как совокупность дескрипций, описаний и как алгоритм, инструкцию. Иными словами, онтологически декларативное знание об объекте действительности "стол" можно представить процедурно как совокупность инструкций, алгоритмов по его созданию, сборке (= креативный аспект процедурного знания) или как алгоритм его типичного использования (= функциональный аспект процедурного знания). В первом случае это может быть руководство для начинающего столяра, а во втором - описание возможностей офисного стола. Верно и обратное: онтологически процедурное знание можно представить декларативно.

Требует отдельного обсуждения, всякое ли онтологически декларативное знание представимо как процедурное, а всякое онтологически процедурное - как декларативное. Исследователи сходятся в том, что всякое декларативное знание в принципе можно представить процедурно, хотя это может оказаться для когнитивной системы очень неэкономным. Обратное вряд ли справедливо. Дело в том, что декларативное знание существенно более эксплицитно, оно легче осознается человеком, чем процедурное. В противоположность декларативному знанию, процедурное знание преимущественно имплицитно. Так, языковая способность, будучи процедурным знанием, скрыта от человека, не осознается им. Попытка эксплицировать механизмы функционирования языка приводит к дисфункции. Специалистам в области лексической семантики известно, например, что длительная семантическая интроспекция, необходимая для изучения плана содержания слова, приводит к тому, что исследователь частично теряет способность к различению правильных и неправильных употреблений анализируемого слова. Можно привести и другие примеры. Известно, что с точки зрения механики тело человека является сложнейшей системой двух взаимодействующих маятников.

В теории знаний для изучения и представления знания используются различные структуры знаний - фреймы, сценарии, планы. Согласно М. Минскому, "фрейм - это структура данных, предназначенная для представления стереотипной ситуации" [Минский 1978, с.254]. Более развернуто можно сказать, что фрейм является концептуальной структурой для декларативного представления знаний о типизированной тематически единой ситуации, содержащей слоты, связанные между собой определенными семантическими отношениями. В целях наглядности фрейм часто представляют в виде таблицы, строки которой образуют слоты. Каждый слот имеет свое имя и содержание (см. табл.1).

Таблица 1

Фрагмент фрейма "стол" в табличном представлении

В зависимости от конкретной задачи структуризация фрейма может быть существенно более сложной; фрейм может включать вложенные подфреймы и отсылки к другим фреймам.

Вместо таблицы часто используется предикатная форма представления. В этом случае фрейм имеет форму предиката или функции с аргументами. Существуют и другие способы представления фрейма. Например, он может представляться в виде кортежа следующего вида: { (имя фрейма) (имя слота)) (значение слота,),..., (имя слота п) (значение слота л) }.

Обычно такой вид имеют фреймы в языках представлениях знаний.

Как и другие когнитивные категории компьютерной лингвистики, понятие фрейма омонимично. Онтологически - это часть когнитивной системы человека, и в этом смысле фрейм можно сопоставить с такими понятиями как гештальт, прототип, стереотип, схема. В когнитивной психологии эти категории рассматриваются именно с онтологической точки зрения. Так, Д. Норман различает два основных способа бытования и организации знаний в когнитивной системе человека - семантические сети и схемы. "Схемы, - пишет он, - представляют собой организованные пакеты знания, собранные для репрезентации отдельных самостоятельных единиц знания. Моя схема для Сэма может содержать информацию, описывающую его физические особенности, его активность и индивидуальные черты. Эта схема соотносится с другими схемами, которые описывают иные его стороны" [Норман 1998, с.359]. Если же брать инструментальную сторону категории фрейма, то это структура для декларативного представления знаний. В имеющихся системах ИИ фреймы могут образовывать сложные структуры знаний; системы фреймов допускают иерархию - один фрейм может быть частью другого фрейма.

По содержанию понятие фрейма очень близко категории толкования. Действительно, слот - аналог валентности, заполнение слота - аналог актанта. Основное отличие между ними заключается в том, что толкование содержит только лингвистически релевантную информацию о плане содержания слова, а фрейм, во-первых, не обязательно привязан к слову, и, во-вторых, включает всю релевантную для данной проблемной ситуации информацию, в том числе и экстралингвистическую (знания о мире) 3).

Сценарий представляет собой концептуальную структуру для процедурного представления знаний о стереотипной ситуации или стереотипном поведении. Элементами сценария являются шаги алгоритма или инструкции. Обычно говорят о "сценарии посещения ресторана", "сценарии покупки" и т.п.

Изначально фрейм также использовался для процедурного представления (ср. термин "процедурный фрейм"), однако сейчас в этом смысле чаще употребляется термин "сценарий". Сценарий можно представить не только в виде алгоритма, но и в виде сети, вершинам которой соответствуют некоторые ситуации, а дугам - связи между ситуациями. Наряду с понятием сценария, некоторые исследователи привлекают для компьютерного моделирования интеллекта категорию скрипта. По Р. Шенку, скрипт - это некоторая общепринятая, общеизвестная последовательность причинных связей . Например, понимание диалога

На улице льет как из ведра.

Все равно придется выходить в магазин: в доме есть нечего - вчера гости все подмели.

основывается на неэксплицированных семантических связях типа "если идет дождь, на улицу выходить нежелательно, поскольку можно заболеть". Эти связи формируют скрипт, который и используется носителями языка для понимания речевого и неречевого поведения друг друга.

В результате применения сценария к конкретной проблемной ситуации формируется план ). План используется для процедурного представления знаний о возможных действиях, ведущих к достижению определенной цели. План соотносит цель с последовательностью действий.

В общем случае план включает последовательность процедур, переводящих начальное состояние системы в конечное и ведущих к достижению определенной подцели и цели. В системах ИИ план возникает в результате планирования или планирующей деятельности соответствующего модуля - модуля планирования. В основе процесса планирования может лежать адаптация данных одного или нескольких сценариев, активизированных тестирующими процедурами, для разрешения проблемной ситуации. Выполнение плана производится экзекутивным модулем, управляющим когнитивными процедурами и физическими действиями системы. В элементарном случае план в интеллектуальной системе представляет собой простую последовательность операций; в более сложных версиях план связывается с конкретным субъектом, его ресурсами, возможностями, целями, с подробной информацией о проблемной ситуации и т.д. Возникновение плана происходит в процессе коммуникации между моделью мира, часть которой образуют сценарии, планирующим модулем и экзекутивным модулем.

В отличие от сценария, план связан с конкретной ситуацией, конкретным исполнителем и преследует достижение определенной цели. Выбор плана регулируется ресурсами исполнителя. Выполнимость плана - обязательное условие его порождения в когнитивной системе, а к сценарию характеристика выполнимости неприложима.

Еще одно важное понятие - модель мира. Под моделью мира обычно понимается совокупность определенным образом организованных знаний о мире, свойственных когнитивной системе или ее компьютерной модели. В несколько более общем виде о модели мира говорят как о части когнитивной системы, хранящей знания об устройстве мира, его закономерностях и пр. В другом понимании модель мира связывается с результатами понимания текста или - более широко - дискурса. В процессе понимания дискурса строится его ментальная модель, которая является результатом взаимодействия плана содержания текста и знаний о мире, свойственных данному субъекту [Джонсон-Лэрд 1988, с.237 и далее]. Первое и второе понимание часто объединяются. Это типично для исследователей-лингвистов, работающих в рамках когнитивной лингвистики и когнитивной науки.

Тесно связано с категорией фрейма понятие сцены. Категория сцены преимущественно используется в литературе как обозначение концептуальной структуры для декларативного представления актуализованных в речевом акте и выделенных языковыми средствами (лексемами, синтаксическими конструкциями, грамматическими категориями и пр) ситуаций и их частей5). Будучи связана с языковыми формами, сцена часто актуализуется определенным словом или выражением. В грамматиках сюжетов (см. ниже) сцена предстает как часть эпизода или повествования. Характерные примеры сцен - совокупность кубиков, с которыми работает система ИИ, место действия в рассказе и участники действия и т.д. В искусственном интеллекте сцены используются в системах распознавания образов, а также в программах, ориентированных на исследование (анализ, описание) проблемных ситуаций. Понятие сцены получило широкое распространение в теоретической лингвистике, а также логике, в частности в ситуационной семантике, в которой значение лексической единицы непосредственно связывается со сценой.