Положительные и отрицательные числа кратко. Отрицательные числа

История отрицательных чисел

Известно, что натуральные числа возникли при счете предметов. Потребность человека измерять величины и то обстоятельство, что результат измерения не всегда выражается целым числом, привели к расширению множества натуральных чисел. Были введены нуль и дробные числа.

Процесс исторического развития понятия числа на этом не закончился. Однако не всегда первым толчком к расширению понятия числа были исключительно практические потребности людей. Было и так, что задачи самой математики требовали расширения понятия числа. Именно так обстояло дело с возникновением отрицательных чисел. Решение многих задач, особенно решаемых с помощью уравнений, приводило к вычитанию из меньшего числа большего. Это потребовало введения новых чисел.

Впервые отрицательные числа появились в Древнем Китае уже примерно 2100 лет тому назад. Там умели также складывать и вычитать положительные и отрицательные числа, правила умножения и деления не применялись.

Во II в. до н. э. китайский ученый Чжан Цань написал книгу «Арифметика в девяти главах». Из содержания книги видно, что это не вполне самостоятельный труд, а переработка других книг, написанных задолго до Чжан Цаня. В этой книге впервые в науке встречаются отрицательные количества. Они понимаются им не так, как понимаем и применяем их мы. Полного и ясного понимания природы отрицательных величин и правил действия с ними у него нет. Каждое отрицательное число он понимал как долг, а положительное – как имущество. Действия с отрицательными числами он производил не так, как мы, а используя рассуждения о долге. Например, если к одному долгу прибавить другой долг, то в результате получиться долг, а не имущество (т, е. по нашему (- х) + (- х) = - 2х. Знака минус тогда не знали, поэтому, чтобы отличить числа, выражавшие долг, Чжань Цань писал их другими чернилами, чем числа, выражавшие имущество (положительные).

Положительные количества в китайской математике называли «чен» и изображали красным цветом, а отрицательные – «фу» и изображали черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево. Хотя китайские ученые и объяснили отрицательные количества как долг, а положительные - как имущество, всё же они избегали широкого употребления их, так как числа эти казались непонятными, действия с ними были неясны. Если же задача приводила к отрицательному решению, то старались заменить условие (как греки), чтобы в итоге получалось решение положительное.

В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. Для вычислений математики того времени пользовались счетной доской, на которой числа изображались с помощью счетных палочек. Так как знаков + и – в то время еще не было, палочками красного цвета изображали положительные числа, отрицательные же - палочками черного цвета и называли «долг» и «недостача». Положительные числа толковались как «имущество». В отличие от Китая в Индии были уже известны и правила умножения, деления. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас. Уже в произведении выдающегося индийского математика и астронома Брахмагупты (598 – около 660 гг.) мы читаем: «имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».

Отрицательными числами индийские математики пользовались при решении уравнений, причем вычитание заменяли добавлением с равнопротивоположным числом.

Вместе с отрицательными числами индийские математики ввели понятие ноль, что позволило им создать десятеричную систему исчисления. Но долгое время ноль не признавали числом, «nullus» по - латыни – никакой, отсутствие числа. И лишь через X веков, в XVII-ом столетии с введением системы координат ноль становится числом.

Греки тоже поначалу знаков не использовали. Древнегреческий ученый Диофант вообще не признавал отрицательные числа, и если при решении уравнения получался отрицательные корень, то он отбрасывал его как “недоступный”. И Диофант старался так сформулировать задачи и составлять уравнения, чтобы избежать отрицательных корней, но вскоре Диофант Александрийский стал обозначать вычитание знаком .

Несмотря на то, что отрицательные числа использовались давно, относились к ним с некоторым недоверием, считая их не совсем реальными, истолкование их как имущество-долг вызывало недоумение: как можно «складывать» и «вычитать» имущество и долги?

В Европе признание наступило на тысячу лет позже. К идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Пизанский (Фибоначчи), который тоже ввёл его для решения финансовых задач с долгами и пришел к мысли, что отрицательные количества надо принимать в смысле, противоположном положительным. В те годы были развиты так называемые математические поединки. На состязании в решении задач с придворными математиками Фридриха II Леонардо Пизанскому (Фибоначчи) было предложено решить задачу: требовалось найти капитал нескольких лиц. Фибоначчи получил отрицательное значение. «Этот случай, - сказал Фибоначчи, - невозможен, разве только принять, что один имел не капитал, а долг».

В 1202 году он впервые использовал отрицательные числа для подсчёта своих убытков. Однако, в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке.

Тем не менее до XVII века отрицательные числа были “в загоне” и долгое время их называли «ложными», «мнимыми» или «абсурдными ». И даже в XVII веке знаменитый математик Блез Паскаль утверждал, что 0-4=0 ибо нет такого числа, которое может быть меньше ничего, а вплоть до XIX века математики часто отбрасывали в своих вычислениях отрицательные числа, считая их бессмысленными…

Бомбелли и Жирар, напротив, считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения недостачи чего-либо. Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В Италии ростовщики, давая деньги в долг, ставили перед именем должника сумму долга и черточку, вроде нашего минуса, а когда должник возвращал деньги, зачеркивали ее, получалось что-то вроде нашего плюса. Можно же плюс считать зачеркнутым минусом!

Современное обозначение положительных и отрицательных чисел со знаками

« + » и « - » применил немецкий математик Видман.

Немецкий математик Михаил Штифель в книге «Полная арифметика» (1544) впервые вводит понятие об отрицательных числах как о числах, меньших нуля (меньших, чем ничто). Это был очень большой шаг вперёд в деле обоснования отрицательных чисел. Он дал возможность рассматривать отрицательные числа не как долг, а совсем по-иному, по-новому. Но Штифель называл отрицательные числа абсурдными; действия с ними, по его словам, «тоже идут абсурдно , навыворот».

После Штифеля ученые стали более уверенно производить действия с отрицательными числами.

Все чаще сохранялись и истолковывались отрицательные решения в задачах.

В XVII в. великий французский математик Рене Декарт предложил откладывать отрицательные числа на числовой оси влево от нуля. Нам сейчас кажется это все таким простым и понятным, но, чтобы дойти до этой мысли, потребовалось восемнадцать веков работы ученой мысли от китайского ученого Чжан Цаня до Декарта.

В трудах Декарта отрицательные числа получили, как говорят, реальное истолкование. Декарт и его последователи признавали их наравне с положительными. Но в действиях над отрицательными числами не все было ясно (например, умножение на них), поэтому многие ученые не желали признавать отрицательные числа за числа действительные. Среди ученых разгорелся большой и долгий спор о сущности отрицательных чисел о том признать отрицательные числа числами действительными или нет. Спор этот после Декарта продолжался около 200 лет. За этот период математика как наука получила очень большое развитие, и на каждом шагу в ней встречались отрицательные числа. Математика стала немыслимой, невозможной без отрицательных чисел. Все большему числу ученых становилось ясно, что отрицательные числа – это числа действительные, такие же реальные, на самом деле существующие числа, как числа положительные.

С трудом завоевали себе место в математике отрицательные числа. Как ни старались ученые избегать их. Все же удавалось это им не всегда. Жизнь ставила перед наукой новые и новые задачи, и все чаще и чаще задачи эти приводили к отрицательным решениям и в Китае, и в Индии, и в Европе. Только в начале XIX в. теория отрицательных чисел закончила свое развитие, и «абсурдные числа» получили всеобщее признание.

Всякий физик постоянно имеет дело с числами: он всегда что-то измеряет, вычисляет, рассчитывает. Везде в его бумагах – числа, числа и числа. Если приглядеться к записям физика, то обнаружится, что при записи чисел он часто использует знаки «+» и «-».

Как же возникают положительные, а тем более отрицательные числа в физике?

Физик имеет дело с различными физическими величинами, описывающими разнообразные свойства окружающих нас предметов и явлений. Высота здания, расстояние от школы до дома, масса и температура человеческого тела, скорость автомобиля, объем банки, сила электрического тока, показатель преломления воды, мощность ядерного взрыва, напряжение между электродами, продолжительность урока или перемены, электрический заряд металлического шарика – все это примеры физических величин. Физическую величину можно измерить.

Не следует думать, что любая характеристика предмета или явление природы может быть измерена и, следовательно, является физической величиной. Это совсем не так. Например, мы говорим: «Какие красивые горы вокруг! И какое красивое озеро там, в низу! А какая красивая ель вон на той скале! Но мы не можем измерить красоту гор, озера, или этой одинокой ели!» Значит такая характеристика, как красота, не является физической величиной.

Измерения физических величин проводятся при помощи измерительных приборов, таких как линейка, часы, весы и т. д.

Итак, числа в физике возникают в результате измерения физических величин, а численное значение физической величины, получаемое в результате измерения, зависит: от того, как определена эта физическая величина; от используемых единиц измерения .

Посмотрим на шкалу обычного уличного термометра.

Она имеет вид, изображенный на шкале 1. На ней нанесены только положительные числа, и поэтому при указании численного значения температуры приходится дополнительно пояснять 20 градусов тепла (выше нуля). Это для физиков неудобно – ведь слова в формулу не подставишь! Поэтому в физике применяется шкала с отрицательными числами.

Посмотрим на физическую карту мира. Участки суши на ней раскрашены различными оттенками зеленого и коричневого цветов, а моря и океаны раскрашены голубым и синим. Каждому цвету соответствует своя высота (для суши) или глубина (для морей и океанов). На карте нарисована шкала глубин и высот, которая показывает, какую высоту (глубину) означает тот или иной цвет,

Используя такую шкалу, достаточно указать число без всяких дополнительных слов: положительные числа отвечают различным местам на суше, находящимся над поверхностью моря; отрицательные числа соответствуют точкам, находящимся под поверхностью моря.

В рассмотренной нами шкале высот за нулевую принимается высота поверхности воды в Мировом океане. Эта шкала используется в геодезии и картографии.

В отличие от этого, в быту мы обычно за нулевую высоту принимаем высоту поверхности земли (в том месте, в котором мы находимся).

3.1 Как в древности считали года?

В разных странах по-разному. Например, в Древнем Египте каждый раз, когда начинал править новый царь, счёт лет начинался заново. Первый год правления царя считался первым годом, второй – вторым и так далее. Когда этот царь умирал и к власти приходил новый, вновь наступал первый год, затем второй, третий. Иным был счет лет, применявшийся жителями одного из древнейших городов мира-Рима. Год основания своего города римляне считали первым, следующий - вторым и так далее.

Счет лет, которым мы пользуемся, возник давно и связан с почитанием Иисуса Христа – основателя христианской религии. Счёт лет от рождения Иисуса Христа постепенно был принят в разных странах. В нашей стране он введён царём Петром Первым триста лет назад. Время, исчисляемое от Рождества Христова, мы называем НАША ЭРА (а пишем сокращённо Н. Э.). Продолжается наша эра две тысячи лет.

Заключение

Большинство людей знают отрицательные числа, но есть и такие у которых представление отрицательных чисел неверное.

Отрицательные числа больше всего встречаются в точных науках, в математике и физике.

В физике отрицательные числа возникают в результате измерений, вычислений физических величин. Отрицательное число – показывает величину электрического заряда. В других науках, как географии и истории, отрицательное число можно заменить словами, например, ниже уровня моря, а в истории – 157 лет до н. э.

Литература

1. Большая научная энциклопедия, 2005.

2. Вигасин А. А,., «История древнего мира» учебник 5 класса , 2001г.

3.Выговская В. В. « Поурочные разработки по Математике:6 класс » - М.:ВАКО, 2008 г

4. «Положительные и отрицательные числа», учебное пособие по математике для 6-го класса, 2001.

5. Детская энциклопедия «Я познаю мир», Москва, «Просвещение», 1995г.

6.. «Изучаем математику», учебное издание, 1994 г.

7. « Элементы историзма в преподавании математики в средней школе », Москва, «Просвещение», 1982г

8. Нурк Э. Р., Тельгмаа А. Э. «Математика 6 класс», Москва, «Просвещение»,1989г

9. «История математики в школе», Москва, «Просвещение», 1981 г.

ЧИСЛО, одно из основных понятий математики; зародилось в глубокой древности и постепенно расширялось и обобщалось. В связи со счетом отдельных предметов возникло понятие о целых положительных (натуральных) числах, а затем идея о безграничности натурального ряда чисел: 1, 2, 3, 4. Задачи измерения длин, площадей и т. п. , а также выделение долей именованных величин привели к понятию рационального (дробного) числа. Понятие об отрицательных числах возникло у индийцев в 6-11 вв.

Впервые отрицательные числа встречаются в одной из книг древнекитайского трактата « Математика в девяти главах » (Джан Цань – 1 век до нашей эры). Отрицательное число понималось как долг, а положительное – как имущество. Сложение и вычитание отрицательных чисел производилось на основе рассуждений о долге. Например, правило сложения формулировалось так: « Если к одному долгу прибавить другой долг, то в результате получится долг, а не имущество ». Знака минус тогда не было, а чтобы отличать положительные и отрицательные числа, Джан Цань писал их разными по цвету чернилами.

Идея отрицательных чисел с трудом завоевывала себе место в математике. Эти числа казались математикам древности непонятными и даже ложными, действия с ними – неясными и не имеющими реального смысла.

Использование отрицательных чисел индийскими математиками.

В 6 – 7 веках нашей эры индийские математики уже систематически пользовались отрицательными числами, по-прежнему понимая их как долг. Начиная с 7 века индийские математики пользовались отрицательными числами. Положительные числа они называли « дхана » или « сва » (« имущество »), а отрицательные – « рина » или « кшайя » («долг »). Впервые все четыре арифметических действия с отрицательными числами приведены индийским математиком и астрономом Брахмагуптой (598 – 660 гг.).

Например, правило деления он формулировал так:« Положительное, делённое на положительное, или отрицательное, делённое на отрицательное, становится положительным. Но положительное, делённое на отрицательное, и отрицательное, делённое на положительное, остаётся отрицательным ».

(Брахмагупта (598 – 660 гг.) – индийский математик и астроном. До нас дошло сочинение Брахмагупта « Пересмотр системы Брахмы » (628), значительная часть, которого посвящена арифметике и алгебре. Важнейшим здесь является учение об арифметической прогрессии и решение квадратных уравнений, с которыми Брахмагупта справлялся во всех случаях, когда они имели действительные решения. Брахмагупта допускал и рассматривал употребление нуля во всех арифметических действиях. Кроме того Брахмагупта решал некоторые неопределённые уравнения в целых числах; он дал правило составления прямоугольных треугольников с рациональными сторонами и др. Брахмагупту было известно обратное тройное правило, у него встречается приближение П,самая ранняя интерполяционная формула 2 – го порядка. Его интерполяционное правило для синуса и обратного синуса при равных интервалах являются частным случаем интерполяционной формулы Ньютона – Стирлинга. В более поздней работе Брахмагупта приводит интерполяционное правило при неравных промежутках. Его работы были в 8 веке переведены на арабский язык.)

Понимание отрицательных чисел Леонардом Фибоначчи Пизанским.

Независимо от индийцев к пониманию отрицательных чисел как противоположности положительных пришёл итальянский математик Леонардо Фибоначчи Пизанский (13 в.). Но понадобилось ещё около 400 лет, прежде чем « абсурдные » (бессмысленные) отрицательные числа получили полное признание математиков, а отрицательные решения в задачах перестали отбрасываться как невозможные.

(Леонардо Фибоначчи Пизанский (ок. 1170 – после 1228) – итальянский математик. Родился в Пизе (Италия). Начальное образование получил в Буше (Алжир) под руководством местного учителя. Тут он овладел арифметикой и алгеброй арабов. Посетил многие страны Европы и Востока и всюду пополнял свои знания по математике.

Издал две книги: « Книгу об абаке » (1202), где абак рассматривался не столько как прибор, сколько, как исчисление вообще, и « Практическую геометрию » (1220). По первой книге многие поколения европейских математиков изучали индийскую позиционную систему счисления. Изложение материала в ней было оригинальным и изящным. Учёному принадлежат и собственные открытия, в частности он положил начало разработке вопросов, связанных с Т. Н. числами Фибоначчи, и дал оригинальный приём извлечения кубического корня. Его труды получили распространение только в конце 15 века, когда Лука Пачоли переработал их и опубликовал в своей книге « Сумма » .

Рассмотрение отрицательных чисел Михаилом Штифелем по - новому.

В 1544 году немецкий математик Михаил Штифель впервые рассматривает отрицательные числа как числа, меньшие нуля (т. е. « меньшие, чем ничто »). С этого момента отрицательные числа рассматриваются уже не как долг, а совсем по-новому. (Штифель Михаил (19. 04. 1487 – 19. 06. 1567) – знаменитый немецкий математик. Михаил Штифель учился в католическом монастыре, затем увлёкся идеями Лютера и стал сельским протестантским пастором. Изучая библию, старался найти в ней математическое истолкование. В результате своих изысканий предсказал конец мира на 19 октября 1533 года, который, конечно, не произошёл, а Михаил Штифель был заключён в Вюртембергскую тюрьму, из которой его вызволил сам Лютер.

После этого Штифель полностью посвящает свою работу математике, в которой он был гениальным самоучкой. Один из первых в Европе после Н. Шюке начал оперировать отрицательными числами; ввёл дробный и нулевой показатели степени, а также термин « показатель » ; в работе « Полная арифметика » (1544) дал правило деления на дробь как умножения на дробь, обратную делителю; сделал первый шаг в развитии приёмов, упрощающих вычисления с большими числами, для чего сопоставлял две прогрессии: геометрическую и арифметическую. Позднее это помогло И. Бюрги и Дж. Неперу создать логарифмические таблицы и разработать логарифмические вычисления.)

Современное истолкование отрицательных чисел Жираром и Рене Декартом.

Современное истолкование отрицательных чисел, основанное на откладывании единичных отрезков на числовой оси влево от нуля, было дано в 17 веке, в основном в работах голландского математика Жирара (1595 – 1634 гг.) и знаменитого французского математика и философа Рене Декарта (1596–1650гг.) (Жирар Альберт (1595 – 1632) – бельгийский математик. Жирар родился во Франции, но бежал в Голландию от преследований католической церкви, так как был протестантом. Альберт Жирар внёс большой вклад в развитие алгебры. Основным его сочинением была книга « Новое открытие в алгебре». Впервые высказал основную теорему алгебры о наличии корня у алгебраического уравнения с одним неизвестным. Хотя строгое доказательство впервые дал Гаусс. Жирару принадлежит вывод формулы площади сферического треугольника.) С 1629 в Нидерландах. Заложил основы аналитической геометрии, дал понятия переменной величины и функции, ввел многие алгебраические обозначения. Высказал закон сохранения количества движения, дал понятие импульса силы. Автор теории, объясняющей образование и движение небесных тел вихревым движением частиц материи (вихри Декарта). Ввел представление о рефлексе (дуга Декарта). В основе философии Декарта - дуализм души и тела, «мыслящей» и «протяженной» субстанции. Материю отождествлял с протяжением (или пространством), движение сводил к перемещению тел. Общая причина движения, по Декарту, - Бог, который сотворил материю, движение и покой. Человек - связь безжизненного телесного механизма с душой, обладающей мышлением и волей. Безусловное основоположение всего знания, по Декарту, - непосредственная достоверность сознания («мыслю, следовательно, существую»). Существование Бога рассматривал как источник объективной значимости человеческого мышления. В учении о познании Декарт - родоначальник рационализма и сторонник учения о врожденных идеях. Основные сочинения: «Геометрия» (1637), «Рассуждение о методе. » (1637), «Начала философии» (1644).

ДЕКАРТ (Descartes) Рене (латинизированное - Картезий; Cartesius) (31 марта 1596, Лаэ, Турень, Франция - 11 февраля 1650, Стокгольм), французский философ, математик, физик и физиолог, основатель новоевропейского рационализма и один из влиятельнейших метафизиков Нового времени.

Жизнь и сочинения

Родившись в дворянской семье, Декарт получил хорошее образование. В 1606 году отец отправил его в иезуитскую коллегию Ла Флеш. Учитывая не очень крепкое здоровье Декарта, ему делали некоторые послабления в строгом режиме этого учебного заведения, напр. , разрешали вставать позже других. Приобретя в коллегии немало познаний, Декарт в то же время проникся антипатией к схоластической философии, которую он сохранил на всю свою жизнь.

После окончания коллегии Декарт продолжил образование. В 1616 в университете Пуатье он получил степень бакалавра права. В 1617 Декарт поступает на службу в армию и много путешествует по Европе.

1619 год в научном отношении оказался ключевым для Декарта. Именно в это время, как он сам писал в дневнике, ему открылись основания новой «удивительнейшей науки». Скорее всего, Декарт имел в виду открытие универсального научного метода, который он впоследствии плодотворно применял в самых разных дисциплинах.

В 1620-е годы Декарт знакомится с математиком М. Мерсенном, через которого он долгие годы «держал связь» со всем европейским научным сообществом.

В 1628 Декарт более чем на 15 лет обосновывается в Нидерландах, но не поселяется в каком-то одном месте, а около двух десятков раз меняет место жительства.

В 1633, узнав об осуждении церковью Галилея, Декарт отказывается от публикации натурфилософской работы «Мир», в которой излагались идеи естественного возникновения вселенной по механическим законам материи.

В 1637 на французском языке выходит работа Декарта «Рассуждение о методе», с которой, как многие считают, и началась новоевропейская философия.

В 1641 появляется главное философское сочинение Декарта «Размышления о первой философии» (на латинском языке), а в 1644 «Первоначала философии», работа, замышлявшаяся Декартом как компендий, суммирующий наиболее важные метафизические и натурфилософские теории автора.

Большое влияние на европейскую мысль оказала и последняя философская работа Декарта «Страсти души», опубликованная в 1649 г. В том же году по приглашению шведской королевы Кристины Декарт отправился в Швецию. Суровый климат и непривычный режим (королева заставляла Декарта вставать в 5 утра, чтобы давать ей уроки и выполнять другие поручения) подорвали здоровье Декарта, и, подхватив простуду, он умер от пневмонии.

Философия Декарта ярко иллюстрирует стремление европейской культуры к освобождению от старых догм и построению новой науки и самой жизни «с чистого листа». Критерием истины, считает Декарт, может быть только «естественный свет» нашего разума. Декарт не отрицает и познавательной ценности опыта, но он видит его функцию исключительно в том, чтобы он приходил на помощь разуму там, где собственных сил последнего недостаточно для познания. Размышляя над условиями достижения достоверного знания, Декарт формулирует «правила метода», с помощью которого можно прийти к истине. Первоначально мыслившиеся Декартом весьма многочисленными, в «Рассуждении о методе», они сводятся им к четырем основным положениям, составляющим «квинтэссенцию» европейского рационализма: 1) начинать с несомненного и самоочевидного, т. е. с того, противоположное чему нельзя помыслить, 2) разделять любую проблему на столько частей, сколько необходимо для ее эффективного решения, 3) начинать с простого и постепенно продвигаться к сложному, 4) постоянно перепроверять правильность умозаключений. Самоочевидное схватывается разумом в интеллектуальной интуиции, которую нельзя смешивать с чувственным наблюдением и которая дает нам «ясное и отчетливое» постижение истины. Разделение проблемы на части позволяет выявить в ней «абсолютные», т. е. самоочевидные элементы, от которых можно отталкиваться в последующих дедукциях. Дедукцией Декарт называет «движение мысли», в котором происходит сцепление интуитивных истин. Слабость человеческого интеллекта требует проверять корректность сделанных шагов на предмет отсутствия пробелов в рассуждениях. Такую проверку Декарт называет «энумерацией» или «индукцией». Итогом последовательной и разветвленной дедукции должно стать построение системы всеобщего знания, «универсальной науки». Декарт сравнивает эту науку с деревом. Корнем его является метафизика, ствол составляет физика, а плодоносные ветви образуют конкретные науки, этика, медицина и механика, приносящие непосредственную пользу. Из этой схемы видно, что залогом эффективности всех этих наук является правильная метафизика.

От метода открытия истин Декарт отличает метод изложения уже разработанного материала. Его можно излагать «аналитически» и «синтетически». Аналитический метод проблемен, он менее систематичен, но больше способствует пониманию. Синтетический, как бы «геометризирующий» материал, более строг. Декарт все же отдает предпочтение аналитическому методу.

Сомнение и несомненное

Исходной проблемой метафизики как науки о самых общих родах сущего является, как и в любых других дисциплинах, вопрос о самоочевидных основаниях. Метафизика должна начинаться с несомненной констатации какого-либо существования. Декарт «пробует» на самоочевидность тезисы о бытии мира, Бога и нашего «Я». Мир можно представить несуществующим, если вообразить, что наша жизнь есть долгое сновидение. В бытии Бога тоже можно усомниться. А вот наше «Я», считает Декарт, нельзя подвергнуть сомнению, так как само сомнение в своем бытии доказывает существование сомнения, а значит и сомневающегося Я. «Сомневаюсь, следовательно существую» - так Декарт формулирует эту важнейшую истину, обозначающую субъективистский поворот европейской философии Нового времени. В более общем виде этот тезис звучит так: «мыслю, следовательно существую» - cogito, ergo sum. Сомнение составляет лишь один из «модусов мышления», наряду с желанием, рассудочным постижением, воображением, памятью и даже ощущением. Основой мышления является сознание. Поэтому Декарт отрицает существование бессознательных идей. Мышление является неотъемлемым свойством души. Душа не может не мыслить, она - «мыслящая вещь», res cogitans. Признание несомненным тезиса о собственном существовании не означает, однако, что Декарт считает вообще невозможным несуществование души: она не может не существовать, лишь пока мыслит. В остальном же душа - случайная вещь, т. е. может как быть, так и не быть, ибо она несовершенна. Все случайные вещи черпают свое бытие извне. Декарт утверждает, что душа ежесекундно поддерживается в своем существовании Богом. Тем не менее ее можно назвать субстанцией, так как она может существовать отдельно от тела. Впрочем, на деле душа и тело тесно взаимодействуют. Однако принципиальная независимость души от тела является для Декарта залогом вероятного бессмертия души.

Учение о Боге

От философской психологии Декарт переходит к учению о Боге. Он дает несколько доказательств существования высшего существа. Наиболее известным является так называемый «онтологический аргумент»: Бог есть всесовершенное существо, поэтому в понятии о нем не может отсутствовать предикат внешнего существования, что означает невозможность отрицать бытие Бога, не впадая в противоречие. Другое доказательство, предлагаемое Декартом, более оригинально (первое было хорошо известно в средневековой философии): в нашем уме есть идея Бога, у этой идеи должна быть причина, но причиной может быть только сам Бог, так как в противном случае идея высшей реальности была бы порождена тем, что этой реальностью не обладает, т. е. в действии было бы больше реальности, чем в причине, что нелепо. Третий аргумент основан на необходимости существования Бога для поддержания человеческого существования. Декарт полагал, что Бог, не будучи сам по себе связан законами человеческой истины, является тем не менее источником «врожденного знания» человека, в которое входит сама идея Бога, а также логические и математические аксиомы. От Бога, считает Декарт, исходит и наша вера в существование внешнего материального мира. Бог не может быть обманщиком, а поэтому эта вера истинна, и материальный мир действительно существует.

Философия природы

Убедившись в существовании материального мира, Декарт приступает к исследованию его свойств. Главным свойством материальных вещей оказывается протяжение, которое может выступать в различных модификациях. Декарт отрицает существование пустого пространства на том основании, что везде, где есть протяжение, имеется и «протяженная вещь», res extensa. Другие качества материи мыслятся смутно и, возможно, считает Декарт, существуют только в восприятии, а в самих предметах отсутствуют. Материя состоит из элементов огня, воздуха и земли, все различие которых состоит только в величине. Элементы не являются неделимыми и могут превращаться друг в друга. Пытаясь согласовать концепцию дискретности материи с тезисом об отсутствии пустоты, Декарт выдвигает любопытнейший тезис о нестабильности и отсутствии определенной формы у мельчайших частиц вещества. Единственным способом передачи взаимодействий между элементами и состоящими из их смешения вещами Декарт признает соударение. Оно происходит по законам постоянства, вытекающим из неизменной сущности Бога. При отсутствии внешних воздействий вещи не меняют свое состояние и двигаются по прямой, являющейся символом постоянства. Кроме того, Декарт говорит о сохранении исходного количества движения в мире. Само движение, однако, изначально не свойственно материи, а привносится в нее Богом. Но уже одного первотолчка достаточно, чтобы из хаоса материи постепенно самостоятельно собрался правильный и гармоничный космос.

Тело и душа

Много времени Декарт уделял изучению законов функционирования животных организмов. Он считал их тонкими машинами, способными самостоятельно адаптироваться к окружающей среде и адекватно реагировать на внешние воздействия. Испытанное воздействие передается в мозг, являющийся резервуаром «животных духов», мельчайших частиц, попадание которых в мышцы через поры, открывающиеся вследствие отклонений мозговой «шишковидной железы» (являющейся седалищем души), приводит к сокращениям этих мышц. Движение тела составляется последовательностью таких сокращений. Животные лишены душ и не нуждаются в них. Декарт говорил, что его больше удивляет наличие души у человека, чем ее отсутствие у животных. Наличие души у человека, однако, не бесполезно, так как душа может корректировать естественные реакции тела.

Декарт-физиолог

Декарт изучал строение различных органов у животных, исследовал строение зародышей на различных стадиях развития. Его учение о «произвольных» и «непроизвольных» движениях заложило основы современного учения о рефлексах. В работах Декарта представлены схемы рефлекторных реакций с центростремительной и центробежной частью рефлекторной дуги.

Значение работ Декарта в математике и физике

Естественно-научные достижения Декарта родились как «побочный продукт» разрабатываемого им единыго метода единой науки. Декарту принадлежит заслуга создания современных систем обозначений: он ввел знаки переменных величин (x, y, z.), коэффициентов (a, b, c.), обозначение степеней (a2, x-1.).

Декарт является одним из авторов теории уравнений: им сформулировано правило знаков для определения числа положительных и отрицательных корней, поставил вопрос о границах действительных корней и выдвинул проблему приводимости, т. е. представления целой рациональной функции с рациональными коэффициентами в виде произведения двух функций этого рода. Он указал, что уравнение 3-й степени разрешимо в квадратных радикалах (а также указал решение с помощью циркуля и линейки, если это уравнение приводимо).

Декарт является одним из создателей аналитической геометрии (которую он разрабатывал одновременно с П. Ферма), позволявшей алгебраизировать эту науку с помощью метода координат. Предложенная им система координат получила его имя. В работе «Геометрия» (1637), открывшей взаимопроникновение алгебры и геометрии, Декарт ввел впервые понятия переменной величины и функции. Переменная трактуется им двояко: как отрезок переменной длины и постоянного направления (текущая координата точки, описывающей своим движением кривую) и как непрерывная числовая переменная, пробегающая совокупность чисел, выражающих этот отрезок. В область изучения геометрии Декарт включил «геометрические» линии (позднее названные Лейбницем алгебраическими) - линии, описываемые при движении шарнирными механизмами. Трансцендентные кривые (сам Декарт называет их «механическими») он исключил из своей геометрии. В связи с исследованиями линз (см. ниже) в «Геометрии» излагаются способы построения нормалей и касательных к плоским кривым.

«Геометрия» оказала огромное влияние на развитие математики. В декартовой системе координат получили реальное истолкование отрицательные числа. Действительные числа Декарт фактически трактовал как отношение любого отрезка к единичному (хотя саму формулировку дал позднее И. Ньютон). В переписке Декарта содержатся и другие его открытия.

В оптике он открыл закон преломления световых лучей на границе двух различных сред (изложены в «Диоптрике», 1637). Декарт внес серьезный вклад в физику, дав четкую формулировку закона инерции.

Влияние Декарта

Декарт оказал громадное влияние на последующую науку и философию. Европейские мыслители восприняли от него призывы к созданию философии как точной науки (Б. Спиноза), к построению метафизики на базе учения о душе (Дж. Локк, Д. Юм). Декарт активизировал и теологические споры в вопросе о возможности доказательств бытия Бога. Огромный резонанс имело обсуждение Декартом вопроса о взаимодействии души и тела, на которое откликнулись Н. Мальбранш, Г. Лейбниц и др. , а также его космогонические построения. Многие мыслители делали попытки формализовать методологию Декарта (А. Арно, Н. Николь, Б. Паскаль). В 20 веке к философии Декарта часто обращаются участники многочисленных дискуссий по проблемам философии сознания и когнитивной психологии.

Для того чтобы разработать этот понятный и естественный сейчас для нас подход, понадобились усилия многих учёных на протяжении восемнадцати веков от Джан Цаня до Декарта.

Состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел , определено отношение порядка, позволяющее сравнивать одно целое число с другим.

n -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе. - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Отрицательные числа" в других словарях:

    Действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    Коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. Положительные и отрицательные числа. В 2 частях. Часть 2. ФГОС, Гельфман Э.Г.. Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5–6 классов, разработанный авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках проекта…

В рамках натуральных чисел можно вычесть только меньшее число из большего, а переместительный закон не включает вычитание - например, выражение 3 + 4 − 5 {\displaystyle 3+4-5} допустимо, а выражение с переставленными операндами 3 − 5 + 4 {\displaystyle 3-5+4} недопустимо...

Добавление к натуральным числам отрицательных чисел и нуля делает возможной операцию вычитания для любых пар натуральных чисел. В результате такого расширения получается множество (кольцо) «целых чисел ». При дальнейших расширениях множества чисел рациональными или вещественными числами для них тем же путём получаются соответствующие отрицательные значения. Для комплексных чисел упорядоченность не определена, и понятия «отрицательное число» не существует.

Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля:

n + (− n) = 0. {\displaystyle n+\left(-n\right)=0.}

Оба числа называются противоположными друг для друга. Вычитание целого числа a из другого целого числа b равносильно сложению b с противоположным для a :

b − a = b + (− a) . {\displaystyle b-a=b+\left(-a\right).}

Пример: 25 − 75 = − 50. {\displaystyle 25-75=-50.}

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности.

  1. Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху.
  2. При умножении целых чисел действует правило знаков : произведение чисел с разными знаками отрицательно, с одинаковыми - положительно.
  3. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 −10.

При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Например, разделим −24 на 5 с остатком:

− 24 = 5 ⋅ (− 5) + 1 = 5 ⋅ (− 4) − 4 {\displaystyle -24=5\cdot (-5)+1=5\cdot (-4)-4} .

Вариации и обобщения

Понятия положительных и отрицательных чисел можно определить в любом упорядоченном кольце. Чаще всего эти понятия относятся к одной из следующих числовых систем:

Приведенные выше свойства 1-3 имеют место и в общем случае. К комплексным числам понятия «положительный» и «отрицательный» неприменимы.

Исторический очерк

Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Исключение составлял Диофант, который в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако он рассматривал их лишь как промежуточный этап, полезный для вычисления окончательного, положительного результата.

Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или, как у Диофанта, признавались как временные значения. Умножение и деление для отрицательных чисел тогда ещё не были определены. Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными.

В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Первое описание их в европейской литературе появилось в «Книге абака» Леонарда Пизанского (1202 год), который трактовал отрицательные числа как долг. Бомбелли и Жирар в своих трудах считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения нехватки чего-либо. Даже в XVII веке Паскаль считал, что 0 − 4 = 0 {\displaystyle 0-4=0} , так как «ничто не может быть меньше, чем ничто» . Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1: (− 1) = (− 1) : 1 {\displaystyle 1:(-1)=(-1):1} - в ней первый член слева больше второго, а справа - наоборот, и получается, что большее равно меньшему («парадокс

1. Вопросы, связанные с отрицательными числами являются одним из трудных вопросов для освоения учащимися.

История развития математики показывает, что отрицательные числа значительно труднее дались человеку, это связано с тем, отрицательные числа менее связаны с практической жизнью.

Отрицательные числа возникли в связи с необходимостью выполнения с известными числами. Математики древней Греции не признали отрицательных чисел, они не могли дать им конкретного толкования. Лишь работу Диофанта (3 в. н.э) встречаются преобразования, которые приводят к необходимости выполнения операций над отрицательными числами.

Отрицательные числа появляются лишь в зачаточной форме. Довольно широкое распределение они получили в работах индийских ученых. Положительные числа они называли настоящими, а отрицательные- не настоящими- ложными. Отрицательные числа рассматривали, как долг, а положительные числа как наличные деньги.

Первые правила сложения и вычитания принадлежат индийским ученым. И связаны с трактовкой этих чисел как имущество и долг.

Ученые долго не могли объяснить, дать трактовку произведения двух отрицательных чисел. Почему произведение 2-х долгов есть имущество. Такие ученые как Эйлер, Коми давали свое объяснение правилу произведения чисел, но они приводили к ошибочным результатам.

Немецкий ученый М. Штифель впервые в 1544 г. дал определение отрицательных чисел, как чисел меньших нуля.

Впервые математическую интерпретацию дал Рене Декарт в 1737 г. в книги «Аналитическая геометрия». Отрицательные числа он рассматривал как самостоятельное, расположенное на оси ОХ влево от начало координат. Однако он эти числа назвал ложными. Всеобщее признание отрицательные числа получили в первой половине 21 века, так отрицательные числа вошли в историю математики.

2. Различные приемы введения отрицательных чисел. В учебной литературе можно отметить 3 способа введения отрицательных чисел.

1) Рассматриваются случаи, когда вычисление на множестве положительных чисел ложно.

2) Рассматривают векторы расположенные на одной прямой, необходимость охарактеризовать не только их длину, но и направление приводит к понятию положительных и отрицательных чисел.

3) Введение отрицательных чисел посредством расположения изменяющихся величин в противоположных направлениях.

Методика введения отрицательного числа.

Прежде чем дать понятие об отрицательном числе необходимо показать на конкретных примерах , что известно уч-ся чисел недостаточно для характеристики положения точки на прямой к началу отсчета.

На достаточном количестве примеров надо показать неудобства понятия типа вправо или влево, вверх или вниз начертить числовую ось. Необходимо отложить начало отсчета и чтоб для определенности таких шкал, которые находятся вправо со знаком плюс, влево с противоположным знаком- минус.

В учебнике рассматривается достаточное число примеров, показывающих о целесообразности использования определенных знаков для обозначения направления противоположности движения. Для понятия введения отрицательного числа необходимо пользоваться демонстративным термометром и другими пособиями.

Знакомству с противоположными числами способствует изучение центра симметрии.

Понятие о противоположных числах связывается симметричными точками. В тоже время введение этого понятия основывается с геометрическим истолкованием положительных и отрицательных чисел.

В пункте противоположных чисел вводится определение целых чисел. Натуральные числа, противоположные числа, нуль- называют целыми числами. Модуль числа- понятие модуль числа дает от начала отсчета до точки соответствующему числу. Следует обратить внимание учащихся как мотивировать определение модуля числа.

В учебниках понятие модуля числа вводится путем рассмотрения примеров, поясняют как находить модуль числа. Поясняется, что модуль числа не может быть отрицательным ибо модуль числа это расстояние- обращается внимание, что для положительного числа модуль равен самому числу. Модуль отрицательного числа равен противоположному числу.

Сравнение чисел.

Соотношения равенства и неравенства между положительными и отрицательными числами вводится по определению, они не могут быть получены путем доказательства, причем очень важно показать учащимся целесообразность определения на конкретных примерах и геометрических образах.

Учащиеся должны на столько прочно усвоить расположение чисел на числовой прямой, чтобы это могло служить основным средством сравнения чисел. Иногда возникают трудности в сравнении отрицательных чисел, чтобы преодолеть их, необходимо рассмотреть их на числовой прямой.

Действия над отрицательными и положительными числами.

Основное, что надо учитывать учителю при рассмотрении этого материала – это действия сложения и вычитания над положительными и отрицательными числами вводится по определению, причем формулировки этих определений должны включать в себя ранее известные учащимся понятия об этих действиях. Вычитание и деление определяются как обратные сложению и умножению.

В учебнике отдельно дается определение действия сложения чисел с разными знаками, формулировки этих правил содержат указание на следующие действия. В учебнике большое время уделяется к тому как подойти к действию сложению. Основное внимание уделяется к рассмотрению конкретных задач, обращаясь при этом к координатной прямой.

Каким бы путем не вводилось правило сложение учащимся должно быть ясно, что ничто не доказывается при рассмотрении следующих примеров.

Примеры признаны лишь иллюстрировать целесообразность правил. Учащиеся должны овладеть навыками выполнения сложения 2-х отрицательных чисел с разными знаками, противоположных чисел, нуля с положительными и отрицательными числами.

Рассматривая свойства действий важно показать учащимся, что при установленных определениях действий сложения и вычитания чисел сохраняется все те законы которые имели место для положительных чисел.

Учащимся дается формулировка переместительного и сочетательного законов запись каждого из них с помощью букв.

Вычитание отрицательных чисел определяются как действие обратное сложению. Вычитание сводится к прибавлению противоположного числа.

Умножение положительных и отрицательных чисел представляет наибольшую трудность, трудность заключается в том, что учащейся испытывают потребность в доказательстве правил знаков при умножение, а учитель должен убедить учащихся, что такого доказательства нельзя искать или требовать, таким образом действие умножения вводится по определению, которое можно ввести по разному и по разному истолковать правило знаков. Сложения и умножения имеют много общего, однако трактовка правил умножения вызывает больше трудности.

Рассмотрим объяснения правил умножения является рассмотрение конкретных задач, решение которых требует вычисление по формуле а в, при различных а и в. недостатком этого метода является, то что они доказывают правило умножения.

Многие авторы придерживаются пути, когда в начале дается формулировка правил умножения, затем оно поясняется на примерах, задачах. Учащийся убеждаются на конкретном математическом в практичной целесообразности введенного определения. обычно в учебниках формулировки правил умножения чисел с разными знаками и правил умножения натуральных чисел представляет расписания рядов примеров.

При этом используется положение о том, что если изменить знак одного из множителей, то изменится знак произведения.

Правило формулируется удобным для использования вида. Необходимо обратить внимание учащихся на условия равенство произведения нулю.

Деление положительных, отрицательных чисел рассматривается как действие обратное умножению. Учащемуся сообщается, что деление положительных и отрицательных чисел имеет тот же смысл, что и деление положительных чисел. Важно обратить внимание на законы вычисления и умножения выражений.

Так же как и в случая сложения, правило сложения и умножения натуральных чисел может быть выведены из умножения чисел. Считая, что правило знаков для суммы известно.

В 6 классе в теме рациональные числа вводятся памяти отрицательные числа, которое может быть записано в виде дроби. Расписывается множество рациональных чисел можно сбить внимание, что когда выполнимо:, +, *, - на число не равное нулю.

При вычитании или выполни действий учащийся получают числа того же множества и это множество обладает свойством замкнутости по отношению к действиям первой и второй степени. Для сложения справедливы переместительный и сочетательный законы имеется нейтральный элемент, имеется противоположный элемент.

Для умножения справедливы первый распределительный и сочетательный закон, имеется нейтральный элемент 1, противоположный элемент ().

Практическое занятие №2

Тема: Изучение функции в ШКМ

1. Методика введения понятия функции.

2. Методика изучения отдельных функций

3. Виды функций, изучаемых в основной школе

Литература: , . Дополнительная литература I.

Положительные и отрицательные числа
Координатная прямая
Проведём прямую. Отметим на ней точку 0 (ноль) и примем эту точку за начало отсчёта.

Укажем стрелкой направление движения по прямой вправо от начала координат. В этом направлении от точки 0 будем откладывать положительные числа.

То есть положительными называют уже известные нам числа, кроме нуля.

Иногда положительные числа записывают со знаком «+». Например, «+8».

Для краткости записи знак «+» перед положительным числом обычно опускают и вместо «+8» пишут просто 8.

Поэтому «+3» и «3» - это одно и тоже число, только по разному обозначенное.

Выберем какой-либо отрезок, длину которого примем за единицу и отложим его несколько раз вправо от точки 0. В конце первого отрезка записывается число 1, в конце второго - число 2 и т.д.

Отложив единичный отрезок влево от начала отсчёта получим отрицательные числа: -1; -2; и т.д.

Отрицательные числа используют для обозначения различных величин, таких как: температура (ниже нуля), расход - то есть отрицательный доход, глубина - отрицательная высота и другие.

Как видно из рисунка, отрицательные числа - это уже известные нам числа, только со знаком «минус»: -8; -5,25 и т.д.

  • Число 0 не является ни положительным, ни отрицательным.

Числовую ось обычно располагают горизонтально или вертикально.

Если координатная прямая расположена вертикально, то направление вверх от начала отсчёта обычно считают положительным, а вниз от начала отсчёта - отрицательным.

Стрелкой указывают положительное направление.


Прямая, на которой отмечено:
. начало отсчёта (точка 0);
. единичный отрезок;
. стрелкой указано положительное направление;
называется координатной прямой или числовой осью.

Противоположные числа на координатной прямой
Отметим на координатной прямой две точки A и B, которые расположены на одинаковом расстоянии от точки 0 справа и слева соответственно.

В таком случае длины отрезков OA и OB одинаковы.

Значит, координаты точек A и B отличаются только знаком.


Также говорят, что точки A и B симметричны относительно начала координат.
Координата точки A положительная «+2», координата точки B имеет знак минус «-2».
A (+2), B (-2).

  • Числа, которые отличаются только знаком, называются противоположными числами. Соответствующие им точки числовой (координатной) оси симметричны относительны начала отсчёта.

Каждое число имеет единственное противоположное ему число . Только число 0 не имеет противоположного, но можно сказать, что оно противоположно самому себе.

Запись «-a» означает число, противоположное «a». Помните, что под буквой может скрываться как положительное число, так и отрицательное число.

Пример:
-3 - число противоположное числу 3.

Записываем в виде выражения:
-3 = -(+3)

Пример:
-(-6) - число противоположное отрицательному числу -6. Значит, -(-6) это положительное число 6.

Записываем в виде выражения:
-(-6) = 6

Сложение отрицательных чисел
Сложение положительных и отрицательных чисел можно разобрать с помощью числовой оси.

Сложение небольших по модулю чисел удобно выполнять на координатной прямой, мысленно представляя себе как точка, обозначающая число передвигается по числовой оси.

Возьмём какое-нибудь число, например, 3. Обозначим его на числовой оси точкой A.

Прибавим к числу положительное число 2. Это будет означать, что точку A надо переместить на два единичных отрезка в положительном направлении, то есть вправо . В результате мы получим точку B с координатой 5.
3 + (+ 2) = 5


Для того чтобы к положительному числу, например, к 3 прибавить отрицательное число (- 5), точку A надо переместить на 5 единиц длины в отрицательном направлении, то есть влево .

В этом случае координата точки B равна - 2.

Итак, порядок сложения рациональных чисел с помощью числовой оси будет следующим:
. отметить на координатной прямой точку A с координатой равной первому слагаемому;
. передвинуть её на расстояние, равное модулю второго слагаемого в направлении, которое соответствует знаку перед вторым числом (плюс - передвигаем вправо, минус - влево);
. полученная на оси точка B будет иметь координату, которая будет равна сумме данных чисел.

Пример.
- 2 + (- 6) =

Двигаясь от точки - 2 влево (так как перед 6 стоит знак минус), получим - 8.
- 2 + (- 6) = - 8

Сложение чисел с одинаковыми знаками
Складывать рациональные числа можно проще, если использовать понятие модуля.

Пускай нам нужно сложить числа, которые имеют одинаковые знаки.
Для этого, отбрасываем знаки чисел и берём модули этих чисел. Сложим модули и перед суммой поставим знак, который был общим у данных чисел.

Пример.

Пример сложения отрицательных чисел.
(- 3,2) + (- 4,3) = - (3,2 + 4,3) = - 7,5

  • Чтобы сложить числа одного знака надо сложить их модули и поставить перед суммой знак, который был перед слагаемыми.

Сложение чисел с разными знаками
Если числа имеют разные знаки, то действуем несколько по-иному, чем при сложении чисел с одинаковыми знаками.
. Отбрасываем знаки перед числами, то есть берём их модули.
. Из большего модуля вычитаем меньший.
. Перед разностью ставим тот знак, который был у числа с бóльшим модулем.

Пример сложения отрицательного и положительного числа.
0,3 + (- 0,8) = - (0,8 - 0,3) = - 0,5

Пример сложения смешанных чисел.

Чтобы сложить числа разного знака надо:
. из бóльшего модуля вычесть меньший модуль;
. перед полученной разностью поставить знак числа, имеющего больший модуль.

Вычитание отрицательных чисел
Как известно вычитание - это действие, противоположное сложению.
Если a и b - положительные числа, то вычесть из числа a число b, значит найти такое число c, которое при сложении с числом b даёт число a.
a - b = с или с + b = a

Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.

  • Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.

Или по другому можно сказать, что вычитание числа b - это тоже самое сложение, но с числом противоположным числу b.
a - b = a + (- b)

Пример.
6 - 8 = 6 + (- 8) = - 2

Пример.
0 - 2 = 0 + (- 2) = - 2

  • Стоит запомнить выражения ниже.
  • 0 - a = - a
  • a - 0 = a
  • a - a = 0

Правила вычитания отрицательных чисел
Как видно из примеров выше вычитание числа b - это сложение с числом противоположным числу b.
Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.

Разность может быть положительным числом, отрицательным числом или числом ноль.

Примеры вычитания отрицательных и положительных чисел.
. - 3 - (+ 4) = - 3 + (- 4) = - 7
. - 6 - (- 7) = - 6 + (+ 7) = 1
. 5 - (- 3) = 5 + (+ 3) = 8
Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.
Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.
+ (+ a) = + a

+ (- a) = - a

Знак «минус» перед скобками меняет знак числа в скобках на противоположный.
- (+ a) = - a

- (- a) = + a

Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «-».
(- 6) + (+ 2) - (- 10) - (- 1) + (- 7) = - 6 + 2 + 10 + 1 - 7 = - 13 + 13 = 0

Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.
a - (- b + c) + (d - k + n) = a + b - c + d - k + n

Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всемичислами в этих скобках.

Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.
Правило знаков для чисел

Или выучить простое правило.

  • Минус на минус даёт плюс,
  • Плюс на минус даёт минус.

Умножение отрицательных чисел
Используя понятие модуля числа, сформулируем правила умножения положительных и отрицательных чисел.

Умножение чисел с одинаковыми знаками
Первый случай, который может вам встретиться - это умножение чисел с одинаковыми знаками.
Чтобы умножить два числа с одинаковыми знаками надо:
. перемножить модули чисел;
. перед полученным произведением поставить знак «+» (при записи ответа знак «плюс» перед первым числом слева можно опускать).

Примеры умножения отрицательных и положительных чисел.
. (- 3) . (- 6) = + 18 = 18
. 2 . 3 = 6

Умножение чисел с разными знаками
Второй возможный случай - это умножение чисел с разными знаками.
Чтобы умножить два числа с разными знаками, надо:
. перемножить модули чисел;
. перед полученным произведением поставить знак «-».

Примеры умножения отрицательных и положительных чисел.
. (- 0,3) . 0,5 = - 1,5
. 1,2 . (- 7) = - 8,4

Правила знаков для умножения
Запомнить правило знаков для умножения очень просто. Данное правило совпадает с правилом раскрытия скобок.

  • Минус на минус даёт плюс,
  • Плюс на минус даёт минус.


В «длинных» примерах, в которых есть только действие умножение, знак произведения можно определять по количеству отрицательных множителей.

При чётном числе отрицательных множителей результат будет положительным, а при нечётном количестве - отрицательным.
Пример.
(- 6) . (- 3) . (- 4) . (- 2) . 12 . (- 1) =

В примере пять отрицательных множителей. Значит, знак результата будет «минус».
Теперь вычислим произведение модулей, не обращая внимание на знаки.
6 . 3 . 4 . 2 . 12 . 1 = 1728

Конечный результат умножения исходных чисел будет:
(- 6) . (- 3) . (- 4) . (- 2) . 12 . (- 1) = - 1728

Умножение на ноль и единицу
Если среди множителей есть число ноль или положительная единица, то умножение выполняется по известным правилам.
. 0 . a = 0
. a . 0 = 0
. a . 1 = a

Примеры:
. 0 . (- 3) = 0
. 0,4 . 1 = 0,4
Особую роль при умножении рациональных чисел играет отрицательная единица (- 1).

  • При умножении на (- 1) число меняется на противоположное.

В буквенном выражении это свойство можно записать:
a . (- 1) = (- 1) . a = - a

При совместном выполнении сложения, вычитания и умножения рациональных чисел сохраняется порядок действий, установленный для положительных чисел и нуля.

Пример умножения отрицательных и положительных чисел.


Деление отрицательных чисел
Как выполнять деление отрицательных чисел легко понять, вспомнив, что деление - это действие, обратное умножению.

Если a и b положительные числа, то разделить число a на число b, значит найти такое число с, которое при умножении на b даёт число a.

Данное определение деления действует для любых рациональных чисел, если делители отличны от нуля.

Поэтому, например, разделить число (- 15) на число 5 - значит, найти такое число, которое при умножении на число 5 даёт число (- 15). Таким числом будет (- 3), так как
(- 3) . 5 = - 15

значит

(- 15) : 5 = - 3

Примеры деления рациональных чисел.
1. 10: 5 = 2, так как 2 . 5 = 10
2. (- 4) : (- 2) = 2, так как 2 . (- 2) = - 4
3. (- 18) : 3 = - 6, так как (- 6) . 3 = - 18
4. 12: (- 4) = - 3, так как (- 3) . (- 4) = 12

Из примеров видно, что частное двух чисел с одинаковыми знаками - число положительное (примеры 1, 2), а частное двух чисел с разными знаками - число отрицательное (примеры 3,4).

Правила деления отрицательных чисел
Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.
Итак, чтобы разделить два числа с одинаковыми знаками, надо:

. перед результатом поставить знак «+».

Примеры деления чисел с одинаковыми знаками:
. (- 9) : (- 3) = + 3
. 6: 3 = 2

Чтобы разделить два числа с разными знаками, надо:
. модуль делимого разделить на модуль делителя;
. перед результатом поставить знак «-».

Примеры деления чисел с разными знаками:
. (- 5) : 2 = - 2,5
. 28: (- 2) = - 14
Для определения знака частного можно также пользоваться следующей таблицей.
Правило знаков при делении

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби

Можно обратить внимание, что в числителе 2 знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».

Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:

  • Частное от деления нуля на число, отличное от нуля, равно нулю.
  • 0: a = 0, a ≠ 0
  • Делить на ноль НЕЛЬЗЯ!

Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.
. а: 1 = a
. а: (- 1) = - a
. а: a = 1

, где а - любое рациональное число.

Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):
. если a . b = с; a = с: b; b = с: a;
. если a: b = с; a = с. b; b = a: c

Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.

Пример нахождения неизвестного.
x . (- 5) = 10

x = 10: (- 5)

x = - 2

Знак «минус» в дробях
Разделим число (- 5) на 6 и число 5 на (- 6).

Напоминаем, что черта в записи обыкновенной дроби - это тот же знак деления, и запишем частное каждого из этих действий в виде отрицательной дроби.

Таким образом знак "минус" в дроби может находиться:
. перед дробью;
. в числителе;
. в знаменателе.

  • При записи отрицательных дробей знак «минус» можно ставить перед дробью, переносить его из числителя в знаменатель или из знаменателя в числитель.

Это часто используется при выполнении действий с дробями, облегчая вычисления.

Пример. Обратите внимание, что после вынесения знака «минуса» перед скобкой мы из большего модуля вычитаем меньший по правилам сложения чисел с разными знаками.


Используя описанное свойство переноса знака в дроби, можно действовать, не выясняя, модуль какого из данных дробных чисел больше.

Определение положительных и отрицательных чисел

Для определения положительных и отрицательных чисел воспользуемся координатной прямой, которая располагается горизонтально и направлена слева направо.

Замечание 1

Началу отсчета на координатной прямой соответствует число нуль, которое не относится ни к положительным, ни к отрицательным числам.

Определение 1

Числа, соответствующие точкам координатной прямой, которые лежат правее от начала отсчета, называются положительными .

Определение 2

Числа, соответствующие точкам координатной прямой, которые лежат левее от начала отсчета, называются отрицательными .

Из данных определений вытекает, что множество всех отрицательных чисел противоположно множеству всех положительных чисел.

Отрицательные числа всегда записывают со знаком «–» (минус).

Пример 2

Примеры отрицательных чисел:

  • Рациональные числа $-\frac{9}{17}$, $-4 \frac{11}{23}$, $–5,25$, $–4,(79)$.
  • Иррациональные числа$ -\sqrt{2}$, бесконечная непериодическая десятичная дробь $–103,1012341981…$

Для упрощения записи перед положительными числами часто не записывают знак «+» (плюс), а перед отрицательными знак «–» записывают всегда. В подобных случаях необходимо помнить, что запись «$17,4$» равносильна записи «$+17,4$», запись «$\sqrt{5}$» равносильна записи «$+\sqrt{5}$» и т.д.

Таким образом, можно использовать следующее определение положительных и отрицательных чисел:

Определение 3

Числа, записанные со знаком «+», называются положительными , а со знаком «–» – отрицательными .

Используется определение положительных и отрицательных чисел, которое основано на сравнении чисел:

Определение 4

Положительными числами являются числа больше нуля, а отрицательными числами – числа меньше нуля.

Замечание 3

Таким образом, число нуль разделяет положительные и отрицательные числа.

Правила чтения положительных и отрицательных чисел

Замечание 4

При чтении числа со знаком впереди него сначала читается его знак, а затем само число.

Пример 3

Например, «$+17$» читают «плюс семнадцать»,

«$-3 \frac{4}{11}$» читают «минус три целых четыре одиннадцатых».

Замечание 5

Стоит отметить, что названия знаков «плюс» и «минус» не склоняются, в то время как числа могут склоняться.

Пример 4

Интерпретация положительных и отрицательных чисел

Положительные числа используются для обозначения увеличения какой-нибудь величины, прихода, прибавки, возрастание значения и т.д.

Отрицательные числа применяют для противоположных понятий – для обозначения уменьшения какой-нибудь величины, расхода, недостатка, долга, снижения значения и т.д.

Рассмотрим примеры.

Читатель взял в библиотеке $4$ книги. Положительное значение числа $4$ показывает число книг, которые есть у читателя. Если ему нужно сдать $2$ книги в библиотеку, можно использовать отрицательное значение $–2$, которое будет указывать на уменьшение числа книг у читателя.

Положительные и отрицательные числа часто используют для описания значений различных величин в измерительных приборах. Например, термометр для измерения температуры имеет шкалу, на которой отмечены положительные и отрицательные значения.

Похолодание на улице на $3$ градуса, т.е. снижение температуры, можно обозначить значением $–3$, а повышение температуры на $5$ градусов – значением $+5$.

Принято отрицательные числа изображать синим цветом, что символизирует холод, низкую температуру, а положительные числа – красным цветом, что символизирует тепло, высокую температуру. Обозначение положительных и отрицательных чисел с помощью красного и синего цвета используется в различных ситуациях для выделения знака чисел.