Medzinárodná vesmírna stanica. Najdrahší projekt ľudstva

Kto z nás v detstve nesníval o tom, že sa stane astronautom, pôjde na lodi k vzdialeným hviezdam a planétam? Internet dnes dáva takúto možnosť každému!


Ako asi viete, zariadenie ISS je založené na modulárny princíp. Každý jednotlivý modul je súčasťou celej stanice.

360° video vám umožní navštíviť a podrobne preskúmať americké moduly Unity a Destiny, ako aj ruské Zarya a Zvezda. Z miesta streľby sa môžete pozerať okolo seba, hore a dole, všeobecne, rovnako ako v skutočnom živote.

Upozornenie: toto nie je živé vysielanie z kamier ISS v reálnom čase. Toto je video, ktoré bolo špeciálne natočené a spracované s cieľom získať panoramatický pohľad.

Okrem toho ESA dáva jedinečná príležitosť poslať virtuálna prehliadka na ISS, čo vám umožní preskúmať všetky moduly čo najpodrobnejšie. Detaily sú skvelé: dokonca môžete rozlíšiť nápisy na malých predmetoch a písmená na klávesnici notebooku!

Na pohyb použite blok tlačidiel v spodnej časti obrazovky, aj keď najpohodlnejšie je rozhliadnuť sa a meniť mierku pohybom myši. Na pravej strane je schéma (mapa) modulov ISS, ktorá zobrazuje vašu aktuálnu polohu. Ak prekáža, dá sa odstrániť kliknutím na odkaz „Mapa ON/OFF“.


Presun medzi modulmi sa vykonáva kliknutím na modré šípky a po kliknutí na modré kruhy s bielym trojuholníkom sa spustí zaujímavé video, v ktorej astronauti hovoria o účele konkrétneho zariadenia, prístroja a pod.

Ak chcete sledovať živé vysielanie z ISS, tak tu je vysielanie z jednej z webových kamier stanice, ktorá prenáša signál v reálnom čase:

Táto kamera zobrazuje vonkajšie fragmenty stanice, keď posádka pracuje, a zvyšok času, keď astronauti spia alebo odpočívajú, zobrazuje Zem z vesmíru, z výšky asi 400 km. Pripomeňme, že ISS používa koordinovaný svetový čas (UTC) a celý rozvrh období spánku a práce sa počíta len s ním. Rozdiel oproti moskovskému času (MSK) je mínus 3 hodiny.

Ak vidíte modrú obrazovku alebo iné prázdne miesto, stanica s najväčšou pravdepodobnosťou momentálne letí v „mŕtvej zóne“ a signál sa dočasne nevysiela. A ak je obrazovka čierna, potom je stanica možno práve v tieni. Video je často sprevádzané zvukovými rozhovormi medzi posádkou a riadiacim centrom misie (MCC).

International vesmírna stanica- pilotovaná orbitálna stanica Zeme, ovocie práce pätnástich krajín sveta, stovky miliárd dolárov a tucet obslužného personálu v podobe astronautov a kozmonautov, ktorí pravidelne chodia na palubu ISS. Medzinárodná vesmírna stanica je taká symbolická základňa ľudstva vo vesmíre, najvzdialenejší bod trvalého pobytu ľudí vo vákuovom vesmíre (pričom na Marse samozrejme nie sú žiadne kolónie). ISS bola spustená v roku 1998 na znak zmierenia medzi krajinami, ktoré sa pokúšali vyvinúť svoje vlastné orbitálne stanice (a to bolo, ale nie na dlho) počas studená vojna a bude fungovať do roku 2024, ak sa nič nezmení. Na palube ISS sa pravidelne uskutočňujú experimenty, ktoré prinášajú svoje ovocie nepochybne významné pre vedu a výskum vesmíru.

Vedci dostali vzácnu príležitosť vidieť, ako podmienky na Medzinárodnej vesmírnej stanici ovplyvnili génovú expresiu, porovnaním identických dvojčiat astronautov: jeden z nich strávil vo vesmíre asi rok, druhý zostal na Zemi. na vesmírnej stanici spôsobil zmeny v génovej expresii prostredníctvom procesu epigenetiky. vedci z NASA už vedia, že astronauti budú zažívať fyzický stres rôznymi spôsobmi.

Dobrovoľníci sa snažia žiť na Zemi ako astronauti pri príprave na misie s ľudskou posádkou na Zemi, ale čelia izolácii, obmedzeniam a hroznému jedlu. Po takmer roku strávenom bez čerstvého vzduchu v stiesnenom, beztiažovom prostredí Medzinárodnej vesmírnej stanice vyzerali po návrate na Zem na jar minulého roka pozoruhodne dobre. Dokončili 340-dňovú orbitálnu misiu, jednu z najdlhších v histórii. najnovší vývoj priestor.

Medzinárodná vesmírna stanica je výsledkom spoločnej práce špecialistov z viacerých oblastí zo šestnástich krajín sveta (Rusko, USA, Kanada, Japonsko, štáty, ktoré sú členmi európskeho spoločenstva). Veľkolepý projekt, ktorý v roku 2013 oslávil pätnáste výročie začiatku jeho realizácie, stelesňuje všetky výdobytky technického myslenia našej doby. Pôsobivú časť materiálu o blízkom i vzdialenom vesmíre a niektorých pozemských javoch a procesoch vedcov poskytuje medzinárodná vesmírna stanica. ISS však nebola postavená za jeden deň, jej vzniku predchádzalo takmer tridsať rokov histórie astronautika.

Ako to všetko začalo

Predchodcovia ISS boli nesporným prvenstvom v ich stvorení obsadili Sovietski technici a inžinierov. Práce na projekte Almaz sa začali koncom roku 1964. Vedci pracovali na orbitálnej stanici s ľudskou posádkou, ktorá by mohla pojať 2-3 astronautov. Predpokladalo sa, že "Diamant" bude slúžiť dva roky a celý tento čas bude použitý na výskum. Podľa projektu bola hlavnou časťou komplexu OPS - pilotovaná orbitálna stanica. Boli v ňom pracovné priestory členov posádky, ako aj priestor pre domácnosť. OPS bola vybavená dvoma prielezmi pre výstupy do vesmíru a zhadzovaním špeciálnych kapsúl s informáciami na Zem, ako aj pasívnou dokovacou stanicou.

Efektívnosť stanice je do značnej miery určená jej energetickými rezervami. Vývojári Almazu našli spôsob, ako ich mnohonásobne zvýšiť. Dodávku astronautov a rôzneho nákladu na stanicu vykonávali transportné zásobovacie lode (TKS). Okrem iného boli vybavené aktívnym dokovacím systémom, výkonným zdrojom energie a vynikajúcim systémom riadenia dopravy. TKS bola schopná dlhodobo zásobovať stanicu energiou, ako aj spravovať celý areál. Všetky následné podobné projekty, vrátane medzinárodnej vesmírnej stanice, boli vytvorené rovnakým spôsobom šetrenia prostriedkov OPS.

najprv

Rivalita so Spojenými štátmi prinútila sovietskych vedcov a inžinierov pracovať čo najrýchlejšie, a tak v čo najkratšom čase vznikla ďalšia orbitálna stanica Saljut. Do vesmíru ju vzali v apríli 1971. Základom stanice je takzvaný pracovný priestor, ktorý obsahuje dva valce, malý a veľký. Vo vnútri menšieho priemeru sa nachádzalo riadiace centrum, miesta na spanie a rekreačné priestory, sklady a stravovanie. Väčší valec obsahoval vedecké vybavenie, simulátory, bez ktorých sa žiadny takýto let nezaobíde, ako aj sprchovací kút a toaletu izolovanú od zvyšku miestnosti.

Každý ďalší Saljut sa od predchádzajúceho trochu líšil: bol vybavený najnovším vybavením, mal dizajnové prvky, ktoré zodpovedali vtedajšiemu vývoju technológií a poznatkov. Tieto orbitálne stanice položili základ Nová éra výskum kozmických a pozemských procesov. „Pozdravy“ boli základom, na ktorom sa uskutočnilo veľké množstvo výskumov v oblasti medicíny, fyziky, priemyslu a poľnohospodárstvo. Ťažko sa dajú preceňovať aj skúsenosti z používania orbitálnej stanice, ktoré sa úspešne aplikovali pri prevádzke ďalšieho komplexu s posádkou.

"svet"

Proces hromadenia skúseností a vedomostí bol dlhý, výsledkom ktorého bola medzinárodná vesmírna stanica. "Mir" - modulárny komplex s posádkou - jeho ďalšia etapa. Otestoval sa na nej takzvaný blokový princíp tvorby stanice, kedy jej hlavná časť na nejaký čas zvyšuje svoju technickú a výskumnú silu pridávaním nových modulov. Následne si ho „požičia“ medzinárodná vesmírna stanica. Mir sa stal vzorom technickej a inžinierskej zdatnosti našej krajiny a vlastne jej poskytol jednu z vedúcich úloh pri vzniku ISS.

Práce na výstavbe stanice sa začali v roku 1979 a na obežnú dráhu bola vynesená 20. februára 1986. Počas celej existencie Mir vykonával rôzne štúdie. Potrebné vybavenie bolo dodané v rámci doplnkových modulov. Stanica Mir umožnila vedcom, inžinierom a výskumníkom získať neoceniteľné skúsenosti s používaním tejto váhy. Navyše sa z neho stalo miesto pokoja Medzinárodná spolupráca: V roku 1992 bola medzi Ruskom a Spojenými štátmi podpísaná Dohoda o spolupráci vo vesmíre. V skutočnosti sa to začalo realizovať v roku 1995, keď americký Shuttle išiel na stanicu Mir.

Dokončenie letu

Stanica Mir sa stala miestom rôznych štúdií. Tu analyzovali, spresňovali a otvárali údaje z oblasti biológie a astrofyziky, vesmírne technológie a medicína, geofyzika a biotechnológia.

Stanica ukončila svoju existenciu v roku 2001. Dôvodom rozhodnutia zaplaviť ho bol vývoj energetický zdroj a tiež nejaké nehody. Nominovaný rôzne verzie záchrane objektu, ale neboli prijaté a v marci 2001 bola stanica Mir ponorená do vôd Tichého oceánu.

Vytvorenie medzinárodnej vesmírnej stanice: prípravná fáza

Myšlienka vytvorenia ISS vznikla v čase, keď ešte nikoho nenapadlo zaplaviť Mir. Nepriamym dôvodom vzniku stanice bola politická a finančná kríza u nás a ekonomické problémy v USA. Obe veľmoci si uvedomili svoju neschopnosť vyrovnať sa samy s úlohou vytvoriť orbitálnu stanicu. Začiatkom deväťdesiatych rokov bola podpísaná zmluva o spolupráci, ktorej jedným z bodov bola medzinárodná vesmírna stanica. ISS ako projekt zjednotil nielen Rusko a Spojené štáty americké, ale, ako už bolo uvedené, ďalších štrnásť krajín. Súčasne s výberom účastníkov prebiehalo schválenie projektu ISS: stanica bude pozostávať z dvoch integrovaných jednotiek, americkej a ruskej, a bude dobudovaná na obežnej dráhe modulárne podobne ako Mir.

"úsvit"

Prvá medzinárodná vesmírna stanica začala svoju existenciu na obežnej dráhe v roku 1998. 20. novembra bol s pomocou rakety Proton vypustený funkčný nákladný blok ruskej výroby Zarya. Stal sa prvým segmentom ISS. Konštrukčne bol podobný niektorým modulom stanice Mir. Zaujímavosťou je, že americká strana navrhla postaviť ISS priamo na obežnej dráhe a až skúsenosti ruských kolegov a príklad Miru ich primäli k modulárnej metóde.

Vo vnútri je Zarya vybavená rôznymi nástrojmi a vybavením, dokovacou stanicou, napájaním a ovládaním. Pôsobivý kus vybavenia vrátane palivových nádrží, radiátorov, komôr a panelov solárne panely, sú umiestnené na vonkajšej strane modulu. Všetky vonkajšie prvky sú chránené pred meteoritmi špeciálnymi clonami.

Modul po module

5. decembra 1998 raketoplán Endeavour s dokovacím modulom American Unity zamieril k Zarye. O dva dni neskôr bola Unity pripojená k Zarye. Medzinárodná vesmírna stanica ďalej „získala“ servisný modul Zvezda, ktorý bol tiež vyrobený v Rusku. Zvezda bola modernizovanou základňou stanice Mir.

K dokovaniu nového modulu došlo 26. júla 2000. Od tohto momentu Zvezda prevzala kontrolu nad ISS, ako aj nad všetkými systémami podpory života, a kozmonautskému tímu bolo umožnené zostať na stanici natrvalo.

Prechod do režimu s posádkou

Prvú posádku Medzinárodnej vesmírnej stanice dodal Sojuz TM-31 2. novembra 2000. Jeho súčasťou bol V. Shepherd - veliteľ expedície, Yu. Gidzenko - pilot, - palubný inžinier. Od toho momentu sa začalo nová etapa prevádzka stanice: prešla do režimu s obsluhou.

Zloženie druhej výpravy: James Voss a Susan Helms. Svoju prvú posádku vymenila začiatkom marca 2001.

a pozemských javov

Medzinárodná vesmírna stanica je miestom rôznych aktivít, úlohou každej posádky je okrem iného zbierať údaje o niektorých vesmírnych procesoch, študovať vlastnosti určitých látok v podmienkach beztiaže a pod. Vedecký výskum uskutočnený na ISS môže byť prezentovaný vo forme zovšeobecneného zoznamu:

  • pozorovanie rôznych vzdialených vesmírnych objektov;
  • štúdium kozmického žiarenia;
  • pozorovanie Zeme vrátane štúdia atmosférických javov;
  • štúdium vlastností fyzikálnych a bioprocesov v stave beztiaže;
  • testovanie nových materiálov a technológií vo vesmíre;
  • lekársky výskum, vrátane tvorby nových liekov, testovanie diagnostických metód v stave beztiaže;
  • výroba polovodičových materiálov.

Budúcnosť

Ako každý iný objekt vystavený takému veľkému zaťaženiu a tak intenzívne využívaný, ISS skôr či neskôr prestane fungovať na požadovanej úrovni. Pôvodne sa predpokladalo, že jej „trvanlivosť“ sa skončí v roku 2016, to znamená, že stanica dostala iba 15 rokov. Už od prvých mesiacov jej fungovania sa však začali ozývať domnienky, že toto obdobie je akosi podceňované. Dnes sú vyjadrené nádeje, že medzinárodná vesmírna stanica bude fungovať do roku 2020. Potom ju pravdepodobne čaká rovnaký osud ako stanicu Mir: ISS bude zaplavená vodami Tichého oceánu.

Dnes medzinárodná vesmírna stanica, ktorej fotografia je uvedená v článku, úspešne pokračuje v obežnej dráhe okolo našej planéty. Z času na čas v médiách nájdete odkazy na nový výskum vykonaný na palube stanice. ISS je tiež jediným objektom vesmírnej turistiky: len koncom roka 2012 ju navštívilo osem amatérskych astronautov.

Dá sa predpokladať, že tento druh zábavy bude len naberať na sile, keďže Zem z vesmíru je uhrančivý pohľad. A žiadna fotografia sa nedá porovnať s možnosťou kontemplovať takú krásu z okna medzinárodnej vesmírnej stanice.

V roku 2018 si pripomíname 20. výročie jedného z najvýznamnejších medzinárodných vesmírnych projektov, najväčšej umelo obývanej družice Zeme – Medzinárodnej vesmírnej stanice (ISS). Pred 20 rokmi, 29. januára, bola vo Washingtone podpísaná Dohoda o vytvorení vesmírnej stanice a už 20. novembra 1998 sa začalo s výstavbou stanice - z kozmodrómu Bajkonur úspešne odštartovala nosná raketa Proton s tzv. prvý modul - funkčný nákladný blok Zarya (FGB). V tom istom roku, 7. decembra, bol druhý prvok orbitálnej stanice, spojovací modul Unity, pripojený k FGB Zarya. O dva roky neskôr pribudol na stanici obslužný modul Zvezda.





Medzinárodná vesmírna stanica (ISS) začala 2. novembra 2000 svoju prácu v režime s ľudskou posádkou. Kozmická loď Sojuz TM-31 s posádkou prvej dlhodobej expedície zakotvila so servisným modulom Zvezda.Stretnutie lode so stanicou sa uskutočnilo podľa schémy, ktorá sa používala počas letov na stanicu Mir. Deväťdesiat minút po pristátí sa otvoril poklop a posádka ISS-1 prvýkrát vstúpila na palubu ISS.Posádku ISS-1 tvorili ruskí kozmonauti Jurij GIDZENKO, Sergej KRIKALEV a americký astronaut William SHEPERD.

Po príchode na ISS kozmonauti vykonali prestavbu, dovybavenie, spustenie a vyladenie systémov modulov Zvezda, Unity a Zarya a nadviazali komunikáciu s riadiacimi strediskami misie v Koroleve a Houstone pri Moskve. Počas štyroch mesiacov sa uskutočnilo 143 sedení geofyzikálneho, biomedicínskeho a technického výskumu a experimentov. Okrem toho tím ISS-1 poskytol dokovacie stanice s nákladné lode"Progress M1-4" (november 2000), "Progress M-44" (február 2001) a americké raketoplány Endeavour ("Endeavour", december 2000), Atlantis ("Atlantis"; február 2001), Discovery ("Discovery" marec 2001) a ich vykládka. Vo februári 2001 expedičný tím integroval laboratórny modul Destiny do ISS.

21. marca 2001 sa americkým raketoplánom Discovery, ktorý dopravil posádku druhej expedície na ISS, vrátila na Zem posádka prvej dlhodobej misie. Miestom pristátia bolo vesmírne stredisko J. F. Kennedyho na Floride v USA.

V nasledujúcich rokoch plavebná komora Quest, dokovacia priehradka Pirs, spojovací modul Harmony, laboratórny modul Columbus, nákladný a výskumný modul Kibo, malý výskumný modul Poisk, obytný modul pokoja, pozorovací modul kupoly, malý výskumný modul Rassvet, Multifunkčný modul Leonardo, konvertibilný testovací modul BEAM.

Dnes je ISS najväčším medzinárodným projektom, pilotovanou orbitálnou stanicou používanou ako viacúčelový vesmírny výskumný komplex. Na tomto globálnom projekte sa podieľajú vesmírne agentúry ROSCOSMOS, NASA (USA), JAXA (Japonsko), CSA (Kanada), ESA (Európske krajiny).

S vytvorením ISS bolo možné vykonávať vedecké experimenty v jedinečných podmienkach mikrogravitácie, vo vákuu a pod vplyvom kozmického žiarenia. Hlavnými oblasťami výskumu sú fyzikálne a chemické procesy a materiály vo vesmíre, prieskum Zeme a technológie prieskumu vesmíru, človek vo vesmíre, vesmírna biológia a biotechnológia. Značná pozornosť pri práci astronautov na Medzinárodnej vesmírnej stanici sa venuje vzdelávacím iniciatívam a popularizácii kozmického výskumu.

ISS je jedinečná skúsenosť medzinárodnej spolupráce, podpory a vzájomnej pomoci; výstavba a prevádzka veľkej inžinierskej stavby na obežnej dráhe blízko Zeme, ktorá má prvoradý význam pre budúcnosť celého ľudstva.











HLAVNÉ MODULY MEDZINÁRODNEJ VESMÍRNEJ STANICE

PODMIENKY SYMBOL

ŠTART

DOKOVANIE

Medzinárodná vesmírna stanica

Medzinárodná vesmírna stanica, skr. (Angličtina) Medzinárodná vesmírna stanica, skr. ISS) - pilotovaný, využívaný ako viacúčelový vesmírny výskumný komplex. ISS je spoločný medzinárodný projekt zahŕňajúci 14 krajín (vrátane abecedné poradie): Belgicko, Nemecko, Dánsko, Španielsko, Taliansko, Kanada, Holandsko, Nórsko, Rusko, USA, Francúzsko, Švajčiarsko, Švédsko, Japonsko. Spočiatku boli účastníkmi Brazília a Spojené kráľovstvo.

ISS je riadená: ruským segmentom - z Centra riadenia vesmírnych letov v Korolev, americkým segmentom - z riadiaceho strediska misie Lyndona Johnsona v Houstone. Riadenie laboratórnych modulov – európskeho „Columbus“ a japonského „Kibo“ – riadia riadiace centrá Európskej vesmírnej agentúry (Oberpfaffenhofen, Nemecko) a Japonská agentúra pre výskum vesmíru (Tsukuba, Japonsko). Medzi centrami prebieha neustála výmena informácií.

História stvorenia

V roku 1984 oznámil americký prezident Ronald Reagan začiatok prác na vytvorení americkej orbitálnej stanice. V roku 1988 bola plánovaná stanica pomenovaná „Freedom“ („Sloboda“). V tom čase to tak bolo spoločný projekt USA, ESA, Kanada a Japonsko. Plánovala sa veľká riadená stanica, ktorej moduly by sa jeden po druhom dostávali na obežnú dráhu raketoplánu. Začiatkom 90. rokov sa však ukázalo, že náklady na vývoj projektu boli príliš vysoké a vytvorenie takejto stanice by umožnila iba medzinárodná spolupráca. ZSSR, ktorý už mal skúsenosti s vytváraním a spúšťaním orbitálnych staníc Saljut, ako aj stanice Mir, plánoval začiatkom 90. rokov vytvoriť stanicu Mir-2, no v dôsledku ekonomické ťažkosti projekt bol pozastavený.

17. júna 1992 Rusko a USA uzavreli dohodu o spolupráci pri prieskume vesmíru. V súlade s ním Ruská vesmírna agentúra (RSA) a NASA vyvinuli spoločný program Mir-Shuttle. Tento program zabezpečoval lety amerického opakovane použiteľného raketoplánu na ruskú vesmírnu stanicu Mir, zaradenie ruských kozmonautov do posádok amerických raketoplánov a amerických astronautov do posádok kozmickej lode Sojuz a stanice Mir.

Počas implementácie programu "Mir - Shuttle" sa myšlienka zjednotiť národných programov vytváranie orbitálnych staníc.

marec 1993 generálny riaditeľ RSA Jurij Koptev a generálny dizajnér NPO Energia Jurij Semjonov navrhli šéfovi NASA Danielovi Goldinovi vytvorenie Medzinárodnej vesmírnej stanice.

V roku 1993 bolo v Spojených štátoch mnoho politikov proti výstavbe vesmírnej orbitálnej stanice. V júni 1993 diskutoval Kongres USA o návrhu na upustenie od vytvorenia Medzinárodnej vesmírnej stanice. Tento návrh nebol prijatý rozdielom jediného hlasu: 215 hlasov za zamietnutie, 216 hlasov za výstavbu stanice.

2. septembra 1993 americký viceprezident Al Gore a predseda ruskej rady ministrov Viktor Černomyrdin oznámili nový projekt „skutočne medzinárodnej vesmírnej stanice“. Odteraz oficiálny názov stanica sa stala „Medzinárodnou vesmírnou stanicou“, hoci paralelne sa používala aj neoficiálna vesmírna stanica „Alpha“.

ISS, júl 1999. Hore modul Unity, dole s rozmiestnenými solárnymi panelmi - Zarya

1. novembra 1993 podpísali RSA a NASA Podrobný pracovný plán Medzinárodnej vesmírnej stanice.

23. júna 1994 podpísali Jurij Koptev a Daniel Goldin vo Washingtone „Dočasnú dohodu o vykonávaní prác vedúcich k ruskému partnerstvu na stálej civilnej vesmírnej stanici s ľudskou posádkou“, na základe ktorej sa Rusko oficiálne zapojilo do prác na ISS.

November 1994 - v Moskve sa uskutočnili prvé konzultácie ruských a amerických vesmírnych agentúr, boli podpísané zmluvy so zúčastnenými spoločnosťami projektu - Boeing a RSC Energia pomenované po. S. P. Koroleva.

Marec 1995 - vo vesmírnom stredisku. L. Johnsona v Houstone bol schválený predbežný projekt stanice.

1996 - schválená konfigurácia stanice. Pozostáva z dvoch segmentov – ruského (modernizovaná verzia „Mir-2“) a amerického (s účasťou Kanady, Japonska, Talianska, členských krajín Európskej vesmírnej agentúry a Brazílie).

20. novembra 1998 - Rusko spustilo prvý prvok ISS - funkčný nákladný blok Zarya, vypustený raketou Proton-K (FGB).

7. decembra 1998 - raketoplán Endeavour pripojil modul American Unity (Unity, Node-1) k modulu Zarya.

10. decembra 1998 bol otvorený poklop do modulu Unity a Kabana a Krikalev ako zástupcovia USA a Ruska vstúpili do stanice.

26. júla 2000 - servisný modul Zvezda (SM) bol pripojený k funkčnému nákladnému bloku Zarya.

2. novembra 2000 - Transportná pilotovaná kozmická loď (TPK) Sojuz TM-31 dopravila posádku prvej hlavnej expedície na ISS.

ISS, júl 2000. Ukotvené moduly zhora nadol: loď Unity, Zarya, Zvezda a Progress

7. februára 2001 - posádka raketoplánu Atlantis počas misie STS-98 pripojila americký vedecký modul Destiny k modulu Unity.

18. apríla 2005 - Šéf NASA Michael Griffin na vypočutí senátneho výboru pre vesmír a vedu oznámil potrebu dočasného zníženia vedeckého výskumu v americkom segmente stanice. To si vyžiadalo uvoľnenie finančných prostriedkov na urýchlený vývoj a konštrukciu novej pilotovanej kozmickej lode (CEV). Nová kozmická loď s ľudskou posádkou bola potrebná na zabezpečenie nezávislého prístupu USA k stanici, keďže po katastrofe v Columbii 1. februára 2003 nemali USA dočasne takýto prístup k stanici až do júla 2005, keď sa obnovili lety raketoplánov.

Po katastrofe v Kolumbii sa počet dlhodobých členov posádky ISS znížil z troch na dvoch. Bolo to spôsobené tým, že zásobovanie stanice materiálmi potrebnými pre život posádky vykonávali iba ruské nákladné lode Progress.

26. júla 2005 sa lety raketoplánov obnovili úspešným štartom raketoplánu Discovery. Do ukončenia prevádzky raketoplánu sa do roku 2010 plánovalo uskutočniť 17 letov, počas ktorých boli na ISS dodané zariadenia a moduly potrebné na dobudovanie stanice a modernizáciu niektorých zariadení, najmä kanadského manipulátora. .

Druhý let raketoplánu po katastrofe v Kolumbii (Shuttle Discovery STS-121) sa uskutočnil v júli 2006. Na tomto raketopláne priletel na ISS nemecký kozmonaut Thomas Reiter, ktorý sa pripojil k posádke dlhodobej expedície ISS-13. Na dlhodobej expedícii na ISS tak po trojročnej prestávke opäť začali pracovať traja kozmonauti.

ISS, apríl 2002

Raketoplán Atlantis vypustený 9. septembra 2006 dodal na ISS dva segmenty nosných konštrukcií ISS, dva solárne panely a tiež radiátory pre systém tepelnej kontroly segmentu USA.

23. októbra 2007 dorazil na palubu raketoplánu Discovery modul American Harmony. Dočasne bol pripojený k modulu Unity. Po opätovnom ukotvení 14. novembra 2007 bol modul Harmony zapnutý trvalý základ pripojený k modulu Destiny. Výstavba hlavného amerického segmentu ISS bola dokončená.

ISS, august 2005

V roku 2008 bola stanica rozšírená o dve laboratóriá. 11. februára bol modul Columbus, objednaný Európskou vesmírnou agentúrou, pripojený k doku; PS) a zapečatený priestor (PM).

V rokoch 2008-2009 prevádzka nov prepravné lode: Európska vesmírna agentúra "ATV" (prvý štart 9. marca 2008, užitočné zaťaženie - 7,7 tony, 1 let ročne) a Japan Aerospace Exploration Agency "H-II Transport Vehicle" (prvý štart 10. septembra 2009, užitočné zaťaženie - 6 ton, 1 let ročne).

Dňa 29. mája 2009 začala dlhodobá šesťčlenná posádka ISS-20 pracovať v dvoch etapách: prví traja ľudia dorazili na Sojuz TMA-14, potom sa k nim pridala posádka Sojuzu TMA-15. Do veľkej miery bol nárast posádky spôsobený tým, že sa zvýšila možnosť dodania tovaru na stanicu.

ISS, september 2006

12. novembra 2009 bol k stanici ukotvený malý výskumný modul MIM-2, krátko pred štartom sa volal Poisk. Ide o štvrtý modul ruského segmentu stanice, vyvinutý na základe dokovacej stanice Pirs. Možnosti modulu umožňujú vykonávať na ňom niektoré vedecké experimenty a zároveň slúžiť ako kotvisko pre ruské lode.

18. mája 2010 bol ruský malý výskumný modul Rassvet (MIM-1) úspešne pripojený k ISS. Operáciu dokovania „Rassvet“ k ruskému funkčnému nákladnému bloku „Zarya“ vykonal manipulátor amerického raketoplánu „Atlantis“ a potom manipulátor ISS.

ISS, august 2007

Vo februári 2010 Medzinárodná vesmírna stanica Multilaterálna rada potvrdila, že v tejto fáze nie sú známe žiadne technické obmedzenia týkajúce sa pokračujúcej prevádzky ISS po roku 2015 a americká administratíva zabezpečila pokračovanie používania ISS minimálne do roku 2020. NASA a Roskosmos uvažujú o predĺžení tohto obdobia najmenej do roku 2024 a možno aj do roku 2027. V máji 2014 ruský vicepremiér Dmitrij Rogozin uviedol: "Rusko nemá v úmysle predĺžiť prevádzku Medzinárodnej vesmírnej stanice po roku 2020."

V roku 2011 boli ukončené lety opakovane použiteľných lodí typu „Space Shuttle“.

ISS, jún 2008

22. mája 2012 odštartovala z Mysu Canaveral nosná raketa Falcon 9, ktorá nesie súkromnú kozmickú loď Dragon. Ide o vôbec prvý testovací let súkromnej kozmickej lode na Medzinárodnú vesmírnu stanicu.

25. mája 2012 sa kozmická loď Dragon stala prvou komerčnou kozmickou loďou, ktorá zakotvila pri ISS.

18. septembra 2013 sa prvýkrát stretol s ISS a zakotvil v súkromnej automatickej nákladnej kozmickej lodi Signus.

ISS, marec 2011

Plánované akcie

V plánoch je výrazná modernizácia ruských kozmických lodí Sojuz a Progress.

V roku 2017 sa plánuje pripojiť ruský 25-tonový multifunkčný laboratórny modul (MLM) Nauka k ISS. Zaberie miesto modulu Pirs, ktorý bude odpojený a zaplavený. Nový ruský modul okrem iného plne prevezme funkcie Pirs.

"NEM-1" (vedecký a energetický modul) - prvý modul, dodávka je plánovaná na rok 2018;

"NEM-2" (vedecký a energetický modul) - druhý modul.

UM (uzlový modul) pre ruský segment - s ďalšími dokovacími uzlami. Dodanie je plánované na rok 2017.

Staničné zariadenie

Stanica je založená na modulárnom princípe. ISS sa zostavuje postupným pridávaním ďalšieho modulu alebo bloku do komplexu, ktorý je spojený s tým, ktorý už bol dodaný na obežnú dráhu.

Pre rok 2013 ISS zahŕňa 14 hlavných modulov, ruských - Zarya, Zvezda, Pirs, Poisk, Rassvet; Americký - Jednota, Osud, Hľadanie, Pokoj, Domes, Leonardo, Harmónia, Európsky - Kolumbus a Japonec - Kibo.

  • "úsvit"- funkčný nákladný modul „Zarya“, prvý z modulov ISS vynesený na obežnú dráhu. Hmotnosť modulu - 20 ton, dĺžka - 12,6 m, priemer - 4 m, objem - 80 m³. Vybavené prúdovými motormi na korekciu obežnej dráhy stanice a veľkými solárnymi poľami. Predpokladaná životnosť modulu je minimálne 15 rokov. Americký finančný príspevok na vytvorenie Zarya je asi 250 miliónov dolárov, ruský vyše 150 miliónov dolárov;
  • panel P.M- antimeteoritový panel alebo antimikrometeorová ochrana, ktorá je na naliehanie americkej strany namontovaná na module Zvezda;
  • "Hviezda"- servisný modul Zvezda, v ktorom sú umiestnené systémy riadenia letu, systémy podpory života, energetické a informačné centrum, ako aj kabíny pre astronautov. Hmotnosť modulu - 24 ton. Modul je rozdelený do piatich oddelení a má štyri dokovacie uzly. Všetky jeho systémy a bloky sú ruské, s výnimkou palubného počítačového systému vytvoreného za účasti európskych a amerických špecialistov;
  • MIME- malé výskumné moduly, dva ruské nákladné moduly „Poisk“ a „Rassvet“, určené na uloženie vybavenia potrebného na vykonávanie vedeckých experimentov. Poisk je pripojený k protilietadlovému dokovaciemu portu modulu Zvezda a Rassvet je pripojený k nadirovému portu modulu Zarya;
  • "Veda"- Ruský multifunkčný laboratórny modul, ktorý zabezpečuje uskladnenie vedeckého vybavenia, vedeckých experimentov, dočasné ubytovanie posádky. Poskytuje tiež funkčnosť európskeho manipulátora;
  • ERA- Európsky diaľkový manipulátor určený na premiestňovanie zariadení umiestnených mimo stanice. Bude pridelený do ruského vedeckého laboratória MLM;
  • hermetický adaptér- hermetický dokovací adaptér určený na vzájomné prepojenie modulov ISS a zabezpečenie raketoplánu;
  • "pokoj"- Modul ISS vykonávajúci funkcie podpory života. Obsahuje systémy na úpravu vody, regeneráciu vzduchu, likvidáciu odpadu atď. Napojené na modul Unity;
  • Jednota- prvý z troch spojovacích modulov ISS, ktorý funguje ako dokovacia stanica a vypínač napájania pre moduly Quest, Nod-3, nosník Z1 a transportné lode, ktoré sa k nemu pripájajú cez Germoadapter-3;
  • "mólo"- kotviaci prístav určený na kotvenie ruských „Progress“ a „Sojuz“; nainštalovaný na module Zvezda;
  • GSP- vonkajšie skladovacie plošiny: tri vonkajšie beztlakové plošiny určené výhradne na skladovanie tovaru a zariadení;
  • Farmy- integrovaná priehradová konštrukcia, na ktorej prvkoch sú inštalované solárne panely, radiátorové panely a diaľkové manipulátory. Je určený aj na nehermetické skladovanie tovaru a rôznych zariadení;
  • "Canadarm2", alebo "Mobile Service System" - kanadský systém diaľkových manipulátorov, slúžiacich ako hlavný nástroj na vykladanie dopravných lodí a presun externých zariadení;
  • "dexter"- kanadský systém dvoch diaľkových manipulátorov, slúžiacich na presun zariadení umiestnených mimo stanice;
  • "quest"- špecializovaný modul brány určený pre výstupy kozmonautov a astronautov do kozmu s možnosťou predbežnej desaturácie (vymývanie dusíka z ľudskej krvi);
  • "harmónia"- spojovací modul, ktorý funguje ako dokovacia stanica a vypínač elektriny pre troch vedeckých laboratóriách a pripojiť sa k nemu prostredníctvom transportných lodí Hermoadapter-2. Obsahuje ďalšie systémy na podporu života;
  • "Columbus"- európsky laboratórny modul, v ktorom sú okrem vedeckého vybavenia inštalované sieťové prepínače (huby), ktoré zabezpečujú komunikáciu medzi počítačovým vybavením stanice. Pripojený k modulu "Harmony";
  • "osud"- Americký laboratórny modul spojený s modulom "Harmony";
  • "kibo"- Japonský laboratórny modul, pozostávajúci z troch oddelení a jedného hlavného diaľkového manipulátora. Najväčší modul stanice. Určené na vykonávanie fyzikálnych, biologických, biotechnologických a iných vedeckých experimentov v hermetických a nehermetických podmienkach. Navyše vďaka špeciálnemu dizajnu umožňuje neplánované experimenty. Pripojený k modulu "Harmony";

Pozorovacia kupola ISS.

  • "Dome"- priehľadná vyhliadková kupola. Jeho sedem okien (najväčšie má priemer 80 cm) slúži na experimenty, pozorovanie vesmíru a pristavovanie kozmických lodí, ako aj ovládací panel pre hlavný diaľkový manipulátor stanice. Miesto odpočinku pre členov posádky. Navrhnuté a vyrobené Európskou vesmírnou agentúrou. Inštalované na uzlovom module Pokoj;
  • TSP- štyri nepretlakové plošiny upevnené na nosníkoch 3 a 4, určené na umiestnenie vybavenia potrebného na vykonávanie vedeckých experimentov vo vákuu. Zabezpečujú spracovanie a prenos experimentálnych výsledkov cez vysokorýchlostné kanály do stanice.
  • Uzavretý multifunkčný modul- sklad na skladovanie nákladu, pripojený k dokovacej stanici nadir modulu Destiny.

Okrem vyššie uvedených komponentov existujú tri nákladné moduly: Leonardo, Rafael a Donatello, ktoré sa pravidelne dodávajú na obežnú dráhu, aby vybavili ISS potrebným vedeckým vybavením a ďalším nákladom. Moduly so spoločným názvom "Viacúčelový napájací modul", boli dodané v nákladnom priestore raketoplánov a pripojené k modulu Unity. Prerobený modul Leonardo je súčasťou modulov stanice od marca 2011 pod názvom „Permanent Multipurpose Module“ (PMM).

Napájanie stanice

ISS v roku 2001. Viditeľné sú solárne panely modulov Zarya a Zvezda, ako aj priehradová konštrukcia P6 s americkými solárnymi panelmi.

Jediným zdrojom elektrickej energie pre ISS je svetlo, z ktorého sa solárne panely stanice premieňajú na elektrinu.

Ruský segment ISS využíva konštantný tlak 28 voltov, podobné tým, ktoré sa používajú na raketoplánoch a kozmických lodiach Sojuz. Elektrina je generovaná priamo solárnymi panelmi modulov Zarya a Zvezda a môže byť prenášaná aj z amerického segmentu do ruského cez menič napätia ARCU ( Jednotka prevodníka z Ameriky na Rusko) a v opačnom smere cez menič napätia RACU ( Jednotka prevodníka z Ruska na Ameriku).

Pôvodne sa plánovalo, že stanica bude zásobovaná elektrinou pomocou ruského modulu Platformy pre vedu a energiu (NEP). Po katastrofe raketoplánu Columbia však došlo k revízii programu montáže stanice a letového poriadku raketoplánu. Okrem iného odmietli dodať a namontovať aj NEP, takže v r tento moment väčšinu elektriny vyrábajú solárne panely v americkom sektore.

V segmente USA sú solárne panely usporiadané nasledovne: dva flexibilné, skladacie solárne panely tvoria takzvané solárne krídlo ( Krídlo solárneho poľa, SAW), sú na priehradových konštrukciách stanice umiestnené celkovo štyri páry takýchto krídel. Každé krídlo je 35 m dlhé a 11,6 m široké a má úžitkovú plochu 298 m², pričom generuje celkový výkon až 32,8 kW. Solárne panely generujú primárne jednosmerné napätie 115 až 173 voltov, ktoré je potom pomocou jednotiek DDCU (angl. Jednotka prevodníka jednosmerného prúdu na jednosmerný prúd ), sa transformuje na sekundárne stabilizované jednosmerné napätie 124 voltov. Toto stabilizované napätie sa priamo používa na napájanie elektrického zariadenia amerického segmentu stanice.

Solárne pole na ISS

Stanica urobí jednu obrátku okolo Zeme za 90 minút a približne polovicu tohto času strávi v tieni Zeme, kde nefungujú solárne panely. Potom jej napájanie pochádza z vyrovnávacích niklovo-vodíkových batérií, ktoré sa dobíjajú, keď sa ISS vráti späť slnečné svetlo. Životnosť batérií je 6,5 roka, predpokladá sa, že počas životnosti stanice budú niekoľkokrát vymenené. Prvá výmena batérie bola vykonaná na segmente P6 počas kozmonautov počas letu raketoplánu Endeavour STS-127 v júli 2009.

o normálnych podmienkach solárne polia v americkom sektore sledujú Slnko, aby maximalizovali výrobu energie. Solárne panely sú nasmerované k Slnku pomocou pohonov Alpha a Beta. Stanica má dva pohony Alpha, ktoré otáčajú niekoľko sekcií so solárnymi panelmi naraz okolo pozdĺžnej osi priehradových konštrukcií: prvý pohon otáča sekcie z P4 na P6, druhý - z S4 na S6. Každé krídlo solárnej batérie má vlastný pohon Beta, ktorý zabezpečuje otáčanie krídla voči jeho pozdĺžnej osi.

Keď je ISS v tieni Zeme, solárne panely sa prepnú do režimu Night Glider ( Angličtina) („Režim nočného plánovania“), pričom sa otáčajú okrajom v smere jazdy, aby sa znížil odpor atmosféry, ktorá je prítomná v nadmorskej výške stanice.

Komunikačné prostriedky

Prenos telemetrie a výmena vedeckých údajov medzi stanicou a Riadiacim centrom misie sa uskutočňuje pomocou rádiovej komunikácie. Okrem toho sa rádiová komunikácia používa počas stretnutí a dokovacích operácií, používa sa na audio a video komunikáciu medzi členmi posádky a so špecialistami na riadenie letu na Zemi, ako aj s príbuznými a priateľmi astronautov. ISS je teda vybavená internými a externými viacúčelovými komunikačnými systémami.

Ruský segment ISS komunikuje priamo so Zemou pomocou rádiovej antény Lira nainštalovanej na module Zvezda. "Lira" umožňuje používať satelitný dátový prenosový systém "Luch". Tento systém slúžil na komunikáciu so stanicou Mir, no v 90. rokoch chátral a v súčasnosti sa nevyužíva. Luch-5A bol spustený v roku 2012 s cieľom obnoviť prevádzkyschopnosť systému. V máji 2014 3 polyfunkčné vesmírny systém relé "Luch" - "Luch-5A", "Luch-5B" a "Luch-5V". V roku 2014 sa plánuje inštalácia špecializovaného účastníckeho zariadenia na ruskom segmente stanice.

Ďalší ruský komunikačný systém Voskhod-M zabezpečuje telefonickú komunikáciu medzi modulmi Zvezda, Zarya, Pirs, Poisk a americkým segmentom, ako aj rádiovú komunikáciu VHF s pozemnými riadiacimi strediskami pomocou externých antén.modul „Star“.

V americkom segmente sa pre komunikáciu v pásme S (prenos zvuku) a pásme K u (prenos zvuku, videa, dát) používajú dva samostatné systémy umiestnené na nosníku Z1. Rádiové signály z týchto systémov sú prenášané do amerických geostacionárnych satelitov TDRSS, čo umožňuje udržiavať takmer nepretržitý kontakt s riadiacim strediskom misie v Houstone. Údaje z Canadarm2, európskeho modulu Columbus a japonského Kibo sú presmerované cez tieto dva komunikačné systémy, americký systém Dátové prenosy TDRSS časom doplní európsky satelitný systém (EDRS) a podobný japonský. Komunikácia medzi modulmi prebieha cez internú digitálnu bezdrôtovú sieť.

Počas vesmírnych výstupov kozmonauti používajú VHF vysielač s rozsahom decimetrov. Rádiovú komunikáciu VHF využívajú aj počas pristávania alebo odpájania kozmické lode Sojuz, Progress, HTV, ATV a Space Shuttle (hoci raketoplány využívajú aj vysielače v pásme S a Ku cez TDRSS). S jeho pomocou tieto kozmické lode dostávajú príkazy z riadiaceho centra misie alebo od členov posádky ISS. Automatické kozmické lode sú vybavené vlastnými komunikačnými prostriedkami. Takže lode ATV používajú počas stretnutia a pristávania špecializovaný systém. Bezdotykové komunikačné zariadenie (PCE), ktorého výbava sa nachádza na štvorkolke a na module Zvezda. Komunikácia prebieha cez dva úplne nezávislé rádiové kanály v pásme S. PCE začne fungovať od relatívneho rozsahu približne 30 kilometrov a po pripojení ATV k ISS sa vypne a prepne na interakciu cez palubnú zbernicu MIL-STD-1553. Na presné určenie vzájomnej polohy ATV a ISS sa používa systém laserových diaľkomerov inštalovaných na ATV, čo umožňuje presné dokovanie so stanicou.

Stanica je vybavená približne stovkou notebookov ThinkPad od IBM a Lenovo, modely A31 a T61P, na ktorých beží Debian GNU/Linux. Ide o bežné sériové počítače, ktoré sú však upravené pre použitie v podmienkach ISS, najmä majú prerobené konektory, chladiaci systém, zohľadňujú 28V napätie používané na stanici a spĺňajú aj bezpečnostné požiadavky. pre prácu v nulovej gravitácii. Od januára 2010 je na stanici organizovaný priamy prístup na internet pre americký segment. Počítače na palube ISS sú pripojené cez Wi-Fi do bezdrôtovej siete a sú pripojené k Zemi rýchlosťou 3 Mbps pre sťahovanie a 10 Mbps pre sťahovanie, čo je porovnateľné s domácim ADSL pripojením.

Kúpeľňa pre astronautov

Toaleta na OS je určená pre mužov aj ženy, vyzerá úplne rovnako ako na Zemi, má však množstvo dizajnových prvkov. Záchodová misa je vybavená fixátormi na nohy a držiakmi na boky, sú v nej namontované výkonné vzduchové pumpy. Kozmonaut je pripevnený špeciálnym pružinovým uzáverom k záchodovej doske, následne zapne výkonný ventilátor a otvorí sací otvor, kadiaľ prúd vzduchu unáša všetok odpad.

Na ISS je vzduch z toaliet nevyhnutne filtrovaný, aby sa odstránili baktérie a zápach predtým, ako sa dostane do obytných priestorov.

Skleník pre astronautov

Čerstvá zelenina pestovaná v mikrogravitácii je oficiálne prvýkrát v ponuke na Medzinárodnej vesmírnej stanici. 10. augusta 2015 astronauti ochutnajú šalát zozbieraný z orbitálnej plantáže Veggie. Mnohé mediálne publikácie uviedli, že astronauti po prvýkrát vyskúšali svoje vlastné vypestované jedlo, ale tento experiment bola vykonaná na stanici Mir.

Vedecký výskum

Jedným z hlavných cieľov pri vytváraní ISS bola možnosť vykonávať na stanici experimenty, ktoré si vyžadujú jedinečné podmienky. vesmírny let: mikrogravitácia, vákuum, kozmické žiarenie neutlmené zemskou atmosférou. Medzi hlavné oblasti výskumu patrí biológia (vrátane biomedicínskeho výskumu a biotechnológie), fyzika (vrátane fyziky tekutín, vedy o materiáloch a kvantová fyzika), astronómia, kozmológia a meteorológia. Výskum sa uskutočňuje pomocou vedeckých zariadení, ktoré sa nachádzajú najmä v špecializovaných vedeckých moduloch-laboratóriách, časť zariadení pre experimenty vyžadujúce vákuum je upevnená mimo stanice, mimo jej hermetického objemu.

Vedecké moduly ISS

V súčasnosti (január 2012) má stanica tri špeciálne vedecké moduly – americké laboratórium Destiny, spustené vo februári 2001, európsky výskumný modul Columbus, dodaný na stanicu vo februári 2008, a japonský výskumný modul Kibo“. Európsky výskumný modul je vybavený 10 stojanmi, v ktorých sú inštalované prístroje pre výskum v rôznych oblastiach vedy. Niektoré stojany sú špecializované a vybavené na výskum v biológii, biomedicíne a fyzike tekutín. Ostatné stojany sú univerzálne, v ktorých sa vybavenie môže meniť v závislosti od vykonávaných experimentov.

Japonský výskumný modul „Kibo“ pozostáva z niekoľkých častí, ktoré boli postupne dodané a zmontované na obežnú dráhu. Prvá priehradka modulu Kibo je utesnená experimentálno-transportná priehradka (angl. Modul logistiky experimentu JEM – tlaková sekcia ) bol dodaný na stanicu v marci 2008, počas letu raketoplánu Endeavour STS-123. Posledná časť modulu Kibo bola k stanici pripojená v júli 2009, keď raketoplán dopravil na ISS deravý experimentálny transportný priestor. Modul logistiky experimentu, Netlaková sekcia ).

Rusko má na orbitálnej stanici dva „malé výskumné moduly“ (MRM) – „Poisk“ a „Rassvet“. Plánuje sa aj dodanie multifunkčného laboratórneho modulu (MLM) Nauka na obežnú dráhu. Dokončiť vedecké príležitosti iba ten druhý bude mať, množstvo vedeckého vybavenia umiestneného na dvoch MRM je minimálne.

Spoločné pokusy

Medzinárodný charakter projektu ISS umožňuje spoločné vedecké experimenty. Takúto spoluprácu najviac rozvíjajú európske a ruské vedecké inštitúcie pod záštitou ESA a Federálnej vesmírnej agentúry Ruska. Známymi príkladmi takejto spolupráce sú experiment Plasma Crystal, venovaný fyzike prachovej plazmy, realizovaný Inštitútom pre fyziku mimozemšťanov Spoločnosti Maxa Plancka, Inštitútom pre vysoké teploty a Inštitútom pre problémy. chemická fyzika RAS, ako aj množstvo ďalších vedeckých inštitúcií v Rusku a Nemecku, medicínsky a biologický experiment „Matryoshka-R“, v ktorom sa pomocou figurín zisťuje absorbovaná dávka ionizujúceho žiarenia – ekvivalenty biologických objektov vytvorených v Ústave Biomedicínske problémy Ruskej akadémie vied a Kolínskeho inštitútu kozmickej medicíny.

Ruská strana je tiež kontraktorom pre zmluvné experimenty ESA a Japan Aerospace Exploration Agency. Napríklad ruskí kozmonauti testovali robotiku experimentálny systém ROKVISS (angličtina) Overenie robotických komponentov na ISS- testovanie robotických komponentov na ISS), vyvinuté v Inštitúte robotiky a mechatroniky so sídlom vo Weslingu pri Mníchove v Nemecku.

rusistika

Porovnanie medzi horením sviečky na Zemi (vľavo) a v mikrogravitácii na ISS (vpravo)

V roku 1995 bola vyhlásená súťaž medzi ruskými vedeckými a vzdelávacie inštitúcie, priemyselné organizácie vykonávať vedecký výskum na ruskom segmente ISS. V jedenástich hlavných oblastiach výskumu bolo prijatých 406 žiadostí od osemdesiatich organizácií. Po vyhodnotení technickej realizovateľnosti týchto aplikácií odborníkmi RSC Energia bol v roku 1999 prijatý Dlhodobý program aplikovaného výskumu a experimentov plánovaných na ruskom segmente ISS. Program schválili prezident RAS Yu. S. Osipov a generálny riaditeľ Ruskej agentúry pre letectvo a vesmír (teraz FKA) Yu. N. Koptev. Prvý výskum na ruskom segmente ISS odštartovala prvá expedícia s ľudskou posádkou v roku 2000. Podľa pôvodného projektu ISS mala spustiť dva veľké ruské výskumné moduly (RM). Elektrinu potrebnú na vedecké experimenty mala zabezpečiť Platforma pre vedu a energiu (NEP). Kvôli nedostatočnému financovaniu a oneskoreniam pri výstavbe ISS však boli všetky tieto plány zrušené v prospech vybudovania jedného vedeckého modulu, ktorý si nevyžadoval veľké náklady a dodatočnú orbitálnu infraštruktúru. Významná časť výskumu realizovaného Ruskom na ISS je zmluvná alebo spoločná so zahraničnými partnermi.

V súčasnosti na ISS prebiehajú rôzne lekárske, biologické a fyzikálne štúdie.

Výskum v americkom segmente

Vírus Epstein-Barrovej zobrazený technikou farbenia fluorescenčnou protilátkou

Spojené štáty americké uskutočňujú rozsiahly výskumný program na ISS. Mnohé z týchto experimentov sú pokračovaním výskumu uskutočneného počas letov raketoplánov s modulmi Spacelab a v rámci spoločného programu Mir-Shuttle s Ruskom. Príkladom je štúdium patogenity jedného z pôvodcov herpesu, vírusu Epstein-Barrovej. Podľa štatistík je 90% dospelej populácie USA nositeľmi latentnej formy tohto vírusu. V podmienkach kozmického letu je práca oslabená imunitný systém, vírus sa môže reaktivovať a spôsobiť ochorenie člena posádky. Experimenty na štúdium vírusu boli spustené na lete raketoplánu STS-108.

Európske štúdiá

Solárne observatórium inštalované na module Columbus

Európsky vedecký modul Columbus má 10 unified Payload Rack (ISPR), hoci niektoré z nich sa po dohode použijú v experimentoch NASA. Pre potreby ESA sú v regáloch inštalované nasledovné vedecké zariadenia: laboratórium Biolab pre biologické experimenty, Laboratórium pre výskum tekutín v oblasti fyziky tekutín, Európske fyziologické moduly pre experimenty vo fyziológii, ako aj Európsky Zásuvkový stojan, ktorý obsahuje zariadenie na vykonávanie experimentov s kryštalizáciou proteínov (PCDF).

Počas STS-122 boli nainštalované aj externé experimentálne zariadenia pre modul Columbus: vzdialená platforma pre technologické experimenty EuTEF a slnečné observatórium SOLAR. Plánuje sa pridanie externého laboratória na testovanie všeobecnej teórie relativity a teórie strún Atomic Clock Ensemble in Space.

Japonské štúdiá

Program výskumu realizovaný na module Kibo zahŕňa štúdium procesov globálne otepľovanie na Zemi, ozónovú vrstvu a povrchovú dezertifikáciu, pričom vedie astronomický výskum v oblasti röntgenového žiarenia.

Plánujú sa experimenty na vytvorenie veľkých a identických proteínových kryštálov, ktoré sú navrhnuté tak, aby pomohli pochopiť mechanizmy ochorenia a vyvinúť nové spôsoby liečby. Okrem toho sa bude skúmať vplyv mikrogravitácie a žiarenia na rastliny, zvieratá a ľudí, ako aj experimenty v oblasti robotiky, komunikácií a energetiky.

V apríli 2009 japonský astronaut Koichi Wakata vykonal na ISS sériu experimentov, ktoré boli vybrané z tých, ktoré navrhli bežní občania. Astronaut sa pokúsil "plávať" v nulovej gravitácii pomocou rôzne štýly vrátane plazenia a motýľa. Žiadny z nich však astronautovi nedovolil ani len pohnúť. Astronaut zároveň poznamenal, že ani veľké listy papiera nebudú schopné napraviť situáciu, ak sa zdvihnú a použijú ako plutvy. Okrem toho chcel astronaut žonglovať s futbalovou loptou, no ani tento pokus bol neúspešný. Medzitým sa Japoncom podarilo poslať loptu späť nad hlavu. Po dokončení týchto cvičení, ktoré boli ťažké v podmienkach beztiaže, sa japonský astronaut pokúsil robiť kliky z podlahy a rotácie na mieste.

Bezpečnostné otázky

vesmírny odpad

Diera v paneli chladiča raketoplánu Endeavour STS-118, ktorá vznikla v dôsledku kolízie s vesmírnym odpadom

Keďže sa ISS pohybuje na relatívne nízkej obežnej dráhe, existuje určitá šanca, že stanica alebo astronauti idúci do vesmíru sa zrazia s takzvaným vesmírnym odpadom. To môže zahŕňať veľké objekty, ako sú raketové stupne alebo nefunkčné satelity, ako aj malé objekty, ako je troska z raketových motorov na tuhé palivo, chladivá z reaktorových elektrární satelitov série US-A a iné látky a predmety. Okrem toho existuje ďalšia hrozba prírodné predmety ako mikrometeority. Berúc do úvahy vesmírne rýchlosti na obežnej dráhe môžu aj malé predmety spôsobiť vážne poškodenie stanice a v prípade možného zásahu do kozmonautovho skafandru môžu mikrometeority prepichnúť kožu a spôsobiť odtlakovanie.

Aby sa predišlo takýmto kolíziám, zo Zeme sa vykonáva diaľkové monitorovanie pohybu prvkov vesmírneho odpadu. Ak sa takáto hrozba objaví v určitej vzdialenosti od ISS, posádka stanice dostane varovanie. Astronauti budú mať dostatok času na aktiváciu systému DAM (angl. Manéver vyhýbania sa troskám), čo je skupina pohonných systémov z ruského segmentu stanice. Zahrnuté motory sú schopné dostať stanicu na vyššiu obežnú dráhu a vyhnúť sa tak kolízii. V prípade neskorého zistenia nebezpečenstva je posádka evakuovaná z ISS na kozmickej lodi Sojuz. Čiastočné evakuácie sa uskutočnili na ISS: 6. apríla 2003, 13. marca 2009, 29. júna 2011 a 24. marca 2012.

Žiarenie

Pri absencii masívnej atmosférickej vrstvy, ktorá obklopuje ľudí na Zemi, sú astronauti na ISS vystavení intenzívnejšiemu žiareniu z neustálych prúdov kozmického žiarenia. V deň dostanú členovia posádky dávku žiarenia vo výške asi 1 milisievert, čo je približne ekvivalent ožiarenia človeka na Zemi za rok. To vedie k zvýšené riziko vznik zhubných nádorov u astronautov, ako aj oslabenie imunitného systému. K šíreniu môže prispieť slabá imunita astronautov infekčné choroby medzi členmi posádky, najmä v stiesnenom priestore stanice. Napriek pokusom o zlepšenie mechanizmov radiačnej ochrany, úroveň prieniku žiarenia sa v porovnaní s ukazovateľmi predchádzajúcich štúdií vykonaných napríklad na stanici Mir príliš nezmenila.

Povrch telesa stanice

Počas inšpekcie vonkajšieho plášťa ISS sa na odrezkoch z povrchu trupu a okien našli stopy životnej aktivity morského planktónu. Potvrdila tiež potrebu vyčistiť vonkajší povrch stanice z dôvodu kontaminácie z prevádzky motorov kozmických lodí.

Právna stránka

Právne roviny

Právny rámec upravujúci právne aspekty vesmírna stanica, je rôznorodá a pozostáva zo štyroch úrovní:

  • najprv Úroveň, ktorá stanovuje práva a povinnosti zmluvných strán, je Medzivládna dohoda o vesmírnej stanici (angl. Medzivládna dohoda o vesmírnej stanici - IGA ), ktorú podpísalo 29. januára 1998 pätnásť vlád krajín participujúcich na projekte – Kanady, Ruska, USA, Japonska a jedenástich štátov – členov Európskej vesmírnej agentúry (Belgicko, Veľká Británia, Nemecko, Dánsko, Španielsko, Taliansko). Holandsko, Nórsko, Francúzsko, Švajčiarsko a Švédsko). Článok č. 1 tohto dokumentu odráža hlavné princípy projektu:
    Táto dohoda je dlhodobá medzinárodná štruktúra založená na úprimnom partnerstve pre komplexný návrh, vytvorenie, vývoj a dlhodobé využívanie obývateľnej civilnej vesmírnej stanice na mierové účely v súlade s medzinárodným právom.. Pri písaní tejto dohody sa vychádzalo z „Zmluvy o kozmickom priestore“ z roku 1967, ktorú ratifikovalo 98 krajín a ktorá prevzala tradície medzinárodného námorného a leteckého práva.
  • Prvá úroveň partnerstva je základ druhý úrovni s názvom Memorandum of Understanding. Memorandum o porozumení - MOU s ). Tieto memorandá sú dohody medzi NASA a štyrmi národnými vesmírnymi agentúrami: FKA, ESA, CSA a JAXA. Memorandá slúžia na viac Detailný popisúlohy a zodpovednosti partnerov. Navyše, keďže NASA je menovaným manažérom ISS, neexistujú žiadne samostatné dohody priamo medzi týmito organizáciami, iba s NASA.
  • Komu tretí úrovne zahŕňa barterové zmluvy alebo dohody o právach a povinnostiach zmluvných strán – napríklad obchodná dohoda z roku 2005 medzi NASA a Roskosmosom, ktorej podmienky obsahovali jedno garantované miesto pre americký astronaut ako súčasť posádok kozmickej lode Sojuz a časť využiteľného objemu pre americký náklad na bezpilotnej lodi Progress.
  • Po štvrté právnej rovine dopĺňa druhé („Memorandum“) a zavádza z neho niektoré ustanovenia. Príkladom toho je Kódex správania ISS, ktorý bol vypracovaný v súlade s odsekom 2 článku 11 Memoranda o porozumení – právne aspekty podriadenosti, disciplíny, fyzickej a informačnej bezpečnosti a iných pravidiel správania sa členov posádky.

Štruktúra vlastníctva

Vlastnícka štruktúra projektu neposkytuje svojim členom jasne stanovené percento využívania vesmírnej stanice ako celku. Podľa článku 5 (IGA) sa právomoc každého z partnerov vzťahuje len na zložku stanice, ktorá je u neho zaregistrovaná, a porušenie zákona zo strany personálu v stanici alebo mimo nej podlieha konaniu podľa zákonov krajiny, ktorej sú občanmi.

Interiér modulu Zarya

Dohody o využívaní zdrojov ISS sú zložitejšie. Ruské moduly Zvezda, Pirs, Poisk a Rassvet vyrába a vlastní Rusko, ktoré si vyhradzuje právo ich používať. V Rusku sa bude vyrábať aj plánovaný modul Nauka, ktorý bude zaradený do ruského segmentu stanice. Modul Zarya bol skonštruovaný a dodaný na obežnú dráhu ruská strana, ale bolo to urobené z prostriedkov USA, takže NASA je dnes oficiálne vlastníkom tohto modulu. Pre využitie ruských modulov a ďalších komponentov závodu využívajú partnerské krajiny dodatočné bilaterálne dohody (spomínaná tretia a štvrtá právna úroveň).

Zvyšok stanice (americké moduly, európske a japonské moduly, priehradové konštrukcie, solárne panely a dve robotické ramená), ako sa zmluvné strany dohodli, sa používa takto (v % z celkového času používania):

  1. Columbus – 51 % pre ESA, 49 % pre NASA
  2. Kibo – 51 % pre JAXA, 49 % pre NASA
  3. Destiny – 100 % pre NASA

Navyše:

  • NASA dokáže využiť 100 % plochy krovu;
  • Na základe dohody s NASA môže KSA použiť 2,3 % akýchkoľvek neruských komponentov;
  • Hodiny posádky, solárna energia, využitie doplnkových služieb (nakládka/vykládka, komunikačné služby) – 76,6 % pre NASA, 12,8 % pre JAXA, 8,3 % pre ESA a 2,3 % pre CSA.

Právne kuriozity

Pred letom prvého vesmírneho turistu neexistoval žiadny regulačný rámec upravujúci vesmírne lety jednotlivcov. Po lete Dennisa Tita však krajiny podieľajúce sa na projekte vyvinuli „Princípy“, ktoré definovali taký pojem ako „Vesmírny turista“ a všetky potrebné otázky pre jeho účasť na návštevnej expedícii. Takýto let je možný najmä v prípade špecifických zdravotných podmienok, psychickej spôsobilosti, jazykovej prípravy a peňažného príspevku.

V rovnakej situácii sa ocitli aj účastníci prvej kozmickej svadby v roku 2003, keďže takýto postup tiež neupravovali žiadne zákony.

V roku 2000 prešla republikánska väčšina v Kongrese USA legislatívny akt o nešírení raketových a jadrových technológií v Iráne, podľa ktorého najmä Spojené štáty americké nemohli od Ruska nakupovať zariadenia a lode potrebné na stavbu ISS. Avšak po katastrofe v Kolumbii, keď osud projektu závisel od ruských Sojuz a Progress, bol 26. októbra 2005 Kongres nútený schváliť zmeny tohto zákona, ktoré odstránili všetky obmedzenia týkajúce sa „akýchkoľvek protokolov, dohôd, memorand o porozumení“. alebo zmluvy“ do 1. januára 2012.

náklady

Náklady na výstavbu a prevádzku ISS sa ukázali byť oveľa vyššie, ako sa pôvodne plánovalo. V roku 2005 by sa podľa ESA od začiatku prác na projekte ISS koncom 80. rokov až po jeho vtedy očakávané ukončenie v roku 2010 minulo približne 100 miliárd eur (157 miliárd dolárov alebo 65,3 miliárd libier šterlingov). Dnes je však koniec prevádzky stanice plánovaný najskôr na rok 2024, v súvislosti s požiadavkou Spojených štátov amerických, ktoré nie sú schopné odkotviť svoj segment a pokračovať v lietaní, sa celkové náklady všetkých krajín odhadujú na väčšie množstvo.

Je veľmi ťažké urobiť presný odhad nákladov na ISS. Nie je napríklad jasné, ako by sa mal vypočítať príspevok Ruska, keďže Roskosmos používa výrazne nižšie dolárové sadzby ako ostatní partneri.

NASA

Ak hodnotím projekt ako celok, väčšinu nákladov NASA tvorí komplex činností na letovú podporu a náklady na riadenie ISS. Inými slovami, bežné prevádzkové náklady tvoria oveľa väčšiu časť vynaložených prostriedkov ako náklady na stavbu modulov a iných zariadení staníc, výcviku posádok a zásobovacích lodí.

Výdavky NASA na ISS, s výnimkou nákladov na „Shuttle“, v rokoch 1994 až 2005 dosiahli 25,6 miliardy dolárov. Na roky 2005 a 2006 to bolo približne 1,8 miliardy dolárov. Predpokladá sa, že ročné náklady sa zvýšia a do roku 2010 budú predstavovať 2,3 miliardy dolárov. Potom do ukončenia projektu v roku 2016 nie je plánované žiadne zvyšovanie, len inflačné úpravy.

Rozdelenie rozpočtových prostriedkov

Ak chcete odhadnúť podrobný zoznam nákladov NASA, napríklad podľa dokumentu zverejneného vesmírnou agentúrou, ktorý ukazuje, ako bolo rozdelených 1,8 miliardy dolárov, ktoré NASA minula na ISS v roku 2005:

  • Výskum a vývoj nových zariadení- 70 miliónov dolárov. Táto suma bola vynaložená najmä na vývoj navigačných systémov, informačnú podporu a technológie na zníženie znečistenia životného prostredia.
  • Letová podpora- 800 miliónov dolárov. Táto suma zahŕňala: na loď, 125 miliónov USD na softvér, výstupy do vesmíru, dodávku a údržbu raketoplánov; ďalších 150 miliónov dolárov bolo vynaložených na samotné lety, avioniku a komunikačné systémy medzi posádkou a loďou; zvyšných 250 miliónov dolárov išlo na celkové riadenie ISS.
  • Štarty lodí a expedície- 125 miliónov dolárov na predštartové operácie na kozmodróme; 25 miliónov dolárov na lekársku starostlivosť; 300 miliónov dolárov vynaložených na riadenie expedícií;
  • Letový program- 350 miliónov dolárov bolo vynaložených na vývoj letového programu, na údržbu pozemného vybavenia a softvéru, na zaručený a neprerušovaný prístup k ISS.
  • Náklad a posádky- 140 miliónov dolárov bolo vynaložených na nákup spotrebného materiálu, ako aj na schopnosť dodávať náklad a posádky na ruských lodiach Progress a Sojuz.

Náklady na "Shuttle" ako súčasť nákladov na ISS

Z desiatich plánovaných letov zostávajúcich do roku 2010 iba jeden STS-125 neletel na stanicu, ale na Hubblov teleskop.

Ako už bolo spomenuté vyššie, NASA nezahŕňa náklady na program Shuttle do hlavných nákladov stanice, pretože ho umiestňuje ako samostatný projekt, nezávislý od ISS. Od decembra 1998 do mája 2008 však len 5 z 31 letov raketoplánov nebolo spojených s ISS a z jedenástich plánovaných letov zostávajúcich do roku 2011 iba jeden STS-125 neletel k stanici, ale k Hubblovmu teleskopu. .

Približné náklady programu Shuttle na dodávku nákladu a posádok astronautov na ISS boli:

  • S výnimkou prvého letu v roku 1998 v rokoch 1999 až 2005 náklady dosiahli 24 miliárd dolárov. Z toho 20 % (5 miliárd dolárov) nepatrilo ISS. Celkovo - 19 miliárd dolárov.
  • Od roku 1996 do roku 2006 sa plánovalo minúť 20,5 miliardy dolárov na lety v rámci programu Shuttle. Ak od tejto sumy odpočítame let k Hubbleovmu teleskopu, tak nakoniec dostaneme rovnakých 19 miliárd dolárov.

To znamená, že celkové náklady NASA na lety na ISS za celé obdobie budú približne 38 miliárd dolárov.

Celkom

Ak vezmeme do úvahy plány NASA na obdobie rokov 2011 až 2017, ako prvé priblíženie môžete získať priemerné ročné výdavky vo výške 2,5 miliardy dolárov, čo v nasledujúcom období od roku 2006 do roku 2017 bude 27,5 miliardy dolárov. Keď poznáme náklady na ISS od roku 1994 do roku 2005 (25,6 miliardy dolárov) a pripočítame tieto čísla, dostaneme konečný oficiálny výsledok – 53 miliárd dolárov.

Treba tiež poznamenať, že tento údaj nezahŕňa značné náklady na projektovanie vesmírnej stanice Freedom v 80. a začiatkom 90. rokov 20. storočia a účasť na spoločný program s Ruskom o využívaní stanice Mir v 90. rokoch. Vývoj týchto dvoch projektov sa opakovane využíval pri stavbe ISS. Vzhľadom na túto okolnosť a vzhľadom na situáciu s raketoplánom môžeme hovoriť o viac ako dvojnásobnom zvýšení výšky výdavkov v porovnaní s oficiálnym - viac ako 100 miliárd dolárov len pre Spojené štáty.

ESA

ESA vypočítala, že jej príspevok za 15 rokov existencie projektu bude 9 miliárd eur. Náklady na modul Columbus presahujú 1,4 miliardy eur (približne 2,1 miliardy USD), vrátane nákladov na pozemné riadiace a veliteľské systémy. Celkové náklady na vývoj ATV sú približne 1,35 miliardy eur, pričom každý štart Ariane 5 stojí približne 150 miliónov eur.

JAXA

Vývoj japonského experimentálneho modulu, hlavného príspevku JAXA k ISS, stál približne 325 miliárd jenov (približne 2,8 miliardy dolárov).

V roku 2005 JAXA pridelila programu ISS približne 40 miliárd jenov (350 miliónov USD). Ročné prevádzkové náklady japonského experimentálneho modulu sú 350 – 400 miliónov dolárov. Okrem toho sa JAXA zaviazala vyvinúť a spustiť dopravu loď H-II, ktorej celkové náklady na vývoj sú 1 miliarda dolárov. 24 rokov účasti spoločnosti JAXA v programe ISS presiahne 10 miliárd dolárov.

Roskosmos

Na ISS sa míňa značná časť rozpočtu Ruskej vesmírnej agentúry. Od roku 1998 sa uskutočnili viac ako tri desiatky letov Sojuz a Progress, ktoré sa od roku 2003 stali hlavným prostriedkom prepravy nákladu a posádky. Otázka, koľko Rusko míňa na stanici (v amerických dolároch), však nie je jednoduchá. V súčasnosti existujúce 2 moduly na obežnej dráhe sú derivátmi programu Mir, a preto sú náklady na ich vývoj oveľa nižšie ako v prípade iných modulov, avšak v tomto prípade, analogicky s americkými programami, treba brať do úvahy aj náklady. na vývoj zodpovedajúcich modulov stanice „Svet“. Výmenný kurz medzi rubľom a dolárom navyše dostatočne nevyhodnocuje skutočné náklady Roskosmosu.

Hrubú predstavu o výdavkoch ruskej vesmírnej agentúry na ISS možno získať na základe jej celkového rozpočtu, ktorý na rok 2005 predstavoval 25,156 miliardy rubľov, na rok 2006 - 31,806, na rok 2007 - 32,985 a na rok 2008 - 37,044 miliardy rubľov. . Stanica tak minie menej ako jeden a pol miliardy amerických dolárov ročne.

CSA

Kanadská vesmírna agentúra (CSA) je pravidelným partnerom NASA, a tak je Kanada zapojená do projektu ISS od samého začiatku. Príspevok Kanady k ISS je trojdielny mobilný systém údržby: pohyblivý vozík, ktorý sa môže pohybovať pozdĺž nosnej konštrukcie stanice, robotické rameno Canadianarm2, ktoré je namontované na pohyblivom vozíku, a špeciálny Dextre ). Odhaduje sa, že za posledných 20 rokov CSA investovala do stanice 1,4 miliardy kanadských dolárov.

Kritika

V celej histórii astronautiky je ISS najdrahším a možno aj najkritizovanejším vesmírnym projektom. Kritiku možno považovať za konštruktívnu alebo krátkozrakú, môžete s ňou súhlasiť alebo ju spochybňovať, ale jedno zostáva nezmenené: stanica existuje, svojou existenciou dokazuje možnosť medzinárodnej spolupráce vo vesmíre a zvyšuje skúsenosti ľudstva z vesmírnych letov. , vynakladajúc na to obrovské finančné prostriedky.

Kritika v USA

Kritika americkej strany smeruje najmä k nákladom na projekt, ktoré už teraz presahujú 100 miliárd dolárov. Kritici tvrdia, že tieto peniaze by sa dali lepšie minúť na robotické (bezpilotné) lety na prieskum blízkeho vesmíru alebo na vedecké projekty na Zemi. V reakcii na niektoré z týchto kritík obhajcovia pilotovaných vesmírnych letov tvrdia, že kritika projektu ISS je krátkozraká a že výnosy z pilotovaných vesmírnych letov a vesmírneho prieskumu sú v miliardách dolárov. Jerome Schnee Jerome Schnee) odhadol nepriamy ekonomický príspevok z dodatočných príjmov spojených s prieskumom vesmíru, ktorý je mnohonásobne vyšší ako počiatočná verejná investícia.

Vo vyhlásení Federácie amerických vedcov sa však tvrdí, že miera návratnosti dodatočných príjmov NASA je v skutočnosti veľmi nízka, s výnimkou vývoja v letectve, ktorý zlepšuje predaj lietadiel.

Kritici tiež tvrdia, že NASA často uvádza vývoj tretích strán ako súčasť svojich úspechov, nápadov a vývoja, ktoré mohla použiť NASA, ale mali iné predpoklady nezávislé od astronautiky. Skutočne užitočné a výnosné sú podľa kritikov bezpilotné navigačné, meteorologické a vojenské satelity. NASA široko propaguje dodatočný príjem z výstavby ISS a z práce na nej vykonanej, pričom oficiálny zoznam výdavkov NASA je oveľa výstižnejší a tajnejší.

Kritika vedeckých aspektov

Podľa profesora Roberta Parka Robert Park), väčšina plánovaných vedeckých štúdií nemá vysokú prioritu. Poznamenáva, že cieľom väčšiny vedeckých výskumov v r vesmírne laboratórium- viesť ich v mikrogravitácii, čo sa dá v podmienkach urobiť oveľa lacnejšie umelý stav beztiaže(v špeciálnom lietadle, ktoré letí po parabolickej trajektórii (angl. lietadlá so zníženou gravitáciou).

Plány na výstavbu ISS zahŕňali dva vedecky náročné komponenty – magnetický alfa spektrometer a centrifúgový modul (angl. Modul ubytovania centrifúgy) . Prvá funguje na stanici od mája 2011. Od vytvorenia druhej sa upustilo v roku 2005 v dôsledku korekcie plánov na dostavbu stanice. Vysoko špecializované experimenty vykonávané na ISS sú obmedzené nedostatkom vhodného vybavenia. Napríklad v roku 2007 sa uskutočnili štúdie o vplyve faktorov kozmického letu na ľudské telo, ktoré ovplyvňujú také aspekty, ako sú obličkové kamene, cirkadiánny rytmus(cyklickosť biologické procesy v ľudskom tele), vplyv kozmického žiarenia na nervový systém osoba. Kritici tvrdia, že tieto štúdie majú malú praktickú hodnotu, keďže realitou dnešného prieskumu blízkeho vesmíru sú bezpilotné automatické lode.

Kritika technických aspektov

Americký novinár Jeff Faust Jeff Fous) tvrdili, že údržba ISS si vyžaduje príliš veľa drahých a nebezpečných EVA. Pacifická astronomická spoločnosť Astronomická spoločnosť Pacifiku Na začiatku návrhu ISS sa upozorňovalo na príliš vysoký sklon obežnej dráhy stanice. Ak to pre ruskú stranu zníži náklady na štarty, potom pre americkú stranu je to nerentabilné. Ústupok, ktorý NASA urobila Ruskej federácii kvôli geografická poloha Bajkonur v konečnom dôsledku môže zvýšiť celkové náklady na výstavbu ISS.

Vo všeobecnosti sa diskusia v americkej spoločnosti redukuje na diskusiu o výhodnosti ISS z hľadiska kozmonautiky vo viac široký zmysel. Niektorí obhajcovia tvrdia, že okrem vedeckej hodnoty je to - dôležitý príklad Medzinárodná spolupráca. Iní tvrdia, že ISS by potenciálne mohla pri správnom úsilí a vylepšeniach dosiahnuť, aby lety do az boli ekonomickejšie. Tak či onak, hlavným bodom odpovedí na kritiku je, že je ťažké očakávať od ISS serióznu finančnú návratnosť, skôr jej hlavným účelom je stať sa súčasťou globálneho rozšírenia kapacít vesmírnych letov.

Kritika v Rusku

V Rusku je kritika projektu ISS namierená najmä proti nečinnému postoju vedenia Federálnej vesmírnej agentúry (FCA) pri obrane ruských záujmov v porovnaní s americkou stranou, ktorá vždy prísne sleduje dodržiavanie svojich národných priorít.

Novinári sa napríklad pýtajú, prečo Rusko nemá svoj vlastný projekt orbitálnej stanice a prečo sa peniaze míňajú na projekt vlastnený Spojenými štátmi, pričom tieto prostriedky by sa mohli minúť na úplne ruský rozvoj. Dôvodom sú podľa šéfa RSC Energia Vitalija Lopotu zmluvné záväzky a nedostatok financií.

Stanica Mir sa svojho času stala pre USA zdrojom skúseností s výstavbou a výskumom na ISS a po nehode v Kolumbii ruská strana, konajúci v súlade s dohodou o partnerstve s NASA a dodávajúci vybavenie a astronautov na stanicu, takmer sám zachránil projekt. Tieto okolnosti vyvolali kritiku FKA za podcenenie úlohy Ruska v projekte. Napríklad kozmonautka Svetlana Savitskaya poznamenala, že vedecký a technický prínos Ruska k projektu je podceňovaný a že dohoda o partnerstve s NASA nespĺňa národné záujmy v r. finančný plán. Treba však vziať do úvahy, že na začiatku výstavby ISS bol ruský segment stanice platený Spojenými štátmi, poskytujúcimi úvery, ktorých splatenie je zabezpečené až do konca výstavby.

Keď už hovoríme o vedecko-technickej zložke, novinári zaznamenávajú malý počet nových vedeckých experimentov vykonaných na stanici, čo vysvetľuje skutočnosťou, že Rusko nemôže vyrobiť a dodať potrebné vybavenie na stanicu pre nedostatok financií. Podľa Vitalija Lopotu sa situácia zmení, keď sa súčasná prítomnosť astronautov na ISS zvýši na 6 ľudí. Okrem toho sa vynárajú otázky týkajúce sa bezpečnostných opatrení v situáciách vyššej moci možná strata ovládanie stanice. Nebezpečenstvo teda podľa kozmonauta Valeryho Ryumina spočíva v tom, že ak sa ISS stane nekontrolovateľnou, nemôže byť zaplavená ako stanica Mir.

Podľa kritikov, medzinárodnej spolupráce, čo je jeden z hlavných argumentov v prospech stanice, je tiež kontroverzný. Ako viete, podľa podmienok medzinárodnej dohody sa od krajín nevyžaduje, aby ich zdieľali vedecký vývoj na stanici. V rokoch 2006-2007 sa medzi Ruskom a Spojenými štátmi americkými neuskutočnili žiadne nové veľké iniciatívy vo vesmírnej sfére. veľkých projektov. Okrem toho sa mnohí domnievajú, že krajina, ktorá do svojho projektu investuje 75 % svojich prostriedkov, pravdepodobne nebude chcieť mať plnohodnotného partnera, ktorý je navyše jej hlavným konkurentom v boji o vedúcu pozíciu vo vesmíre.

Kritizuje sa aj to, že značné finančné prostriedky smerovali do programov s posádkou a množstvo programov na vývoj satelitov zlyhalo. V roku 2003 Jurij Koptev v rozhovore pre Izvestia uviedol, že s cieľom potešiť ISS vesmírna veda opäť zostala na Zemi.

V rokoch 2014-2015 medzi odborníkmi ruského kozmického priemyslu existoval názor, že praktické výhody orbitálnych staníc sa už vyčerpali - za posledné desaťročia sa uskutočnili všetky prakticky dôležité výskumy a objavy:

Éra orbitálnych staníc, ktorá sa začala v roku 1971, bude minulosťou. Odborníci nevidia praktickú výhodnosť ani v údržbe ISS po roku 2020, ani vo vytvorení alternatívnej stanice s podobnou funkcionalitou: „Vedecké a praktické výnosy z ruského segmentu ISS sú výrazne nižšie ako z orbitálnych komplexov Saljut-7 a Mir. Vedecké organizácie nemajú záujem opakovať to, čo už bolo urobené.

Časopis "Expert" 2015

Dodávkové lode

Posádky pilotovaných expedícií na ISS sú dodávané na stanicu v Sojuz TPK podľa „krátkej“ šesťhodinovej schémy. Do marca 2013 lietali všetky expedície na ISS podľa dvojdňového plánu. Do júla 2011 sa v rámci programu Space Shuttle realizovala dodávka tovaru, inštalácia prvkov stanice, rotácia posádok, až do ukončenia programu.

Tabuľka letov všetkých pilotovaných a dopravných kozmických lodí na ISS:

Loď Typ Agentúra/krajina Prvý let Posledný let Celkový počet letov