At what height does the atmosphere begin? The atmosphere of the earth and the physical properties of air

The atmosphere is a mixture of various gases. It extends from the surface of the Earth to a height of up to 900 km, protecting the planet from the harmful spectrum of solar radiation, and contains gases necessary for all life on the planet. The atmosphere traps the heat of the sun, warming near the earth's surface and creating a favorable climate.

Composition of the atmosphere

The Earth's atmosphere consists mainly of two gases - nitrogen (78%) and oxygen (21%). In addition, it contains impurities of carbon dioxide and other gases. in the atmosphere exists in the form of vapor, drops of moisture in clouds and ice crystals.

Layers of the atmosphere

The atmosphere consists of many layers, between which there are no clear boundaries. The temperatures of different layers differ markedly from each other.

airless magnetosphere. Most of the Earth's satellites fly here outside earth's atmosphere. Exosphere (450-500 km from the surface). Almost does not contain gases. Some weather satellites fly in the exosphere. The thermosphere (80-450 km) is characterized by high temperatures reaching 1700°C in the upper layer. Mesosphere (50-80 km). In this sphere, the temperature drops as the altitude increases. It is here that most of the meteorites (fragments of space rocks) that enter the atmosphere burn down. Stratosphere (15-50 km). Contains an ozone layer, i.e. a layer of ozone that absorbs ultraviolet radiation from the sun. This leads to an increase in temperature near the Earth's surface. Jet planes usually fly here, as visibility in this layer is very good and there is almost no interference caused by weather conditions. Troposphere. The height varies from 8 to 15 km from the earth's surface. It is here that the weather of the planet is formed, since in this layer contains the most water vapor, dust and winds. The temperature decreases with distance from the earth's surface.

Atmosphere pressure

Although we do not feel it, the layers of the atmosphere exert pressure on the surface of the Earth. The highest is near the surface, and as you move away from it, it gradually decreases. It depends on the temperature difference between land and ocean, and therefore in areas located at the same height above sea level, there is often a different pressure. Low pressure brings wet weather, while high pressure usually sets clear weather.

The movement of air masses in the atmosphere

And the pressures cause the lower atmosphere to mix. This creates winds that blow from areas of high pressure to areas of low pressure. In many regions, local winds also occur, caused by differences in land and sea temperatures. Mountains also have a significant influence on the direction of the winds.

the greenhouse effect

Carbon dioxide and other gases in the earth's atmosphere trap the sun's heat. This process is commonly called the greenhouse effect, as it is in many ways similar to the circulation of heat in greenhouses. The greenhouse effect causes global warming on the planet. In areas of high pressure - anticyclones - a clear solar one is established. In areas of low pressure - cyclones - the weather is usually unstable. Heat and light entering the atmosphere. The gases trap the heat reflected from the earth's surface, thereby causing the temperature on the earth to rise.

There is a special ozone layer in the stratosphere. Ozone delays most ultraviolet radiation Sun, protecting the Earth and all life on it from it. Scientists have found that the cause of the destruction of the ozone layer are special chlorofluorocarbon dioxide gases contained in some aerosols and refrigeration equipment. Over the Arctic and Antarctica, huge holes have been found in the ozone layer, contributing to an increase in the amount of ultraviolet radiation affecting the Earth's surface.

Ozone is formed in the lower atmosphere as a result between solar radiation and various exhaust fumes and gases. Usually it disperses through the atmosphere, but if a closed layer of cold air forms under a layer of warm air, ozone concentrates and smog occurs. Unfortunately, this cannot make up for the loss of ozone in the ozone holes.

The satellite image clearly shows a hole in the ozone layer over Antarctica. The size of the hole varies, but scientists believe that it is constantly increasing. Attempts are being made to reduce the level of exhaust gases in the atmosphere. Reduce air pollution and use smokeless fuels in cities. Smog causes eye irritation and choking in many people.

The emergence and evolution of the Earth's atmosphere

The modern atmosphere of the Earth is the result of a long evolutionary development. It arose as a result of the joint action of geological factors and the vital activity of organisms. Throughout geological history the earth's atmosphere has gone through several profound rearrangements. On the basis of geological data and theoretical (prerequisites), the primordial atmosphere of the young Earth, which existed about 4 billion years ago, could consist of a mixture of inert and noble gases with a small addition of passive nitrogen (N. A. Yasamanov, 1985; A. S. Monin, 1987; O. G. Sorokhtin, S. A. Ushakov, 1991, 1993. At present, the view on the composition and structure of the early atmosphere has somewhat changed. The primary atmosphere (protoatmosphere) is at the earliest protoplanetary stage. 4.2 billion years, could consist of a mixture of methane, ammonia and carbon dioxide. As a result of degassing of the mantle and flowing on the earth's surface active processes weathering, water vapor, carbon compounds in the form of CO 2 and CO, sulfur and its compounds, as well as strong halogen acids - HCI, HF, HI and boric acid, which were supplemented by methane, ammonia, hydrogen, argon and some other noble gases. This primordial atmosphere was extremely thin. Therefore, the temperature near the earth's surface was close to the temperature of radiative equilibrium (AS Monin, 1977).

Over time, the gas composition of the primary atmosphere began to transform under the influence of the weathering of rocks that protruded on the earth's surface, the vital activity of cyanobacteria and blue-green algae, volcanic processes and the action of sunlight. This led to the decomposition of methane into and carbon dioxide, ammonia - into nitrogen and hydrogen; carbon dioxide began to accumulate in the secondary atmosphere, which slowly descended to the earth's surface, and nitrogen. Thanks to the vital activity of blue-green algae, oxygen began to be produced in the process of photosynthesis, which, however, at the beginning was mainly spent on “oxidizing atmospheric gases, and then rocks. At the same time, ammonia, oxidized to molecular nitrogen, began to intensively accumulate in the atmosphere. As expected, a significant amount of nitrogen modern atmosphere is relic. Methane and carbon monoxide were oxidized to carbon dioxide. Sulfur and hydrogen sulfide were oxidized to SO 2 and SO 3, which, due to their high mobility and lightness, were quickly removed from the atmosphere. Thus, the atmosphere from a reducing one, as it was in the Archean and early Proterozoic, gradually turned into an oxidizing one.

Carbon dioxide entered the atmosphere both as a result of methane oxidation and as a result of degassing of the mantle and weathering of rocks. In the event that all the carbon dioxide released over the entire history of the Earth remained in the atmosphere, its partial pressure could now become the same as on Venus (O. Sorokhtin, S. A. Ushakov, 1991). But on Earth, the process was reversed. A significant part of carbon dioxide from the atmosphere was dissolved in the hydrosphere, in which it was used by aquatic organisms to build their shells and biogenically converted into carbonates. Subsequently, the most powerful strata of chemogenic and organogenic carbonates were formed from them.

Oxygen was supplied to the atmosphere from three sources. For a long time, starting from the moment of the formation of the Earth, it was released in the process of degassing of the mantle and was mainly spent on oxidative processes, Another source of oxygen was the photodissociation of water vapor by hard ultraviolet solar radiation. appearances; free oxygen in the atmosphere led to the death of most of the prokaryotes that lived in reducing conditions. Prokaryotic organisms have changed their habitats. They left the surface of the Earth to its depths and regions where reducing conditions were still preserved. They were replaced by eukaryotes, which began to vigorously process carbon dioxide into oxygen.

During the Archean and a significant part of the Proterozoic, almost all oxygen, arising both abiogenically and biogenically, was mainly spent on the oxidation of iron and sulfur. By the end of the Proterozoic, all metallic divalent iron that was on the earth's surface either oxidized or moved into the earth's core. This led to the fact that the partial pressure of oxygen in the early Proterozoic atmosphere changed.

In the middle of the Proterozoic, the concentration of oxygen in the atmosphere reached the Urey point and amounted to 0.01% of the current level. Starting from that time, oxygen began to accumulate in the atmosphere and, probably, already at the end of the Riphean, its content reached the Pasteur point (0.1% of the current level). It is possible that the ozone layer arose in the Vendian period and that time it never disappeared.

The appearance of free oxygen in the earth's atmosphere stimulated the evolution of life and led to the emergence of new forms with a more perfect metabolism. If previously eukaryotic unicellular algae and cyanides, which appeared at the beginning of the Proterozoic, required an oxygen content in water of only 10 -3 of its modern concentration, then with the emergence of skeletal Metazoa at the end of the Early Vendian, i.e., about 650 million years ago, the oxygen concentration in the atmosphere should have be significantly higher. After all, Metazoa used oxygen respiration and this required that the partial pressure of oxygen reach a critical level - the Pasteur point. In this case, the anaerobic fermentation process was replaced by an energetically more promising and progressive oxygen metabolism.

After that, the further accumulation of oxygen in the earth's atmosphere occurred rather rapidly. The progressive increase in the volume of blue-green algae contributed to the achievement in the atmosphere of the oxygen level necessary for the life support of the animal world. A certain stabilization of the oxygen content in the atmosphere has occurred since the moment when the plants came to land - about 450 million years ago. The emergence of plants on land, which occurred in the Silurian period, led to the final stabilization of the level of oxygen in the atmosphere. Since that time, its concentration began to fluctuate within rather narrow limits, never going beyond the existence of life. The concentration of oxygen in the atmosphere has completely stabilized since the appearance of flowering plants. This event took place in the middle of the Cretaceous period, i.e. about 100 million years ago.

The bulk of nitrogen was formed in the early stages of the Earth's development, mainly due to the decomposition of ammonia. With the advent of organisms, the process of binding atmospheric nitrogen into organic matter and burying it in marine sediments began. After the release of organisms on land, nitrogen began to be buried in continental sediments. The processes of processing free nitrogen were especially intensified with the advent of terrestrial plants.

At the turn of the Cryptozoic and Phanerozoic, i.e., about 650 million years ago, the carbon dioxide content in the atmosphere decreased to tenths of a percent, and the content close to state of the art, it reached only very recently, about 10-20 million years ago.

Thus, the gas composition of the atmosphere not only provided living space for organisms, but also determined the characteristics of their vital activity, promoted settlement and evolution. The resulting failures in the distribution of the gas composition of the atmosphere favorable for organisms, both due to cosmic and planetary causes, led to mass extinctions of the organic world, which repeatedly occurred during the Cryptozoic and at certain milestones of the Phanerozoic history.

Ethnospheric functions of the atmosphere

The Earth's atmosphere provides the necessary substance, energy and determines the direction and speed of metabolic processes. The gas composition of the modern atmosphere is optimal for the existence and development of life. As an area of ​​weather and climate formation, the atmosphere must create comfortable conditions for the life of people, animals and vegetation. Deviations in one direction or another in the quality of atmospheric air and weather conditions create extreme conditions for the life of the animal and plant world, including humans.

The atmosphere of the Earth not only provides the conditions for the existence of mankind, being the main factor in the evolution of the ethnosphere. At the same time, it turns out to be an energy and raw material resource for production. In general, the atmosphere is a factor that preserves human health, and some areas, due to physical and geographical conditions and atmospheric air quality, serve recreational areas and are areas intended for sanatorium treatment and recreation of people. Thus, the atmosphere is a factor of aesthetic and emotional impact.

The ethnospheric and technospheric functions of the atmosphere, determined quite recently (E. D. Nikitin, N. A. Yasamanov, 2001), need an independent and in-depth study. Thus, the study of atmospheric energy functions is very relevant both from the point of view of the occurrence and operation of processes that damage the environment, and from the point of view of the impact on human health and well-being. In this case we are talking about the energy of cyclones and anticyclones, atmospheric vortices, atmospheric pressure and other extreme atmospheric phenomena, effective use which will contribute to the successful solution of the problem of obtaining non-polluting alternative energy sources. After all, the air environment, especially that part of it that is located above the World Ocean, is an area for the release of a colossal amount of free energy.

For example, it has been established that tropical cyclones of average strength release energy equivalent to the energy of 500,000 atomic bombs dropped on Hiroshima and Nagasaki in just a day. For 10 days of the existence of such a cyclone, enough energy is released to meet all the energy needs of a country like the United States for 600 years.

AT last years a large number of works of scientists of the natural sciences have been published, in one way or another related to different parties activity and the influence of the atmosphere on earth processes, which indicates the activation of interdisciplinary interactions in modern natural science. At the same time, the integrating role of certain of its directions is manifested, among which it is necessary to note the functional-ecological direction in geoecology.

This direction stimulates the analysis and theoretical generalization on ecological functions and the planetary role of various geospheres, and this, in turn, is an important prerequisite to develop methodology and scientific foundations holistic study of our planet, rational use and protection of its natural resources.

The Earth's atmosphere consists of several layers: troposphere, stratosphere, mesosphere, thermosphere, ionosphere and exosphere. In the upper part of the troposphere and the lower part of the stratosphere there is a layer enriched with ozone, called the ozone layer. Certain (daily, seasonal, annual, etc.) regularities in the distribution of ozone have been established. Since its inception, the atmosphere has influenced the course of planetary processes. The primary composition of the atmosphere was completely different than at present, but over time the proportion and role of molecular nitrogen steadily increased, about 650 million years ago free oxygen appeared, the amount of which continuously increased, but the concentration of carbon dioxide decreased accordingly. The high mobility of the atmosphere, its gas composition and the presence of aerosols determine its outstanding role and active participation in various geological and biospheric processes. The role of the atmosphere in the redistribution of solar energy and the development of catastrophic natural phenomena and disasters is great. Negative impact on the organic world and natural systems atmospheric whirlwinds - tornadoes (tornadoes), hurricanes, typhoons, cyclones and other phenomena. The main sources of pollution, along with natural factors, are various forms of human economic activity. Anthropogenic impacts on the atmosphere are expressed not only in the appearance of various aerosols and greenhouse gases, but in an increase in the amount of water vapor, and appear in the form of smog and acid rain. Greenhouse gases are changing temperature regime Earth's surface, emissions of certain gases reduce the volume of the ozone layer and contribute to the formation of ozone holes. The ethnospheric role of the Earth's atmosphere is great.

The role of the atmosphere in natural processes

The surface atmosphere in its intermediate state between the lithosphere and outer space and its gas composition creates conditions for the life of organisms. At the same time, the weathering and intensity of destruction of rocks, the transfer and accumulation of detrital material depend on the amount, nature and frequency of precipitation, on the frequency and strength of winds, and especially on air temperature. The atmosphere is the central component of the climate system. Air temperature and humidity, cloudiness and precipitation, wind - all this characterizes the weather, that is, the continuously changing state of the atmosphere. At the same time, these same components also characterize the climate, i.e., the average long-term weather regime.

The composition of gases, the presence of clouds and various impurities, which are called aerosol particles (ash, dust, particles of water vapor), determine the characteristics of the passage solar radiation through the atmosphere and prevent care thermal radiation Earth to outer space.

The Earth's atmosphere is very mobile. The processes arising in it and changes in its gas composition, thickness, cloudiness, transparency and the presence of certain aerosol particles in it affect both the weather and the climate.

The action and direction of natural processes, as well as life and activity on Earth, are determined by solar radiation. It gives 99.98% of the heat coming to the earth's surface. Annually it makes 134*1019 kcal. This amount of heat can be obtained by burning 200 billion tons of coal. There are enough reserves of hydrogen, which creates this flow of thermonuclear energy in the mass of the Sun, according to at least, for another 10 billion years, that is, for a period twice as long as our planet itself and exist.

About 1/3 of the total amount of solar energy entering the upper boundary of the atmosphere is reflected back into the world space, 13% is absorbed by the ozone layer (including almost all ultraviolet radiation). 7% - the rest of the atmosphere and only 44% reaches the earth's surface. The total solar radiation reaching the Earth in a day is equal to the energy that humanity has received as a result of burning all types of fuel over the past millennium.

The amount and nature of the distribution of solar radiation on the earth's surface are closely dependent on the cloudiness and transparency of the atmosphere. By the amount scattered radiation influence the height of the Sun above the horizon, the transparency of the atmosphere, the content of water vapor, dust, total carbon dioxide, etc.

The maximum amount of scattered radiation falls into the polar regions. The lower the Sun is above the horizon, the less heat enters a given area.

Atmospheric transparency and cloudiness are of great importance. On a cloudy summer day, it is usually colder than on a clear one, since daytime clouds prevent the earth's surface from heating.

The dust content of the atmosphere plays an important role in the distribution of heat. The finely dispersed solid particles of dust and ash in it, which affect its transparency, adversely affect the distribution of solar radiation, most of which is reflected. Fine particles enter the atmosphere in two ways: it is either ash emitted during volcanic eruptions, or desert dust carried by winds from arid tropical and subtropical regions. Especially a lot of such dust is formed during droughts, when it is carried into the upper layers of the atmosphere by streams of warm air and can stay there for a long time. After the eruption of the Krakatoa volcano in 1883, dust thrown tens of kilometers into the atmosphere remained in the stratosphere for about 3 years. As a result of the 1985 eruption of the El Chichon volcano (Mexico), dust reached Europe, and therefore there was a slight decrease in surface temperatures.

The Earth's atmosphere contains a variable amount of water vapor. In absolute terms, by weight or volume, its amount ranges from 2 to 5%.

Water vapor, like carbon dioxide, enhances the greenhouse effect. In the clouds and fogs that arise in the atmosphere, peculiar physicochemical processes take place.

The primary source of water vapor in the atmosphere is the surface of the oceans. A layer of water 95 to 110 cm thick annually evaporates from it. Part of the moisture returns to the ocean after condensation, and the other is directed towards the continents by air currents. In regions with a variable-humid climate, precipitation moistens the soil, and in humid regions it creates groundwater reserves. Thus, the atmosphere is an accumulator of humidity and a reservoir of precipitation. and fogs that form in the atmosphere provide moisture to the soil cover and thus play a decisive role in the development of the animal and plant world.

Atmospheric moisture is distributed over the earth's surface due to the mobility of the atmosphere. It has a very complex system of winds and pressure distribution. Due to the fact that the atmosphere is continuous movement, the nature and extent of the distribution of wind flows and pressure are changing all the time. The scales of circulation vary from micrometeorological, with a size of only a few hundred meters, to a global one, with a size of several tens of thousands of kilometers. Huge atmospheric vortices are involved in the creation of systems of large-scale air currents and determine the general circulation of the atmosphere. In addition, they are sources of catastrophic atmospheric phenomena.

The distribution of weather and climatic conditions and the functioning of living matter depend on atmospheric pressure. In the event that atmospheric pressure fluctuates within small limits, it does not play a decisive role in the well-being of people and the behavior of animals and does not affect the physiological functions of plants. As a rule, frontal phenomena and weather changes are associated with pressure changes.

Atmospheric pressure is of fundamental importance for the formation of wind, which, being a relief-forming factor, has the strongest effect on animals and animals. vegetable world.

The wind is able to suppress the growth of plants and at the same time promotes the transfer of seeds. The role of the wind in the formation of weather and climatic conditions is great. He also acts as a regulator of sea currents. Wind as one of the exogenous factors contributes to the erosion and deflation of weathered material over long distances.

Ecological and geological role of atmospheric processes

The decrease in the transparency of the atmosphere due to the appearance of aerosol particles and solid dust in it affects the distribution of solar radiation, increasing the albedo or reflectivity. Various chemical reactions lead to the same result, causing the decomposition of ozone and the generation of "pearl" clouds, consisting of water vapor. Global change in reflectivity, as well as changes in the gas composition of the atmosphere, mainly greenhouse gases, are the cause of climate change.

Uneven heating, causing differences in atmospheric pressure over different parts of the earth's surface, leads to atmospheric circulation, which is hallmark troposphere. When there is a difference in pressure, air rushes from areas of high pressure to areas of low pressure. These movements of air masses, together with humidity and temperature, determine the main ecological and geological features of atmospheric processes.

Depending on the speed, the wind produces on the earth's surface a different geological work. At a speed of 10 m/s, it shakes thick branches of trees, picks up and carries dust and fine sand; breaks tree branches at a speed of 20 m/s, carries sand and gravel; at a speed of 30 m/s (storm) rips off the roofs of houses, uproots trees, breaks poles, moves pebbles and carries small gravel, and a hurricane at a speed of 40 m/s destroys houses, breaks and demolishes poles of power lines, uproots large trees.

Squall storms and tornadoes (tornadoes) have a great negative environmental impact with catastrophic consequences - atmospheric vortices that occur in the warm season on powerful atmospheric fronts with a speed of up to 100 m/s. Squalls are horizontal whirlwinds with hurricane wind speeds (up to 60-80 m/s). They are often accompanied by heavy showers and thunderstorms lasting from a few minutes to half an hour. The squalls cover areas up to 50 km wide and travel a distance of 200-250 km. A heavy storm in Moscow and the Moscow region in 1998 damaged the roofs of many houses and knocked down trees.

Tornadoes, called tornadoes in North America, are powerful funnel-shaped atmospheric eddies often associated with thunderclouds. These are columns of air narrowing in the middle with a diameter of several tens to hundreds of meters. The tornado has the appearance of a funnel, very similar to an elephant's trunk, descending from the clouds or rising from the surface of the earth. Possessing a strong rarefaction and high rotation speed, the tornado travels up to several hundred kilometers, drawing in dust, water from reservoirs and various objects. Powerful tornadoes are accompanied by thunderstorms, rain and have great destructive power.

Tornadoes rarely occur in subpolar or equatorial regions, where it is constantly cold or hot. Few tornadoes in open ocean. Tornadoes occur in Europe, Japan, Australia, the USA, and in Russia they are especially frequent in the Central Black Earth region, in the Moscow, Yaroslavl, Nizhny Novgorod and Ivanovo regions.

Tornadoes lift and move cars, houses, wagons, bridges. Particularly destructive tornadoes (tornadoes) are observed in the United States. From 450 to 1500 tornadoes are recorded annually, with an average of about 100 victims. Tornadoes are fast-acting catastrophic atmospheric processes. They are formed in just 20-30 minutes, and their existence time is 30 minutes. Therefore, it is almost impossible to predict the time and place of occurrence of tornadoes.

Other destructive, but long-term atmospheric vortices are cyclones. They are formed due to a pressure drop, which, under certain conditions, contributes to the occurrence roundabout air streams. Atmospheric vortices originate around powerful ascending currents of humid warm air and rotate at high speed clockwise in the southern hemisphere and counterclockwise in the northern hemisphere. Cyclones, unlike tornadoes, originate over the oceans and produce their destructive actions over the continents. The main destructive factors are strong winds, intense precipitation in the form of snowfall, downpours, hail and surge floods. Winds with speeds of 19 - 30 m / s form a storm, 30 - 35 m / s - a storm, and more than 35 m / s - a hurricane.

Tropical cyclones - hurricanes and typhoons - have an average width of several hundred kilometers. The wind speed inside the cyclone reaches hurricane force. Tropical cyclones last from several days to several weeks, moving at a speed of 50 to 200 km/h. Mid-latitude cyclones have a larger diameter. Their transverse dimensions range from a thousand to several thousand kilometers, the wind speed is stormy. They move in the northern hemisphere from the west and are accompanied by hail and snowfall, which are catastrophic. Cyclones and their associated hurricanes and typhoons are the largest natural disasters after floods in terms of the number of victims and damage caused. In densely populated areas of Asia, the number of victims during hurricanes is measured in the thousands. In 1991, in Bangladesh, during a hurricane that caused the formation of sea waves 6 m high, 125 thousand people died. Typhoons cause great damage to the United States. As a result, dozens and hundreds of people die. In Western Europe, hurricanes cause less damage.

Thunderstorms are considered a catastrophic atmospheric phenomenon. They occur when warm, moist air rises very quickly. On the border of tropical and subtropical belts Thunderstorms occur 90-100 days a year temperate zone for 10-30 days. In our country, the largest number of thunderstorms occurs in the North Caucasus.

Thunderstorms usually last less than an hour. Intense downpours, hailstorms, lightning strikes, gusts of wind, and vertical air currents pose a particular danger. The hail hazard is determined by the size of the hailstones. In the North Caucasus, the mass of hailstones once reached 0.5 kg, and in India, hailstones weighing 7 kg were noted. The most hazardous areas in our country are located in the North Caucasus. In July 1992, hail damaged 18 aircraft at the Mineralnye Vody airport.

Lightning is a hazardous weather phenomenon. They kill people, livestock, cause fires, damage the power grid. About 10,000 people die every year from thunderstorms and their consequences worldwide. Moreover, in some parts of Africa, in France and the United States, the number of victims from lightning is greater than from other natural phenomena. The annual economic damage from thunderstorms in the United States is at least $700 million.

Droughts are typical for desert, steppe and forest-steppe regions. The lack of precipitation causes the drying up of the soil, lowering the level groundwater and in reservoirs until they are completely dry. Moisture deficiency leads to the death of vegetation and crops. Droughts are especially severe in Africa, the Near and Middle East, Central Asia and southern North America.

Droughts change the conditions of human life, have an adverse impact on the natural environment through processes such as salinization of the soil, dry winds, dust storms, soil erosion and forest fires. Fires are especially strong during drought in taiga regions, tropical and subtropical forests and savannahs.

Droughts are short-term processes that last for one season. When droughts last more than two seasons, there is a threat of starvation and mass mortality. Typically, the effect of drought extends to the territory of one or more countries. Especially often prolonged droughts with tragic consequences occur in the Sahel region of Africa.

Atmospheric phenomena such as snowfalls, intermittent heavy rains and prolonged prolonged rains cause great damage. Snowfalls cause massive avalanches in the mountains, and the rapid melting of the fallen snow and prolonged heavy rains lead to floods. A huge mass of water falling on the earth's surface, especially in treeless areas, causes severe erosion of the soil cover. There is an intensive growth of ravine-beam systems. Floods occur as a result of large floods during a period of heavy precipitation or floods after a sudden warming or spring snowmelt and, therefore, are atmospheric phenomena in origin (they are discussed in the chapter on the ecological role of the hydrosphere).

Anthropogenic changes in the atmosphere

There are currently many various sources anthropogenic nature, causing air pollution and leading to serious violations of the ecological balance. In terms of scale, two sources have the greatest impact on the atmosphere: transport and industry. On average, transport accounts for about 60% of the total atmospheric pollution, industry - 15, thermal energy - 15, technologies for the destruction of household and industrial waste - 10%.

Transport, depending on the fuel used and the types of oxidizing agents, emits into the atmosphere nitrogen oxides, sulfur, oxides and dioxides of carbon, lead and its compounds, soot, benzopyrene (a substance from the group of polycyclic aromatic hydrocarbons, which is a strong carcinogen that causes skin cancer).

Industry emits sulfur dioxide, carbon oxides and dioxides, hydrocarbons, ammonia, hydrogen sulfide, sulfuric acid, phenol, chlorine, fluorine and other compounds and chemical . But the dominant position among emissions (up to 85%) is occupied by dust.

As a result of pollution, the transparency of the atmosphere changes, aerosols, smog and acid rains appear in it.

Aerosols are dispersed systems consisting of solid particles or liquid droplets suspended in a gaseous medium. The particle size of the dispersed phase is usually 10 -3 -10 -7 cm Depending on the composition of the dispersed phase, aerosols are divided into two groups. One includes aerosols consisting of solid particles dispersed in a gaseous medium, the second - aerosols, which are a mixture of gaseous and liquid phases. The first are called smokes, and the second - fogs. Condensation centers play an important role in the process of their formation. Volcanic ash, cosmic dust, products of industrial emissions, various bacteria, etc. act as condensation nuclei. The number of possible sources of concentration nuclei is constantly growing. So, for example, when dry grass is destroyed by fire on an area of ​​4000 m 2, an average of 11 * 10 22 aerosol nuclei is formed.

Aerosols have been formed since the origin of our planet and have influenced natural conditions. However, their number and actions, balanced with the general circulation of substances in nature, did not cause deep ecological changes. Anthropogenic factors of their formation shifted this balance towards significant biospheric overloads. This feature has been especially pronounced since mankind began to use specially created aerosols both in the form of toxic substances and for plant protection.

The most dangerous for vegetation cover are aerosols of sulfur dioxide, hydrogen fluoride and nitrogen. When in contact with a wet leaf surface, they form acids that have a detrimental effect on living things. Acid mists enter with the inhaled air into respiratory organs animals and humans, aggressively affect the mucous membranes. Some of them decompose living tissue, and radioactive aerosols cause cancer. Among radioactive isotopes SG 90 is of particular danger not only because of its carcinogenicity, but also as an analogue of calcium, replacing it in the bones of organisms, causing their decomposition.

During nuclear explosions, radioactive aerosol clouds form in the atmosphere. Small particles with a radius of 1 - 10 microns fall not only into the upper layers of the troposphere, but also into the stratosphere, in which they are able to be long time. Aerosol clouds are also formed during the operation of reactors of industrial plants that produce nuclear fuel, as well as as a result of accidents at nuclear power plants.

Smog is a mixture of aerosols with liquid and solid dispersed phases that form a foggy curtain over industrial areas and large cities.

There are three types of smog: ice, wet and dry. Ice smog is called Alaskan. This is a combination of gaseous pollutants with the addition of dusty particles and ice crystals that occur when fog droplets and steam from heating systems freeze.

Wet smog, or London-type smog, is sometimes called winter smog. It is a mixture of gaseous pollutants (mainly sulfur dioxide), dust particles and fog droplets. The meteorological prerequisite for the appearance of winter smog is calm weather, in which a layer of warm air is located above the surface layer of cold air (below 700 m). At the same time, not only horizontal, but also vertical exchange is absent. Pollutants, which are usually dispersed in high layers, in this case accumulate in the surface layer.

Dry smog occurs during the summer and is often referred to as LA-type smog. It is a mixture of ozone, carbon monoxide, nitrogen oxides and acid vapors. Such smog is formed as a result of the decomposition of pollutants by solar radiation, especially its ultraviolet part. The meteorological prerequisite is atmospheric inversion, which is expressed in the appearance of a layer of cold air above the warm one. Usually lifted warm streams air, gases and solid particles then disperse in the upper cold layers, but in this case accumulate in the inversion layer. In the process of photolysis, nitrogen dioxides formed during the combustion of fuel in car engines decompose:

NO 2 → NO + O

Then ozone synthesis occurs:

O + O 2 + M → O 3 + M

NO + O → NO 2

Photodissociation processes are accompanied by a yellow-green glow.

In addition, reactions occur according to the type: SO 3 + H 2 0 -> H 2 SO 4, i.e. strong sulfuric acid is formed.

With a change in meteorological conditions (the appearance of wind or a change in humidity), the cold air dissipates and the smog disappears.

The presence of carcinogens in smog leads to respiratory failure, irritation of the mucous membranes, circulatory disorders, asthmatic suffocation, and often death. Smog is especially dangerous for young children.

Acid rain is atmospheric precipitation acidified by industrial emissions of sulfur oxides, nitrogen oxides and vapors of perchloric acid and chlorine dissolved in them. In the process of burning coal and gas, most of the sulfur in it, both in the form of oxide and in compounds with iron, in particular in pyrite, pyrrhotite, chalcopyrite, etc., turns into sulfur oxide, which, together with carbon dioxide, is released into atmosphere. When atmospheric nitrogen and technical emissions are combined with oxygen, various nitrogen oxides are formed, and the volume of nitrogen oxides formed depends on the combustion temperature. The bulk of nitrogen oxides occurs during the operation of vehicles and diesel locomotives, and a smaller part occurs in the energy sector and industrial enterprises. Sulfur and nitrogen oxides are the main acid formers. When reacting with atmospheric oxygen and the water vapor in it, sulfuric and nitric acids are formed.

It is known that the alkaline-acid balance of the medium is determined by the pH value. Neutral environment has a pH value of 7, acidic - 0, and alkaline - 14. B modern era the pH value of rainwater is 5.6, although in the recent past it was neutral. A decrease in pH value by one corresponds to a tenfold increase in acidity and, therefore, at present, rains with increased acidity fall almost everywhere. The maximum acidity of rains recorded in Western Europe was 4-3.5 pH. It should be taken into account that the pH value equal to 4-4.5 is fatal for most fish.

Acid rains have an aggressive effect on the Earth's vegetation cover, on industrial and residential buildings and contribute to a significant acceleration of the weathering of exposed rocks. An increase in acidity prevents the self-regulation of neutralization of soils in which nutrients are dissolved. In turn, this leads to a sharp decrease in yields and causes degradation of the vegetation cover. Soil acidity contributes to the release of those in bound state heavy, which are gradually absorbed by plants, causing them serious tissue damage and penetrating into the human food chain.

A change in the alkaline-acid potential of sea waters, especially in shallow waters, leads to the cessation of the reproduction of many invertebrates, causes the death of fish and disrupts the ecological balance in the oceans.

As a result of acid rain, are under the threat of death woodlands Western Europe, the Baltic States, Karelia, the Urals, Siberia and Canada.

At sea level 1013.25 hPa (about 760 mmHg). The average global air temperature at the Earth's surface is 15°C, while the temperature varies from about 57°C in subtropical deserts to -89°C in Antarctica. Air density and pressure decrease with height according to a law close to exponential.

The structure of the atmosphere. Vertically, the atmosphere has a layered structure, determined mainly by the features of the vertical temperature distribution (figure), which depends on the geographical location, season, time of day, and so on. The lower layer of the atmosphere - the troposphere - is characterized by a drop in temperature with height (by about 6 ° C per 1 km), its height is from 8-10 km in polar latitudes to 16-18 km in the tropics. Due to the rapid decrease in air density with height, about 80% of the total mass of the atmosphere is in the troposphere. Above the troposphere is the stratosphere - a layer that is characterized in general by an increase in temperature with height. The transition layer between the troposphere and stratosphere is called the tropopause. In the lower stratosphere, up to a level of about 20 km, the temperature changes little with height (the so-called isothermal region) and often even slightly decreases. Higher, the temperature rises due to the absorption of solar UV radiation by ozone, slowly at first, and faster from a level of 34-36 km. The upper boundary of the stratosphere - the stratopause - is located at an altitude of 50-55 km, corresponding to the maximum temperature (260-270 K). The layer of the atmosphere, located at an altitude of 55-85 km, where the temperature drops again with height, is called the mesosphere, at its upper boundary - the mesopause - the temperature reaches 150-160 K in summer, and 200-230 K in winter. The thermosphere begins above the mesopause - a layer, characterized by a rapid increase in temperature, reaching values ​​of 800-1200 K at an altitude of 250 km. The corpuscular and X-ray radiation of the Sun is absorbed in the thermosphere, meteors are slowed down and burned out, so it performs the function of the Earth's protective layer. Even higher is the exosphere, from where atmospheric gases are dissipated into world space due to dissipation and where a gradual transition from the atmosphere to interplanetary space takes place.

Composition of the atmosphere. Up to a height of about 100 km, the atmosphere is practically homogeneous in chemical composition and the average molecular weight of air (about 29) is constant in it. Near the Earth's surface, the atmosphere consists of nitrogen (about 78.1% by volume) and oxygen (about 20.9%), and also contains small amounts of argon, carbon dioxide (carbon dioxide), neon, and other constant and variable components (see Air ).

In addition, the atmosphere contains small amounts of ozone, nitrogen oxides, ammonia, radon, etc. The relative content of the main components of air is constant over time and uniform in different geographical areas. The content of water vapor and ozone is variable in space and time; despite the low content, their role in atmospheric processes is very significant.

Above 100-110 km, the dissociation of oxygen, carbon dioxide and water vapor molecules occurs, so the molecular weight of air decreases. At an altitude of about 1000 km, light gases - helium and hydrogen - begin to predominate, and even higher, the Earth's atmosphere gradually turns into interplanetary gas.

The most important variable component of the atmosphere is water vapor, which enters the atmosphere through evaporation from the surface of water and moist soil, as well as through transpiration by plants. The relative content of water vapor varies near the earth's surface from 2.6% in the tropics to 0.2% in the polar latitudes. With height, it quickly falls, decreasing by half already at a height of 1.5-2 km. The vertical column of the atmosphere at temperate latitudes contains about 1.7 cm of the “precipitated water layer”. When water vapor condenses, clouds form, from which atmospheric precipitation falls in the form of rain, hail, and snow.

An important component of atmospheric air is ozone, 90% concentrated in the stratosphere (between 10 and 50 km), about 10% of it is in the troposphere. Ozone provides absorption of hard UV radiation (with a wavelength of less than 290 nm), and this is its protective role for the biosphere. The values ​​of the total ozone content vary depending on the latitude and season, ranging from 0.22 to 0.45 cm (the thickness of the ozone layer at a pressure of p= 1 atm and a temperature of T = 0°C). In the ozone holes observed in spring in Antarctica since the early 1980s, the ozone content can drop to 0.07 cm. grows at high latitudes. An essential variable component of the atmosphere is carbon dioxide, the content of which in the atmosphere has increased by 35% over the past 200 years, which is mainly explained by the anthropogenic factor. Its latitudinal and seasonal variability is observed, associated with plant photosynthesis and solubility in sea water (according to Henry's law, the solubility of gas in water decreases with increasing temperature).

An important role in the formation of the planet's climate is played by atmospheric aerosol - solid and liquid particles suspended in the air ranging in size from several nm to tens of microns. There are aerosols of natural and anthropogenic origin. Aerosol is formed in the process of gas-phase reactions from the products of plant life and human economic activity, volcanic eruptions, as a result of dust being lifted by the wind from the surface of the planet, especially from its desert regions, and is also formed from space dust entering the upper atmosphere. Most of the aerosol is concentrated in the troposphere; aerosol from volcanic eruptions forms the so-called Junge layer at an altitude of about 20 km. The largest amount of anthropogenic aerosol enters the atmosphere as a result of the operation of vehicles and thermal power plants, chemical industries, fuel combustion, etc. Therefore, in some areas the composition of the atmosphere differs markedly from ordinary air, which required the creation of a special service for monitoring and controlling the level of atmospheric air pollution.

Atmospheric evolution. The modern atmosphere seems to be of secondary origin: it was formed from gases released by the solid shell of the Earth after the formation of the planet was completed about 4.5 billion years ago. During the geological history of the Earth, the atmosphere has undergone significant changes in its composition under the influence of a number of factors: dissipation (volatilization) of gases, mainly lighter ones, into outer space; release of gases from the lithosphere as a result of volcanic activity; chemical reactions between the components of the atmosphere and the rocks that make up the earth's crust; photochemical reactions in the atmosphere itself under the influence of solar UV radiation; accretion (capture) of the matter of the interplanetary medium (for example, meteoric matter). The development of the atmosphere is closely connected with geological and geochemical processes, and for the last 3-4 billion years also with the activity of the biosphere. A significant part of the gases that make up the modern atmosphere (nitrogen, carbon dioxide, water vapor) arose during volcanic activity and intrusion, which carried them out of the depths of the Earth. Oxygen appeared in appreciable quantities about 2 billion years ago as a result of the activity of photosynthetic organisms, which originally originated in surface waters ocean.

Based on the data on the chemical composition of carbonate deposits, estimates of the amount of carbon dioxide and oxygen in the atmosphere of the geological past were obtained. Throughout the Phanerozoic (the last 570 million years of Earth's history), the amount of carbon dioxide in the atmosphere varied widely, in accordance with the level of volcanic activity, ocean temperature, and photosynthesis. Most of this time, the concentration of carbon dioxide in the atmosphere was significantly higher than the current one (up to 10 times). The amount of oxygen in the atmosphere of the Phanerozoic changed significantly, and the tendency to increase it prevailed. In the Precambrian atmosphere, the mass of carbon dioxide was, as a rule, greater, and the mass of oxygen, less than in the atmosphere of the Phanerozoic. Fluctuations in the amount of carbon dioxide have had a significant impact on the climate in the past, increasing the greenhouse effect with an increase in the concentration of carbon dioxide, due to which the climate during the main part of the Phanerozoic was much warmer than in the modern era.

atmosphere and life. Without an atmosphere, Earth would be a dead planet. Organic life proceeds in close interaction with the atmosphere and its associated climate and weather. Insignificant in mass compared to the planet as a whole (about a millionth part), the atmosphere is a sine qua non for all life forms. Oxygen, nitrogen, water vapor, carbon dioxide, and ozone are the most important atmospheric gases for the life of organisms. When carbon dioxide is absorbed by photosynthetic plants, organic matter is created that is used as an energy source by the vast majority of living beings, including humans. Oxygen is necessary for the existence of aerobic organisms, for which the energy supply is provided by oxidation reactions. organic matter. Nitrogen, assimilated by some microorganisms (nitrogen fixers), is necessary for the mineral nutrition of plants. Ozone, which absorbs the Sun's harsh UV radiation, significantly attenuates this life-threatening portion of the sun's radiation. Condensation of water vapor in the atmosphere, the formation of clouds and the subsequent precipitation of precipitation supply water to land, without which no form of life is possible. The vital activity of organisms in the hydrosphere is largely determined by the amount and chemical composition of atmospheric gases dissolved in water. Since the chemical composition of the atmosphere significantly depends on the activities of organisms, the biosphere and atmosphere can be considered as part of a single system, the maintenance and evolution of which (see Biogeochemical cycles) was of great importance for changing the composition of the atmosphere throughout the history of the Earth as a planet.

Radiation, thermal and water balances atmosphere. Solar radiation is practically the only source of energy for all physical processes in the atmosphere. The main feature of the radiation regime of the atmosphere is the so-called greenhouse effect: the atmosphere transmits solar radiation to the earth's surface quite well, but actively absorbs the thermal long-wave radiation of the earth's surface, part of which returns to the surface in the form of counter radiation that compensates for the radiative heat loss of the earth's surface (see Atmospheric radiation ). In the absence of an atmosphere, the average temperature of the earth's surface would be -18°C, in reality it is 15°C. Incoming solar radiation is partially (about 20%) absorbed into the atmosphere (mainly by water vapor, water droplets, carbon dioxide, ozone and aerosols), and is also scattered (about 7%) by aerosol particles and density fluctuations (Rayleigh scattering). Total radiation, reaching the earth's surface, is partially (about 23%) reflected from it. The reflectance is determined by the reflectivity of the underlying surface, the so-called albedo. On average, the Earth's albedo for the integral solar radiation flux is close to 30%. It varies from a few percent (dry soil and black soil) to 70-90% for freshly fallen snow. The radiative heat exchange between the earth's surface and the atmosphere essentially depends on the albedo and is determined by the effective radiation of the earth's surface and the counter-radiation of the atmosphere absorbed by it. The algebraic sum of radiation fluxes entering the earth's atmosphere from outer space and leaving it back is called the radiation balance.

Transformations of solar radiation after its absorption by the atmosphere and the earth's surface determine the heat balance of the Earth as a planet. The main source of heat for the atmosphere is the earth's surface; heat from it is transferred not only in the form of long-wave radiation, but also by convection, and is also released during the condensation of water vapor. The shares of these heat inflows are on average 20%, 7% and 23%, respectively. About 20% of heat is also added here due to the absorption of direct solar radiation. The flux of solar radiation per unit time through a unit area perpendicular to sunbeams and located outside the atmosphere at an average distance from the Earth to the Sun (the so-called solar constant), is 1367 W / m 2, the changes are 1-2 W / m 2 depending on the cycle of solar activity. With a planetary albedo of about 30%, the time-average global influx of solar energy to the planet is 239 W/m 2 . Since the Earth as a planet emits the same amount of energy into space on average, then, according to the Stefan-Boltzmann law, the effective temperature of the outgoing thermal long-wave radiation is 255 K (-18°C). At the same time, the average temperature of the earth's surface is 15°C. The 33°C difference is due to the greenhouse effect.

The water balance of the atmosphere as a whole corresponds to the equality of the amount of moisture evaporated from the surface of the Earth, the amount of precipitation falling on the earth's surface. The atmosphere over the oceans receives more moisture from evaporation processes than over land, and loses 90% in the form of precipitation. Excess water vapor over the oceans is carried to the continents by air currents. The amount of water vapor transported into the atmosphere from the oceans to the continents is equal to the volume of river flow that flows into the oceans.

air movement. The Earth has a spherical shape, so much less solar radiation comes to its high latitudes than to the tropics. As a result, large temperature contrasts arise between latitudes. The temperature distribution is also significantly affected by mutual arrangement oceans and continents. Due to the large mass of ocean waters and the high heat capacity of water seasonal fluctuations ocean surface temperatures are much lower than land temperatures. In this regard, in the middle and high latitudes, the air temperature over the oceans is noticeably lower in summer than over the continents, and higher in winter.

Unequal heating of the atmosphere in different areas the globe causes a spatially non-uniform distribution of atmospheric pressure. At sea level, the pressure distribution is characterized by relatively low values ​​near the equator, an increase in the subtropics (high pressure belts), and a decrease in middle and high latitudes. At the same time, over the continents of extratropical latitudes, the pressure is usually increased in winter, and lowered in summer, which is associated with the temperature distribution. Under the action of a pressure gradient, the air experiences an acceleration directed from areas of high pressure to areas of low pressure, which leads to the movement of air masses. Moving air masses are also affected by the deflecting force of the Earth's rotation (the Coriolis force), the friction force, which decreases with height, and at curvilinear trajectories and centrifugal force. Of great importance is the turbulent mixing of air (see Turbulence in the atmosphere).

A complex system of air currents (general circulation of the atmosphere) is associated with the planetary distribution of pressure. In the meridional plane, on average, two or three meridional circulation cells are traced. Near the equator, heated air rises and falls in the subtropics, forming a Hadley cell. The air of the reverse Ferrell cell also descends there. At high latitudes, a direct polar cell is often traced. Meridional circulation velocities are on the order of 1 m/s or less. Due to the action of the Coriolis force, westerly winds are observed in most of the atmosphere with speeds in the middle troposphere of about 15 m/s. There are relatively stable wind systems. These include trade winds - winds blowing from high pressure belts in the subtropics to the equator with a noticeable eastern component (from east to west). Monsoons are quite stable - air currents that have a clearly pronounced seasonal character: they blow from the ocean to the mainland in summer and in the opposite direction in winter. The monsoons are especially regular indian ocean. In middle latitudes, the movement of air masses is mainly western (from west to east). This is a zone of atmospheric fronts, on which large eddies arise - cyclones and anticyclones, covering many hundreds and even thousands of kilometers. Cyclones also occur in the tropics; here they differ in smaller sizes, but very high wind speeds, reaching hurricane force (33 m/s or more), the so-called tropical cyclones. In the Atlantic and eastern Pacific they are called hurricanes, and in the western Pacific they are called typhoons. In the upper troposphere and lower stratosphere, in the regions separating the direct cell of the Hadley meridional circulation and the reverse Ferrell cell, relatively narrow, hundreds of kilometers wide, jet streams with sharply defined boundaries are often observed, within which the wind reaches 100–150 and even 200 m/s. with.

Climate and weather. The difference in the amount of solar radiation coming at different latitudes to the earth's surface, which is diverse in physical properties, determines the diversity of the Earth's climates. From the equator to tropical latitudes, the air temperature near the earth's surface averages 25-30 ° C and changes little during the year. In the equatorial zone, a lot of precipitation usually falls, which creates conditions for excessive moisture there. AT tropical zones Precipitation decreases and in some areas becomes very small. Here are the vast deserts of the Earth.

In subtropical and middle latitudes, air temperature varies significantly throughout the year, and the difference between summer and winter temperatures is especially large in areas of the continents remote from the oceans. Thus, in some areas of Eastern Siberia, the annual amplitude of air temperature reaches 65°С. Humidification conditions in these latitudes are very diverse, depend mainly on the regime of the general circulation of the atmosphere, and vary significantly from year to year.

In the polar latitudes, the temperature remains low throughout the year, even if there is a noticeable seasonal variation. This contributes to the widespread distribution of ice cover on the oceans and land and permafrost, occupying over 65% of Russia's area, mainly in Siberia.

Over the past decades, there have been more and more noticeable changes global climate. The temperature rises more at high latitudes than at low latitudes; more in winter than in summer; more at night than during the day. Over the 20th century, the average annual air temperature near the earth's surface in Russia increased by 1.5-2 ° C, and in some regions of Siberia an increase of several degrees is observed. This is associated with an increase in the greenhouse effect due to an increase in the concentration of small gaseous impurities.

The weather is determined by the conditions of atmospheric circulation and geographic location terrain, it is most stable in the tropics and most variable in middle and high latitudes. Most of all, the weather changes in the zones of change of air masses, due to the passage of atmospheric fronts, cyclones and anticyclones, carrying precipitation and increasing wind. Data for weather forecasting is collected from ground-based weather stations, ships and aircraft, and meteorological satellites. See also meteorology.

Optical, acoustic and electrical phenomena in the atmosphere. When electromagnetic radiation propagates in the atmosphere, as a result of refraction, absorption and scattering of light by air and various particles (aerosol, ice crystals, water drops), various optical phenomena arise: rainbow, crowns, halo, mirage, etc. Light scattering determines the apparent height of the firmament and blue color of the sky. The visibility range of objects is determined by the conditions of light propagation in the atmosphere (see Atmospheric visibility). The transparency of the atmosphere at different wavelengths determines the communication range and the ability to detect objects with instruments, including the ability to astronomical observations from the surface of the earth. For studies of optical inhomogeneities of the stratosphere and mesosphere important role plays the phenomenon of twilight. For example, photographing twilight from spacecraft makes it possible to detect aerosol layers. Features of the propagation of electromagnetic radiation in the atmosphere determine the accuracy of methods for remote sensing of its parameters. All these questions, like many others, are studied by atmospheric optics. Refraction and scattering of radio waves determine the possibilities of radio reception (see Propagation of radio waves).

The propagation of sound in the atmosphere depends on the spatial distribution of temperature and wind speed (see Atmospheric acoustics). It is of interest for remote sensing of the atmosphere. Explosions of charges launched by rockets into the upper atmosphere provided a wealth of information about wind systems and the course of temperature in the stratosphere and mesosphere. In a stably stratified atmosphere, when the temperature falls with height more slowly than the adiabatic gradient (9.8 K/km), so-called internal waves arise. These waves can propagate upward into the stratosphere and even into the mesosphere, where they attenuate, contributing to increased wind and turbulence.

The negative charge of the Earth and the electric field caused by it, the atmosphere, together with the electrically charged ionosphere and magnetosphere, create a global electrical circuit. An important role is played by the formation of clouds and lightning electricity. The danger of lightning discharges necessitated the development of methods for lightning protection of buildings, structures, power lines and communications. This phenomenon is of particular danger to aviation. Lightning discharges cause atmospheric radio interference, called atmospherics (see Whistling atmospherics). During a sharp increase in tension electric field luminous discharges appearing on the tips and sharp corners objects protruding above the earth's surface, on individual peaks in the mountains, etc. (Elma lights). The atmosphere always contains a number of light and heavy ions, which vary greatly depending on the specific conditions, which determine the electrical conductivity of the atmosphere. The main air ionizers near the earth's surface are the radiation of radioactive substances contained in the earth's crust and in the atmosphere, as well as cosmic rays. See also atmospheric electricity.

Human influence on the atmosphere. Over the past centuries, there has been an increase in the concentration of greenhouse gases in the atmosphere due to human activities. The percentage of carbon dioxide increased from 2.8-10 2 two hundred years ago to 3.8-10 2 in 2005, the content of methane - from 0.7-10 1 about 300-400 years ago to 1.8-10 -4 at the beginning of the 21st century; about 20% of the increase in the greenhouse effect over the past century was given by freons, which practically did not exist in the atmosphere until the middle of the 20th century. These substances are recognized as stratospheric ozone depleters and their production is prohibited by the 1987 Montreal Protocol. The increase in carbon dioxide concentration in the atmosphere is caused by the burning of ever-increasing amounts of coal, oil, gas and other carbon fuels, as well as the deforestation, which reduces the absorption of carbon dioxide through photosynthesis. The concentration of methane increases with the growth of oil and gas production (due to its losses), as well as with the expansion of rice crops and an increase in the number of cattle. All this contributes to climate warming.

To change the weather, methods of active influence on atmospheric processes have been developed. They are used to protect agricultural plants from hail damage by dispersing special reagents in thunderclouds. There are also methods for dispelling fog at airports, protecting plants from frost, influencing clouds to increase rainfall in the right places, or to disperse clouds at times of mass events.

Study of the atmosphere. Information about the physical processes in the atmosphere is obtained primarily from meteorological observations, which are carried out global network permanent meteorological stations and posts located on all continents and on many islands. Daily observations provide information about air temperature and humidity, atmospheric pressure and precipitation, cloudiness, wind, etc. Observations of solar radiation and its transformations are carried out at actinometric stations. Of great importance for the study of the atmosphere are the networks of aerological stations, where meteorological measurements are made with the help of radiosondes up to a height of 30-35 km. A number of stations monitor atmospheric ozone, electrical phenomena in the atmosphere, the chemical composition of the air.

Data from ground stations are supplemented by observations on the oceans, where "weather ships" operate, permanently located in certain areas of the World Ocean, as well as meteorological information received from research and other ships.

In recent decades, an increasing amount of information about the atmosphere has been obtained with the help of meteorological satellites, which are equipped with instruments for photographing clouds and measuring the fluxes of ultraviolet, infrared, and microwave radiation from the Sun. Satellites make it possible to obtain information about vertical temperature profiles, cloudiness and its water content, elements of the atmospheric radiation balance, ocean surface temperature, etc. Using measurements of the refraction of radio signals from a system of navigation satellites, it is possible to determine vertical profiles of density, pressure and temperature, as well as moisture content in the atmosphere . With the help of satellites, it became possible to clarify the value of the solar constant and the planetary albedo of the Earth, build maps of the radiation balance of the Earth-atmosphere system, measure the content and variability of small atmospheric impurities, and solve many other problems of atmospheric physics and environmental monitoring.

Lit .: Budyko M. I. Climate in the past and future. L., 1980; Matveev L. T. Course of general meteorology. Physics of the atmosphere. 2nd ed. L., 1984; Budyko M. I., Ronov A. B., Yanshin A. L. History of the atmosphere. L., 1985; Khrgian A.Kh. Atmospheric Physics. M., 1986; Atmosphere: A Handbook. L., 1991; Khromov S. P., Petrosyants M. A. Meteorology and climatology. 5th ed. M., 2001.

G. S. Golitsyn, N. A. Zaitseva.

- the air shell of the globe that rotates with the Earth. The upper boundary of the atmosphere is conventionally carried out at altitudes of 150-200 km. The lower boundary is the surface of the Earth.

Atmospheric air is a mixture of gases. Most of its volume in the surface air layer is nitrogen (78%) and oxygen (21%). In addition, the air contains inert gases (argon, helium, neon, etc.), carbon dioxide (0.03), water vapor, and various solid particles (dust, soot, salt crystals).

The air is colorless, and the color of the sky is explained by the peculiarities of the scattering of light waves.

The atmosphere consists of several layers: troposphere, stratosphere, mesosphere and thermosphere.

The bottom layer of air is called troposphere. At different latitudes, its power is not the same. The troposphere repeats the shape of the planet and participates, together with the Earth, in axial rotation. At the equator, the thickness of the atmosphere varies from 10 to 20 km. At the equator it is greater, and at the poles it is less. The troposphere is characterized by the maximum density of air, 4/5 of the mass of the entire atmosphere is concentrated in it. The troposphere determines weather: various air masses, clouds and precipitation are formed, there is an intense horizontal and vertical movement of air.

Above the troposphere, up to an altitude of 50 km, is located stratosphere. It is characterized by a lower density of air, there is no water vapor in it. In the lower part of the stratosphere at altitudes of about 25 km. located "ozone screen" - a layer of the atmosphere with increased concentration ozone, which absorbs ultraviolet radiation, which is fatal to organisms.

At an altitude of 50 to 80-90 km extends mesosphere. As the altitude increases, the temperature decreases with an average vertical gradient of (0.25-0.3)° / 100 m, and the air density decreases. The main energy process is radiant heat transfer. The glow of the atmosphere is due to complex photochemical processes involving radicals, vibrationally excited molecules.

Thermosphere located at an altitude of 80-90 to 800 km. The air density here is minimal, the degree of air ionization is very high. The temperature changes depending on the activity of the Sun. Due to the large number of charged particles, auroras and magnetic storms are observed here.

The atmosphere is of great importance for the nature of the Earth. Without oxygen, living organisms cannot breathe. Its ozone layer protects all living things from harmful ultraviolet rays. The atmosphere smooths out temperature fluctuations: the Earth's surface does not get supercooled at night and does not overheat during the day. In dense layers of atmospheric air, not reaching the surface of the planet, meteorites burn out from thorns.

The atmosphere interacts with all the shells of the earth. With its help, the exchange of heat and moisture between the ocean and land. Without the atmosphere there would be no clouds, precipitation, winds.

Human activities have a significant adverse effect on the atmosphere. Air pollution occurs, which leads to an increase in the concentration of carbon monoxide (CO 2). And this contributes to global warming and enhances the "greenhouse effect". The ozone layer of the Earth is being destroyed due to industrial waste and transport.

The atmosphere needs to be protected. AT developed countries a set of measures is being taken to protect atmospheric air from pollution.

Do you have any questions? Want to know more about the atmosphere?
To get the help of a tutor - register.

site, with full or partial copying of the material, a link to the source is required.

Earth's atmosphere

Atmosphere(from. other Greekἀτμός - steam and σφαῖρα - ball) - gas shell ( geosphere) surrounding the planet Earth. Its inner surface is covered hydrosphere and partially bark, the outer one borders on the near-Earth part of outer space.

The totality of sections of physics and chemistry that study the atmosphere is commonly called atmospheric physics. The atmosphere determines weather on the surface of the Earth, is engaged in the study of weather meteorology, and long-term variations climate - climatology.

The structure of the atmosphere

The structure of the atmosphere

Troposphere

Its upper limit is at an altitude of 8-10 km in polar, 10-12 km in temperate and 16-18 km in tropical latitudes; lower in winter than in summer. The lower, main layer of the atmosphere. It contains more than 80% of the total mass of atmospheric air and about 90% of all water vapor present in the atmosphere. highly developed in the troposphere turbulence and convection, arise clouds, develop cyclones and anticyclones. The temperature decreases with increasing height with an average vertical gradient 0.65°/100 m

For "normal conditions" at the Earth's surface are taken: density 1.2 kg/m3, barometric pressure 101.35 kPa, temperature plus 20 °C and relative humidity 50%. These conditional indicators have a purely engineering value.

Stratosphere

The layer of the atmosphere located at an altitude of 11 to 50 km. Characterized by a slight change in temperature in the 11-25 km layer (lower layer of the stratosphere) and its increase in the 25-40 km layer from -56.5 to 0.8 ° With(upper stratosphere or region inversions). Having reached a value of about 273 K (almost 0 ° C) at an altitude of about 40 km, the temperature remains constant up to an altitude of about 55 km. This region of constant temperature is called stratopause and is the boundary between the stratosphere and mesosphere.

Stratopause

The boundary layer of the atmosphere between the stratosphere and the mesosphere. There is a maximum in the vertical temperature distribution (about 0 °C).

Mesosphere

Earth's atmosphere

Mesosphere starts at an altitude of 50 km and extends up to 80-90 km. The temperature decreases with height with an average vertical gradient of (0.25-0.3)°/100 m. The main energy process is radiant heat transfer. Complex photochemical processes involving free radicals, vibrationally excited molecules, etc., determine the glow of the atmosphere.

mesopause

Transitional layer between mesosphere and thermosphere. There is a minimum in the vertical temperature distribution (about -90 °C).

Karman Line

Altitude above sea level, which is conventionally accepted as the boundary between the Earth's atmosphere and space.

Thermosphere

Main article: Thermosphere

The upper limit is about 800 km. The temperature rises to altitudes of 200-300 km, where it reaches values ​​of the order of 1500 K, after which it remains almost constant up to high altitudes. Under the influence of ultraviolet and x-ray solar radiation and cosmic radiation, air ionization occurs (" auroras”) - main areas ionosphere lie inside the thermosphere. At altitudes above 300 km, atomic oxygen predominates.

Atmospheric layers up to a height of 120 km

Exosphere (sphere of dispersion)

Exosphere- scattering zone, the outer part of the thermosphere, located above 700 km. The gas in the exosphere is very rarefied, and hence its particles leak into interplanetary space ( dissipation).

Up to a height of 100 km, the atmosphere is a homogeneous, well-mixed mixture of gases. In higher layers, the distribution of gases in height depends on their molecular masses, the concentration of heavier gases decreases faster with distance from the Earth's surface. Due to the decrease in gas density, the temperature drops from 0 °C in the stratosphere to −110 °C in the mesosphere. However, the kinetic energy of individual particles at altitudes of 200–250 km corresponds to a temperature of ~1500 °C. Above 200 km, significant fluctuations in temperature and gas density are observed in time and space.

At an altitude of about 2000-3000 km, the exosphere gradually passes into the so-called near space vacuum, which is filled with highly rarefied particles of interplanetary gas, mainly hydrogen atoms. But this gas is only part of the interplanetary matter. The other part is composed of dust-like particles of cometary and meteoric origin. In addition to extremely rarefied dust-like particles, electromagnetic and corpuscular radiation of solar and galactic origin penetrates into this space.

The troposphere accounts for about 80% of the mass of the atmosphere, the stratosphere accounts for about 20%; the mass of the mesosphere is no more than 0.3%, the thermosphere is less than 0.05% of the total mass of the atmosphere. Based on the electrical properties in the atmosphere, the neutrosphere and ionosphere are distinguished. It is currently believed that the atmosphere extends to an altitude of 2000-3000 km.

Depending on the composition of the gas in the atmosphere, they emit homosphere and heterosphere. heterosphere - this is an area where gravity affects the separation of gases, since their mixing at such a height is negligible. Hence follows the variable composition of the heterosphere. Below it lies a well-mixed, homogeneous part of the atmosphere, called homosphere. The boundary between these layers is called turbopause, it lies at an altitude of about 120 km.

Physical properties

The thickness of the atmosphere is approximately 2000 - 3000 km from the Earth's surface. Total weight air- (5.1-5.3) × 10 18 kg. Molar mass clean dry air is 28.966. Pressure at 0 °C at sea level 101.325 kPa; critical temperature-140.7 °C; critical pressure 3.7 MPa; C p 1.0048×10 3 J/(kg K)(at 0°C), C v 0.7159×10 3 J/(kg K) (at 0 °C). Solubility of air in water at 0 °C - 0.036%, at 25 °C - 0.22%.

Physiological and other properties of the atmosphere

Already at an altitude of 5 km above sea level, an untrained person develops oxygen starvation and without adaptation, human performance is significantly reduced. This is where the physiological zone of the atmosphere ends. Human breathing becomes impossible at an altitude of 15 km, although up to about 115 km the atmosphere contains oxygen.

The atmosphere provides us with the oxygen we need to breathe. However, due to the decrease in the total pressure of the atmosphere, as one rises to a height, the partial pressure of oxygen also decreases accordingly.

The human lungs constantly contain about 3 liters of alveolar air. Partial pressure oxygen in the alveolar air at normal atmospheric pressure is 110 mm Hg. Art., pressure of carbon dioxide - 40 mm Hg. Art., and water vapor - 47 mm Hg. Art. With increasing altitude, the oxygen pressure drops, and the total pressure of water vapor and carbon dioxide in the lungs remains almost constant - about 87 mm Hg. Art. The flow of oxygen into the lungs will completely stop when the pressure of the surrounding air becomes equal to this value.

At an altitude of about 19-20 km, the atmospheric pressure drops to 47 mm Hg. Art. Therefore, at this height, water and interstitial fluid begin to boil in the human body. Outside the pressurized cabin at these altitudes, death occurs almost instantly. Thus, from the point of view of human physiology, "space" begins already at an altitude of 15-19 km.

Dense layers of air - the troposphere and stratosphere - protect us from the damaging effects of radiation. With sufficient rarefaction of air, at altitudes of more than 36 km, an intense effect on the body is exerted by ionizing radiation- primary cosmic rays; at altitudes of more than 40 km, the ultraviolet part of the solar spectrum, which is dangerous for humans, operates.

As we rise to an ever greater height above the Earth's surface, gradually weaken, and then completely disappear, such phenomena that are familiar to us observed in the lower layers of the atmosphere, such as the propagation of sound, the emergence of aerodynamic lifting force and resistance, heat transfer convection and etc.

In rarefied layers of air, propagation sound turns out to be impossible. Up to altitudes of 60-90 km, it is still possible to use air resistance and lift for controlled aerodynamic flight. But starting from altitudes of 100-130 km, concepts familiar to every pilot numbers M and sound barrier lose their meaning, there passes the conditional Karman Line beyond which begins the sphere of purely ballistic flight, which can be controlled only by using reactive forces.

At altitudes above 100 km, the atmosphere is also deprived of another remarkable property - the ability to absorb, conduct and transfer thermal energy by convection (i.e., by means of air mixing). This means that various elements of equipment, equipment of the orbital space station will not be able to be cooled from the outside in the way it is usually done on an airplane - with the help of air jets and air radiators. At such a height, as in space in general, the only way to transfer heat is thermal radiation.

Composition of the atmosphere

Composition of dry air

The Earth's atmosphere consists mainly of gases and various impurities (dust, water drops, ice crystals, sea salts, combustion products).

The concentration of gases that make up the atmosphere is almost constant, with the exception of water (H 2 O) and carbon dioxide (CO 2).

Composition of dry air

Nitrogen

Oxygen

Argon

Water

Carbon dioxide

Neon

Helium

Methane

Krypton

Hydrogen

Xenon

Nitrous oxide

In addition to the gases indicated in the table, the atmosphere contains SO 2, NH 3, CO, ozone, hydrocarbons, HCl, HF, couples hg, I 2 , and NO and many other gases in minor quantities. The troposphere constantly contains a large number of suspended solid and liquid particles ( spray can).

History of the formation of the atmosphere

According to the most common theory, the Earth's atmosphere has been in four different compositions over time. Initially, it consisted of light gases ( hydrogen and helium) captured from interplanetary space. This so-called primary atmosphere(about four billion years ago). At the next stage, active volcanic activity led to the saturation of the atmosphere with gases other than hydrogen (carbon dioxide, ammonia, steam). This is how secondary atmosphere(about three billion years before our days). This atmosphere was restorative. Further, the process of formation of the atmosphere was determined by the following factors:

    leakage of light gases (hydrogen and helium) into interplanetary space;

    chemical reactions occurring in the atmosphere under the influence of ultraviolet radiation, lightning discharges and some other factors.

Gradually, these factors led to the formation tertiary atmosphere, characterized by a much lower content of hydrogen and a much higher content of nitrogen and carbon dioxide (formed as a result of chemical reactions from ammonia and hydrocarbons).

Nitrogen

The formation of a large amount of N 2 is due to the oxidation of the ammonia-hydrogen atmosphere by molecular O 2, which began to come from the surface of the planet as a result of photosynthesis, starting from 3 billion years ago. N 2 is also released into the atmosphere as a result of the denitrification of nitrates and other nitrogen-containing compounds. Nitrogen is oxidized by ozone to NO in the upper atmosphere.

Nitrogen N 2 enters into reactions only under specific conditions (for example, during a lightning discharge). Oxidation of molecular nitrogen by ozone during electrical discharges is used in the industrial production of nitrogen fertilizers. It can be oxidized with low energy consumption and converted into a biologically active form cyanobacteria (blue-green algae) and nodule bacteria that form the rhizobial symbiosis with legumes plants, so-called. green manure.

Oxygen

The composition of the atmosphere began to change radically with the advent of living organisms, as a result photosynthesis accompanied by the release of oxygen and the absorption of carbon dioxide. Initially, oxygen was spent on the oxidation of reduced compounds - ammonia, hydrocarbons, oxide form gland contained in the oceans, etc. At the end of this stage, the oxygen content in the atmosphere began to grow. Gradually, a modern atmosphere with oxidizing properties formed. Since this caused serious and abrupt changes in many processes occurring in atmosphere, lithosphere and biosphere, this event is called Oxygen catastrophe.

During Phanerozoic the composition of the atmosphere and the oxygen content underwent changes. They correlated primarily with the rate of deposition of organic sedimentary rocks. So, during the periods of coal accumulation, the oxygen content in the atmosphere, apparently, noticeably exceeded the modern level.

Carbon dioxide

The content of CO 2 in the atmosphere depends on volcanic activity and chemical processes in the earth's shells, but most of all - on the intensity of biosynthesis and decomposition of organic matter in biosphere Earth. Almost the entire current biomass of the planet (about 2.4 × 10 12 tons ) is formed due to carbon dioxide, nitrogen and water vapor contained in the atmospheric air. Buried in ocean, in swamps and in forests organic matter becomes coal, oil and natural gas. (cm. Geochemical cycle of carbon)

noble gases

Source of inert gases - argon, helium and krypton- volcanic eruptions and decay of radioactive elements. The earth as a whole and the atmosphere in particular are depleted in inert gases compared to space. It is believed that the reason for this lies in the continuous leakage of gases into interplanetary space.

Air pollution

Recently, the evolution of the atmosphere began to be influenced by Human. The result of his activities was a constant significant increase in the content of carbon dioxide in the atmosphere due to the combustion of hydrocarbon fuels accumulated in previous geological epochs. Huge amounts of CO 2 are consumed during photosynthesis and absorbed by the world's oceans. This gas enters the atmosphere due to the decomposition of carbonate rocks and organic substances of plant and animal origin, as well as due to volcanism and human production activities. Over the past 100 years, the content of CO 2 in the atmosphere has increased by 10%, with the main part (360 billion tons) coming from fuel combustion. If the growth rate of fuel combustion continues, then in the next 50 - 60 years the amount of CO 2 in the atmosphere will double and may lead to global climate change.

Fuel combustion is the main source of both pollutant gases ( SO, NO, SO 2 ). Sulfur dioxide is oxidized by atmospheric oxygen to SO 3 in the upper atmosphere, which in turn interacts with water vapor and ammonia, and the resulting sulfuric acid (H 2 SO 4 ) and ammonium sulfate ((NH 4 ) 2 SO 4 ) return to the surface of the Earth in the form of a so-called. acid rain. Usage internal combustion engines leads to significant air pollution with nitrogen oxides, hydrocarbons and lead compounds ( tetraethyl lead Pb(CH 3 CH 2 ) 4 ) ).

Aerosol pollution of the atmosphere is caused both by natural causes (volcanic eruption, dust storms, entrainment of sea water droplets and plant pollen, etc.) and by human economic activity (mining of ores and building materials, fuel combustion, cement production, etc.). Intense large-scale removal of solid particles into the atmosphere is one of the possible causes of climate change on the planet.

The atmosphere extends upward for many hundreds of kilometers. Its upper boundary, at an altitude of about 2000-3000 km, to a certain extent conditional, since the gases that make up it, gradually rarefied, pass into the world space. The chemical composition of the atmosphere, pressure, density, temperature and its other physical properties change with height. As mentioned earlier, the chemical composition of air up to a height of 100 km does not change significantly. Somewhat higher, the atmosphere also consists mainly of nitrogen and oxygen. But at altitudes 100-110 km, Under the influence of ultraviolet radiation from the sun, oxygen molecules are split into atoms and atomic oxygen appears. Above 110-120 km almost all of the oxygen becomes atomic. It is assumed that above 400-500 km the gases that make up the atmosphere are also in the atomic state.

Air pressure and density decrease rapidly with height. Although the atmosphere extends upwards for hundreds of kilometers, most of it is located in a rather thin layer adjacent to the earth's surface in its lowest parts. So, in the layer between sea level and altitudes 5-6 km half of the mass of the atmosphere is concentrated in layer 0-16 km-90%, and in the layer 0-30 km- 99%. The same rapid decrease in air mass occurs above 30 km. If weight 1 m 3 air at the earth's surface is 1033 g, then at a height of 20 km it is equal to 43 g, and at a height of 40 km only 4 years

At an altitude of 300-400 km and above, the air is so rarefied that during the day its density changes many times. Studies have shown that this change in density is related to the position of the Sun. The highest air density is around noon, the lowest at night. This is partly explained by the fact that the upper layers of the atmosphere react to changes in the electromagnetic radiation of the Sun.

The change in air temperature with height is also uneven. According to the nature of the change in temperature with height, the atmosphere is divided into several spheres, between which there are transitional layers, the so-called pauses, where the temperature changes little with height.

Here are the names and main characteristics of spheres and transition layers.

Let us present the basic data on the physical properties of these spheres.

Troposphere. The physical properties of the troposphere are largely determined by the influence of the earth's surface, which is its lower bound. The highest height of the troposphere is observed in the equatorial and tropical zones. Here it reaches 16-18 km and relatively little subject to daily and seasonal changes. Above the polar and adjacent regions, the upper boundary of the troposphere lies on average at a level of 8-10 km. In mid-latitudes, it ranges from 6-8 to 14-16 km.

The vertical power of the troposphere depends significantly on the nature of atmospheric processes. Often during the day, the upper boundary of the troposphere over a given point or area drops or rises by several kilometers. This is mainly due to changes in air temperature.

More than 4/5 of the mass of the earth's atmosphere and almost all of the water vapor contained in it are concentrated in the troposphere. In addition, from the earth's surface to the upper limit of the troposphere, the temperature drops by an average of 0.6° for every 100 m, or 6° for 1 km uplift . This is due to the fact that the air in the troposphere is heated and cooled mainly from the surface of the earth.

In accordance with the influx of solar energy, the temperature decreases from the equator to the poles. Thus, the average air temperature near the earth's surface at the equator reaches +26°, over the polar regions -34°, -36° in winter, and about 0° in summer. Thus, the temperature difference between the equator and the pole is 60° in winter and only 26° in summer. True, such low temperatures in the Arctic in winter are observed only near the surface of the earth due to cooling of the air over the ice expanses.

In winter, in Central Antarctica, the air temperature on the surface of the ice sheet is even lower. At Vostok station in August 1960, the lowest temperature on the globe was recorded -88.3°, and most often in Central Antarctica it is -45°, -50°.

From a height, the temperature difference between the equator and the pole decreases. For example, at height 5 km at the equator the temperature reaches -2°, -4°, and at the same height in the Central Arctic -37°, -39° in winter and -19°, -20° in summer; therefore, the temperature difference in winter is 35-36°, and in summer 16-17°. In the southern hemisphere, these differences are somewhat larger.

The energy of atmospheric circulation can be determined by equator-pole temperature contracts. Since the temperature contrasts are greater in winter, atmospheric processes are more intense than in summer. This also explains the fact that the prevailing westerly winds in the troposphere in winter have higher speeds than in summer. In this case, the wind speed, as a rule, increases with height, reaching a maximum at the upper boundary of the troposphere. Horizontal transfer is accompanied by vertical air movements and turbulent (disordered) movement. Due to the rise and fall of large volumes of air, clouds form and disperse, precipitation occurs and stops. The transition layer between the troposphere and the overlying sphere is tropopause. Above it lies the stratosphere.

Stratosphere extends from heights 8-17 to 50-55 km. It was opened at the beginning of our century. In terms of physical properties, the stratosphere differs sharply from the troposphere in that the air temperature here, as a rule, rises by an average of 1 - 2 ° per kilometer of elevation and at the upper boundary, at a height of 50-55 km, even becomes positive. The increase in temperature in this area is caused by the presence of ozone (O 3) here, which is formed under the influence of ultraviolet radiation from the Sun. The ozone layer covers almost the entire stratosphere. The stratosphere is very poor in water vapor. There are no violent processes of cloud formation and no precipitation.

More recently, it was assumed that the stratosphere is a relatively calm environment, where air mixing does not occur, as in the troposphere. Therefore, it was believed that the gases in the stratosphere are divided into layers, in accordance with their specific gravity. Hence the name of the stratosphere ("stratus" - layered). It was also believed that the temperature in the stratosphere is formed under the action of radiative equilibrium, i.e., when the absorbed and reflected solar radiation are equal.

New data from radiosondes and meteorological rockets have shown that the stratosphere, like the upper troposphere, is subject to intense air circulation with large variations in temperature and wind. Here, as in the troposphere, the air experiences significant vertical movements, turbulent movements with strong horizontal air currents. All this is the result of a non-uniform temperature distribution.

The transition layer between the stratosphere and the overlying sphere is stratopause. However, before proceeding to the characteristics of the higher layers of the atmosphere, let's get acquainted with the so-called ozonosphere, the boundaries of which approximately correspond to the boundaries of the stratosphere.

Ozone in the atmosphere. Ozone plays an important role in creating the temperature regime and air currents in the stratosphere. Ozone (O 3) is felt by us after a thunderstorm when we inhale clean air with a pleasant aftertaste. However, here we will not talk about this ozone formed after a thunderstorm, but about the ozone contained in the layer 10-60 km with a maximum at a height of 22-25 km. Ozone is produced by the action of the ultraviolet rays of the sun and, although its total amount is insignificant, plays an important role in the atmosphere. Ozone has the ability to absorb the ultraviolet radiation of the sun and thereby protects the animal and plant world from its harmful effects. Even that tiny fraction of ultraviolet rays that reaches the surface of the earth burns the body badly when a person is excessively fond of sunbathing.

The amount of ozone is not the same over different parts of the Earth. There is more ozone in high latitudes, less in middle and low latitudes, and this amount changes depending on the change of seasons of the year. More ozone in spring, less in autumn. In addition, its non-periodic fluctuations occur depending on the horizontal and vertical circulation of the atmosphere. Many atmospheric processes are closely related to the ozone content, since it has a direct effect on the temperature field.

In winter, during the polar night, at high latitudes, the ozone layer emits and cools the air. As a result, in the stratosphere of high latitudes (in the Arctic and Antarctic), a cold region is formed in winter, a stratospheric cyclonic eddy with large horizontal temperature and pressure gradients, which causes westerly winds over the middle latitudes of the globe.

In summer, under conditions of a polar day, at high latitudes, the ozone layer absorbs solar heat and warms the air. As a result of the temperature increase in the stratosphere of high latitudes, a heat region and a stratospheric anticyclonic vortex are formed. Therefore, over the average latitudes of the globe above 20 km in summer, easterly winds prevail in the stratosphere.

Mesosphere. Observations with meteorological rockets and other methods have established that the overall temperature increase observed in the stratosphere ends at altitudes of 50-55 km. Above this layer, the temperature drops again and near the upper boundary of the mesosphere (about 80 km) reaches -75°, -90°. Further, the temperature rises again with height.

It is interesting to note that the decrease in temperature with height, characteristic of the mesosphere, occurs differently at different latitudes and throughout the year. At low latitudes, the temperature drop occurs more slowly than at high latitudes: the average vertical temperature gradient for the mesosphere is, respectively, 0.23° - 0.31° per 100 m or 2.3°-3.1° per 1 km. In summer it is much larger than in winter. As shown by the latest research in high latitudes, the temperature at the upper boundary of the mesosphere in summer is several tens of degrees lower than in winter. In the upper mesosphere at a height of about 80 km in the mesopause layer, the decrease in temperature with height stops and its increase begins. Here, under the inversion layer at twilight or before sunrise in clear weather, brilliant thin clouds are observed, illuminated by the sun below the horizon. Against the dark background of the sky, they glow with a silvery-blue light. Therefore, these clouds are called silvery.

The nature of noctilucent clouds is not yet well understood. Long time believed that they are composed of volcanic dust. However, the absence of optical phenomena characteristic of real volcanic clouds led to the rejection of this hypothesis. Then it was suggested that noctilucent clouds are composed of cosmic dust. In recent years, a hypothesis has been proposed that these clouds are composed of ice crystals, like ordinary cirrus clouds. The level of location of noctilucent clouds is determined by the delay layer due to temperature inversion during the transition from the mesosphere to the thermosphere at a height of about 80 km. Since the temperature in the subinversion layer reaches -80°C and lower, the most favorable conditions are created here for the condensation of water vapor, which enters here from the stratosphere as a result of vertical movement or by turbulent diffusion. Noctilucent clouds are usually seen in summer period, sometimes very in large numbers and within a few months.

Observations for silvery clouds it was found that in summer at their level the winds are highly variable. Wind speeds vary widely: from 50-100 to several hundred kilometers per hour.

Temperature at altitude. A visual representation of the nature of the temperature distribution with height, between the earth's surface and altitudes of 90-100 km, in winter and summer in the northern hemisphere, is given in Figure 5. The surfaces separating the spheres are depicted here by thick dashed lines. At the very bottom, the troposphere stands out well, with a characteristic decrease in temperature with height. Above the tropopause, in the stratosphere, on the contrary, the temperature increases with height in general and at heights of 50-55 km reaches + 10°, -10°. Let's pay attention to an important detail. In winter, in the stratosphere of high latitudes, the temperature above the tropopause drops from -60 to -75 ° and only above 30 km rises again to -15°. In summer, starting from the tropopause, the temperature increases with height and by 50 km reaches + 10°. Above the stratopause, the temperature again begins to decrease with height, and at a level of 80 km it does not exceed -70°, -90°.

From figure 5 it follows that in layer 10-40 km the air temperature in winter and summer in high latitudes is sharply different. In winter, during the polar night, the temperature here reaches -60°, -75°, and in summer a minimum of -45° is near the tropopause. Above the tropopause, the temperature increases and at altitudes of 30-35 km is only -30°, -20°, which is caused by the heating of the air in the ozone layer during the polar day. It also follows from the figure that even in one season and at the same level, the temperature is not the same. Their difference between different latitudes exceeds 20-30°. In this case, the inhomogeneity is especially significant in the layer low temperatures (18-30 km) and in the layer of maximum temperatures (50-60 km) in the stratosphere, as well as in the layer of low temperatures in the upper mesosphere (75-85km).


The average temperatures shown in Figure 5 are obtained from observations in the northern hemispheres, however, judging by the available information, they can also be attributed to southern hemisphere. Some differences exist mainly at high latitudes. Over Antarctica in winter, the air temperature in the troposphere and lower stratosphere is noticeably lower than over the Central Arctic.

Winds on high. The seasonal distribution of temperature determines a rather complex system of air currents in the stratosphere and mesosphere.

Figure 6 shows a vertical section of the wind field in the atmosphere between the earth's surface and a height of 90 km winter and summer over the northern hemisphere. The isolines show the average speeds of the prevailing wind (in m/s). It follows from the figure that the wind regime in winter and summer in the stratosphere is sharply different. In winter, both the troposphere and the stratosphere are dominated by westerly winds with maximum speeds, equal to about


100 m/s at a height of 60-65 km. In summer, westerly winds prevail only up to heights of 18-20 km. Higher they become eastern, with maximum speeds up to 70 m/s at a height of 55-60km.

In summer, above the mesosphere, the winds become westerly, and in winter, they become easterly.

Thermosphere. Above the mesosphere is the thermosphere, which is characterized by an increase in temperature with height. According to the data obtained, mainly with the help of rockets, it was found that in the thermosphere it is already at the level of 150 km the air temperature reaches 220-240°, and at the level of 200 km over 500°. Above, the temperature continues to rise and at the level of 500-600 km exceeds 1500°. On the basis of data obtained during the launches of artificial Earth satellites, it was found that in the upper thermosphere the temperature reaches about 2000° and fluctuates significantly during the day. The question arises how to explain such a high temperature in the high layers of the atmosphere. Recall that the temperature of a gas is a measure average speed molecular movements. In the lower, densest part of the atmosphere, the molecules of the gases that make up the air often collide with each other when moving and instantly transfer kinetic energy to each other. Therefore, the kinetic energy in a dense medium is on average the same. In high layers, where the air density is very low, collisions between molecules located at large distances occur less frequently. When energy is absorbed, the speed of molecules in the interval between collisions changes greatly; in addition, the molecules of lighter gases move at a higher speed than the molecules of heavy gases. As a result, the temperature of the gases can be different.

In rarefied gases, there are relatively few molecules of very small sizes (light gases). If they move at high speeds, then the temperature in a given volume of air will be high. In the thermosphere, each cubic centimeter of air contains tens and hundreds of thousands of molecules of various gases, while at the surface of the earth there are about a hundred million billion of them. Therefore, excessively high temperatures in the high layers of the atmosphere, showing the speed of movement of molecules in this very thin medium, cannot cause even a slight heating of the body located here. Just as a person does not feel heat when dazzling electric lamps, although the filaments in a rarefied medium instantly heat up to several thousand degrees.

In the lower thermosphere and mesosphere, the main part of meteor showers burns out before reaching the earth's surface.

Available information about atmospheric layers above 60-80 km are still insufficient for final conclusions about the structure, regime and processes developing in them. However, it is known that in the upper mesosphere and lower thermosphere, the temperature regime is created as a result of the transformation of molecular oxygen (O 2) into atomic oxygen (O), which occurs under the action of ultraviolet solar radiation. In the thermosphere on the temperature regime big influence renders corpuscular, x-ray and. ultraviolet radiation from the sun. Here, even during the day, there are sharp changes in temperature and wind.

Atmospheric ionization. The most interesting feature of the atmosphere above 60-80 km is her ionization, i.e., the process of formation of a huge number of electrically charged particles - ions. Since the ionization of gases is characteristic of the lower thermosphere, it is also called the ionosphere.

The gases in the ionosphere are mostly in the atomic state. Under the action of ultraviolet and corpuscular radiation of the Sun, which have high energy, the process of splitting off electrons from neutral atoms and air molecules occurs. Such atoms and molecules, having lost one or more electrons, become positively charged, and a free electron can join again. neutral atom or a molecule and endow them with their negative charge. These positively and negatively charged atoms and molecules are called ions, and the gases ionized, i.e. those who received electric charge. At a higher concentration of ions, gases become electrically conductive.

The ionization process occurs most intensively in thick layers limited by heights of 60-80 and 220-400 km. In these layers, there are optimal conditions for ionization. Here, the air density is noticeably higher than in the upper atmosphere, and the influx of ultraviolet and corpuscular radiation from the Sun is sufficient for the ionization process.

The discovery of the ionosphere is one of the most important and brilliant achievements of science. After all, a distinctive feature of the ionosphere is its influence on the propagation of radio waves. In the ionized layers, radio waves are reflected, and therefore long-range radio communication becomes possible. Charged atoms-ions reflect short radio waves, and they again return to the earth's surface, but already at a considerable distance from the place of radio transmission. Obviously, short radio waves make this path several times, and thus long-range radio communication is ensured. If not for the ionosphere, then for the transmission of radio station signals over long distances it would be necessary to build expensive radio relay lines.

However, it is known that sometimes shortwave radio communications are disrupted. This happens as a result of chromospheric flares on the Sun, due to which the ultraviolet radiation of the Sun sharply increases, leading to strong disturbances of the ionosphere and the Earth's magnetic field - magnetic storms. During magnetic storms, radio communication is disrupted, since the movement of charged particles depends on the magnetic field. During magnetic storms, the ionosphere reflects radio waves worse or passes them into space. Mainly with a change in solar activity, accompanied by an increase in ultraviolet radiation, the electron density of the ionosphere and the absorption of radio waves in the daytime increase, leading to disruption of short-wave radio communications.

According to new research, in a powerful ionized layer there are zones where the concentration of free electrons reaches a slightly higher concentration than in neighboring layers. Four such zones are known, which are located at altitudes of about 60-80, 100-120, 180-200 and 300-400 km and are marked with letters D, E, F 1 and F 2 . With increasing radiation from the Sun, charged particles (corpuscles) under the influence of the Earth's magnetic field are deflected towards high latitudes. Upon entering the atmosphere, corpuscles intensify the ionization of gases to such an extent that their glow begins. This is how auroras- in the form of beautiful multi-colored arcs that light up in the night sky, mainly in the high latitudes of the Earth. Auroras are accompanied by strong magnetic storms. In such cases, the auroras become visible in the middle latitudes, and in rare cases even in the tropical zone. Thus, for example, the intense aurora observed on January 21-22, 1957, was visible in almost all the southern regions of our country.

By photographing auroras from two points located at a distance of several tens of kilometers, the height of the aurora is determined with great accuracy. Auroras are usually located at an altitude of about 100 km, often they are found at an altitude of several hundred kilometers, and sometimes at a level of about 1000 km. Although the nature of auroras has been elucidated, there are still many unresolved issues related to this phenomenon. The reasons for the diversity of forms of auroras are still unknown.

According to the third Soviet satellite, between heights 200 and 1000 km during the day, positive ions of split molecular oxygen, i.e., atomic oxygen (O), predominate. Soviet scientists are studying the ionosphere with the help of artificial satellites of the Kosmos series. American scientists are also studying the ionosphere with the help of satellites.

The surface separating the thermosphere from the exosphere fluctuates depending on changes in solar activity and other factors. Vertically, these fluctuations reach 100-200 km and more.

Exosphere (scattering sphere) - the uppermost part of the atmosphere, located above 800 km. She is little studied. According to the data of observations and theoretical calculations, the temperature in the exosphere increases with height presumably up to 2000°. Unlike the lower ionosphere, gases in the exosphere are so rarefied that their particles, moving with huge speeds almost never meet each other.

Until relatively recently, it was assumed that the conditional boundary of the atmosphere is located at an altitude of about 1000 km. However, based on the deceleration of artificial Earth satellites, it has been established that at altitudes of 700-800 km in 1 cm 3 contains up to 160 thousand. positive ions atomic oxygen and nitrogen. This gives grounds to assume that the charged layers of the atmosphere extend into space for a much greater distance.

At high temperatures at the conditional boundary of the atmosphere, the speeds of gas particles reach approximately 12 km/s At these speeds, the gases gradually leave the area of ​​action gravity into interplanetary space. This has been going on for a long time. For example, particles of hydrogen and helium are removed into interplanetary space over several years.

In the study of the high layers of the atmosphere, rich data were obtained both from satellites of the Kosmos and Elektron series, and geophysical rockets and space stations Mars-1, Luna-4, etc. Direct observations of astronauts were also valuable. So, according to photographs taken in space by V. Nikolaeva-Tereshkova, it was found that at an altitude of 19 km there is a dust layer from the Earth. This was also confirmed by the data obtained by the crew of the Voskhod spacecraft. Apparently there is close connection between the dust layer and the so-called mother-of-pearl clouds, sometimes observed at altitudes of about 20-30km.

From the atmosphere to outer space. Previous assumptions that outside the Earth's atmosphere, in the interplanetary

space, gases are very rarefied and the concentration of particles does not exceed several units in 1 cm 3, were not justified. Studies have shown that near-Earth space is filled with charged particles. On this basis, a hypothesis was put forward about the existence of zones around the Earth with a markedly increased content of charged particles, i.e. radiation belts- internal and external. New data helped to clarify. It turned out that there are also charged particles between the inner and outer radiation belts. Their number varies depending on geomagnetic and solar activity. Thus, according to the new assumption, instead of radiation belts, there are radiation zones without clearly defined boundaries. The boundaries of radiation zones change depending on solar activity. With its intensification, i.e., when spots and jets of gas appear on the Sun, ejected over hundreds of thousands of kilometers, the flow increases cosmic particles, which feed the radiation zones of the Earth.

Radiation zones are dangerous for people flying on spacecraft. Therefore, before the flight into space, the state and position of the radiation zones are determined, and the spacecraft orbit is chosen in such a way that it passes outside the regions of increased radiation. However, the high layers of the atmosphere, as well as outer space close to the Earth, have not yet been studied enough.

In the study of the high layers of the atmosphere and near-Earth space, rich data obtained from satellites of the Kosmos series and space stations are used.

The high layers of the atmosphere are the least studied. However modern methods her research allows us to hope that in the coming years man will know many details of the structure of the atmosphere at the bottom of which he lives.

In conclusion, we present a schematic vertical section of the atmosphere (Fig. 7). Here, the altitudes in kilometers and air pressure in millimeters are plotted vertically, and the temperature is plotted horizontally. The solid curve shows the change in air temperature with height. At the corresponding heights, and major events observed in the atmosphere, as well as the maximum heights reached by radiosondes and other means of atmospheric sounding.