उसी के साथ लघुगणक। लघुगणक के गुण और उनके समाधान के उदाहरण

अनुदेश

दिए गए को लिखिए लघुगणक व्यंजक. यदि व्यंजक 10 के लघुगणक का उपयोग करता है, तो उसका अंकन छोटा हो जाता है और ऐसा दिखता है: lg b दशमलव लघुगणक है। यदि लघुगणक का आधार संख्या e है, तो व्यंजक लिखा जाता है: ln b प्राकृतिक लघुगणक है। यह समझा जाता है कि किसी का परिणाम वह शक्ति है जिसके लिए संख्या b प्राप्त करने के लिए आधार संख्या को ऊपर उठाना होगा।

दो कार्यों का योग ज्ञात करते समय, आपको बस उन्हें एक-एक करके अलग करना होगा, और परिणाम जोड़ना होगा: (u+v)" = u"+v";

दो कार्यों के उत्पाद के व्युत्पन्न का पता लगाते समय, पहले फ़ंक्शन के व्युत्पन्न को दूसरे से गुणा करना और दूसरे फ़ंक्शन के व्युत्पन्न को पहले फ़ंक्शन से गुणा करना आवश्यक है: (u*v)" = u"* वी+वी"*यू;

दो कार्यों के भागफल के व्युत्पन्न को खोजने के लिए, यह आवश्यक है, भाजक फ़ंक्शन द्वारा गुणा किए गए लाभांश के व्युत्पन्न के उत्पाद से, भाजक के व्युत्पन्न के उत्पाद को भाजक फ़ंक्शन द्वारा गुणा किया जाए, और विभाजित किया जाए यह सब भाजक फलन द्वारा चुकता किया जाता है। (यू/वी)" = (यू"*वी-वी"*यू)/वी^2;

अगर दिया गया है जटिल कार्य, तो के व्युत्पन्न को गुणा करना आवश्यक है आंतरिक कार्यऔर बाहरी का व्युत्पन्न। चलो y=u(v(x)), फिर y"(x)=y"(u)*v"(x)।

ऊपर प्राप्त का उपयोग करके, आप लगभग किसी भी फ़ंक्शन को अलग कर सकते हैं। तो आइए कुछ उदाहरण देखें:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *एक्स));
एक बिंदु पर व्युत्पन्न की गणना के लिए कार्य भी हैं। फ़ंक्शन y=e^(x^2+6x+5) दिए जाने दें, आपको बिंदु x=1 पर फ़ंक्शन का मान ज्ञात करना होगा।
1) फलन का अवकलज ज्ञात कीजिए: y"=e^(x^2-6x+5)*(2*x +6)।

2) फ़ंक्शन के मान की गणना करें दिया गया बिंदु y"(1)=8*e^0=8

संबंधित वीडियो

मददगार सलाह

प्राथमिक व्युत्पत्तियों की तालिका जानें। इससे समय की काफी बचत होगी।

स्रोत:

  • निरंतर व्युत्पन्न

तो, इसमें क्या अंतर है तर्कसंगत समीकरणतर्कसंगत से? यदि अज्ञात चर चिह्न के नीचे है वर्गमूल, तो समीकरण को अपरिमेय माना जाता है।

अनुदेश

ऐसे समीकरणों को हल करने की मुख्य विधि दोनों भागों को ऊपर उठाने की विधि है समीकरणएक वर्ग में। हालांकि। यह स्वाभाविक है, पहला कदम संकेत से छुटकारा पाना है। तकनीकी रूप से, यह तरीका मुश्किल नहीं है, लेकिन कभी-कभी यह परेशानी का कारण बन सकता है। उदाहरण के लिए, समीकरण v(2x-5)=v(4x-7)। दोनों पक्षों का वर्ग करने पर, आपको 2x-5=4x-7 प्राप्त होता है। इस तरह के समीकरण को हल करना मुश्किल नहीं है; एक्स = 1। लेकिन नंबर 1 नहीं दिया जाएगा समीकरण. क्यों? समीकरण में इकाई को x मान के स्थान पर रखें। और दाएँ और बाएँ पक्षों में ऐसे भाव होंगे जिनका कोई मतलब नहीं है, अर्थात्। ऐसा मान वर्गमूल के लिए मान्य नहीं है। इसलिए 1 एक बाहरी मूल है, और इसलिए दिया गया समीकरणकोई जड़ नहीं है।

इसलिए, अपरिमेय समीकरणइसके दोनों भागों को वर्ग करने की विधि का उपयोग करके हल किया जाता है। और समीकरण को हल करने के बाद, काट देना जरूरी है बाहरी जड़ें. ऐसा करने के लिए, पाए गए जड़ों को मूल समीकरण में बदलें।

एक और पर विचार करें।
2x+vx-3=0
बेशक, इस समीकरण को पिछले समीकरण के समान समीकरण का उपयोग करके हल किया जा सकता है। स्थानांतरण यौगिक समीकरण, जिसका वर्गमूल नहीं है, दाईं ओरऔर फिर स्क्वायरिंग विधि का उपयोग करें। परिणामी परिमेय समीकरण और जड़ों को हल करें। लेकिन एक और, अधिक सुरुचिपूर्ण। एक नया चर दर्ज करें; वीएक्स = वाई। तदनुसार, आपको 2y2+y-3=0 जैसा समीकरण मिलेगा। यानी सामान्य द्विघात समीकरण. इसकी जड़ें खोजें; y1=1 और y2=-3/2. अगला, दो हल करें समीकरणवीएक्स = 1; वीएक्स \u003d -3/2। दूसरे समीकरण की कोई जड़ नहीं है, पहले से हम पाते हैं कि x=1. जड़ों की जांच करने की आवश्यकता के बारे में मत भूलना।

सर्वसमिका को सुलझाना बहुत आसान है। यह करने की आवश्यकता है समान परिवर्तनलक्ष्य तक पहुंचने तक। इस प्रकार, सरल . की सहायता से अंकगणितीय आपरेशनसकार्य हल हो जाएगा।

आपको चाहिये होगा

  • - कागज़;
  • - कलम।

अनुदेश

इस तरह के सबसे सरल परिवर्तन बीजीय संक्षिप्त गुणन (जैसे योग का वर्ग (अंतर), वर्गों का अंतर, योग (अंतर), योग का घन (अंतर)) हैं। इसके अलावा, कई हैं त्रिकोणमितीय सूत्र, जो अनिवार्य रूप से एक ही पहचान हैं।

दरअसल, दो पदों के योग का वर्ग वर्ग के बराबर हैपहले जोड़ का पहले और दूसरे के गुणनफल से दुगुना जोड़ दूसरे का वर्ग, यानी (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^ 2=a^2+2ab +b^2.

दोनों को सरल बनाएं

समाधान के सामान्य सिद्धांत

पाठ्यपुस्तक दोहराएं गणितीय विश्लेषणया उच्च गणित, जो एक निश्चित अभिन्न है। जैसा कि आप जानते हैं, समाधान समाकलन परिभाषित करेंएक फ़ंक्शन है जिसका व्युत्पन्न एक इंटीग्रैंड देगा। यह समारोहआदिम कहा जाता है। इस सिद्धांत के अनुसार, बुनियादी इंटीग्रल का निर्माण किया जाता है।
प्रकार द्वारा परिभाषित करें एकीकृत, में से कौन सा टेबल इंटीग्रलमें फिट बैठता है इस मामले में. इसे तुरंत निर्धारित करना हमेशा संभव नहीं होता है। अक्सर, एकीकृत को सरल बनाने के लिए कई परिवर्तनों के बाद ही सारणीबद्ध रूप ध्यान देने योग्य हो जाता है।

परिवर्तनीय प्रतिस्थापन विधि

अगर इंटीग्रैंड है त्रिकोणमितीय फलन, जिसका तर्क कुछ बहुपद है, तो चर प्रतिस्थापन विधि का उपयोग करने का प्रयास करें। ऐसा करने के लिए, समाकलन के तर्क में बहुपद को कुछ नए चर से बदलें। नए और पुराने चर के अनुपात के आधार पर, एकीकरण की नई सीमा निर्धारित करें। भेदभाव दी गई अभिव्यक्तिमें नया अंतर खोजें। इस प्रकार आप प्राप्त करेंगे नया प्रकारपूर्व अभिन्न, करीब या किसी भी सारणी के अनुरूप।

दूसरी तरह के इंटीग्रल का समाधान

यदि इंटीग्रल दूसरी तरह का इंटीग्रल है, इंटीग्रैंड का सदिश रूप है, तो आपको इन इंटीग्रल से स्केलर वाले में जाने के लिए नियमों का उपयोग करना होगा। ऐसा ही एक नियम है ओस्ट्रोग्रैडस्की-गॉस अनुपात। यह कानूनकुछ वेक्टर फ़ंक्शन के रोटर प्रवाह से किसी दिए गए वेक्टर फ़ील्ड के विचलन पर ट्रिपल इंटीग्रल में जाने की अनुमति देता है।

एकीकरण की सीमा का प्रतिस्थापन

प्रतिअवकलन खोजने के बाद, एकीकरण की सीमाओं को प्रतिस्थापित करना आवश्यक है। सबसे पहले, ऊपरी सीमा के मूल्य को प्रतिपदार्थ के लिए व्यंजक में प्रतिस्थापित करें। आपको कुछ नंबर मिलेगा। इसके बाद, परिणामी संख्या से दूसरी संख्या घटाएं, परिणामी निचली सीमा प्रतिअवकलन के लिए। यदि एकीकरण सीमाओं में से एक अनंत है, तो इसे में प्रतिस्थापित करना विरोधी व्युत्पन्न कार्ययह आवश्यक है कि सीमा तक जाकर यह पता लगाया जाए कि अभिव्यक्ति किस ओर जाती है।
यदि समाकल द्वि-आयामी या त्रि-आयामी है, तो आपको समाकलन की ज्यामितीय सीमाओं का प्रतिनिधित्व करना होगा ताकि आप समझ सकें कि समाकलन की गणना कैसे की जाती है। दरअसल, एक त्रि-आयामी अभिन्न के मामले में, एकीकरण की सीमाएं पूरे विमान हो सकती हैं जो मात्रा को एकीकृत करने के लिए सीमित करती हैं।

    चलो साथ - साथ शुरू करते हैं एकता के लघुगणक के गुण. इसका सूत्रीकरण इस प्रकार है: एकता का लघुगणक शून्य, अर्थात, लॉग ए 1=0किसी के लिए a>0 , a≠1 । प्रमाण सीधा है: चूंकि a 0 =1 किसी भी a के लिए जो उपरोक्त शर्तों a>0 और a≠1 को संतुष्ट करता है, तो सिद्ध समानता लॉग a 1=0 तुरंत लघुगणक की परिभाषा से अनुसरण करता है।

    आइए मानी गई संपत्ति के आवेदन के उदाहरण दें: लॉग 3 1=0 , lg1=0 तथा ।

    आइए अगली संपत्ति पर चलते हैं: किसी संख्या का लघुगणक आधार के बराबर, एक के बराबर , अर्थात, लॉग ए = 1 a>0 , a≠1 के लिए। वास्तव में, चूंकि a 1 =a किसी भी a के लिए है, तो लघुगणक की परिभाषा के अनुसार a a=1 लॉग करें।

    लघुगणक के इस गुण का उपयोग करने के उदाहरण हैं log 5 5=1 , log 5.6 5.6 और lne=1 ।

    उदाहरण के लिए, लघुगणक 2 2 7 =7 , लघुगणक 10 -4 = -4 और .

    दो . के गुणनफल का लघुगणक सकारात्मक संख्या एक्स और वाई उत्पाद के बराबर हैइन संख्याओं के लघुगणक: log a (x y)=log a x+log a y, a>0 , a≠1 । आइए हम उत्पाद के लघुगणक के गुण को सिद्ध करें। डिग्री के गुणों के कारण a log a x+log a y =a log a x a log a y, और चूंकि मुख्य लघुगणकीय पहचान द्वारा a log a x =x और a log a y =y , तो a log a x a log a y =x y । इस प्रकार, a log a x+log a y =x y , जहां से आवश्यक समानता लघुगणक की परिभाषा के अनुसार होती है।

    आइए उत्पाद के लघुगणक की संपत्ति का उपयोग करने के उदाहरण दिखाएं: लॉग 5 (2 3)=लॉग 5 2+लॉग 5 3 और .

    गुणनफल लघुगणक गुण को धनात्मक संख्याओं x 1, x 2, …, x n की एक परिमित संख्या n के गुणनफल के रूप में सामान्यीकृत किया जा सकता है लॉग ए (x 1 x 2 ... x n)= लॉग a x 1 + लॉग a x 2 +…+ लॉग a x n . यह समानता आसानी से सिद्ध हो जाती है।

    उदाहरण के लिए, किसी उत्पाद के प्राकृतिक लघुगणक को तीन . के योग से बदला जा सकता है प्राकृतिक लघुगणकसंख्या 4 , ई , और .

    दो धनात्मक संख्याओं के भागफल का लघुगणक x और y इन संख्याओं के लघुगणक के बीच के अंतर के बराबर हैं। भागफल लघुगणक गुण प्रपत्र के एक सूत्र से मेल खाता है, जहाँ a>0 , a≠1 , x और y कुछ धनात्मक संख्याएँ हैं। इस सूत्र की वैधता उत्पाद के लघुगणक के सूत्र की तरह सिद्ध होती है: चूँकि , फिर लघुगणक की परिभाषा के अनुसार।

    लघुगणक की इस संपत्ति का उपयोग करने का एक उदाहरण यहां दिया गया है: .

    चलिए आगे बढ़ते हैं डिग्री के लघुगणक की संपत्ति. एक डिग्री का लघुगणक घातांक के गुणनफल और इस डिग्री के आधार के मापांक के लघुगणक के बराबर होता है। हम डिग्री के लघुगणक के इस गुण को सूत्र के रूप में लिखते हैं: लॉग ए बी पी = पी लॉग ए |बी|, जहां a>0 , a≠1 , b और p ऐसी संख्याएं हैं कि b p की डिग्री समझ में आती है और b p >0 ।

    हम पहले इस गुण को धनात्मक b के लिए सिद्ध करते हैं। मुख्य लघुगणकीय पहचानहमें संख्या b को a log a b के रूप में निरूपित करने की अनुमति देता है, फिर b p =(a log a b) p, और परिणामी व्यंजक, power गुण के आधार पर, p log a b के बराबर होता है। इसलिए हम समानता b p =a p log a b पर पहुंचते हैं, जिससे, लघुगणक की परिभाषा से, हम यह निष्कर्ष निकालते हैं कि log a b p =p log a b ।

    यह इस गुण को ऋणात्मक b के लिए सिद्ध करना शेष है। यहाँ हम ध्यान दें कि व्यंजक लॉग a b p ऋणात्मक b के लिए केवल सम घातांक p के लिए अर्थ रखता है (क्योंकि घात b p का मान शून्य से अधिक होना चाहिए, अन्यथा लघुगणक का कोई अर्थ नहीं होगा), और इस स्थिति में b p =|b| पी । फिर बी पी == बी | p =(a log a |b|) p =a p log a |b|, कहाँ से लॉग a b p =p log a |b| .

    उदाहरण के लिए, और ln(-3) 4 =4 ln|-3|=4 ln3 ।

    यह पिछली संपत्ति से इस प्रकार है जड़ से लघुगणक की संपत्ति: nवें अंश के मूल का लघुगणक भिन्न 1/n और लघुगणक के गुणनफल के बराबर होता है कट्टरपंथी अभिव्यक्ति, अर्थात, , जहां a>0 , a≠1 , n - प्राकृतिक संख्या, एक से बड़ा, b>0 ।

    सबूत समानता (देखें) पर आधारित है, जो किसी भी सकारात्मक b के लिए मान्य है, और डिग्री के लघुगणक की संपत्ति: .

    इस संपत्ति का उपयोग करने का एक उदाहरण यहां दिया गया है: .

    चलिए अब साबित करते हैं लघुगणक के नए आधार में रूपांतरण सूत्रतरह . ऐसा करने के लिए, यह समानता लॉग c b=log a b log c a की वैधता को साबित करने के लिए पर्याप्त है। मूल लघुगणकीय पहचान हमें संख्या b को लॉग a b के रूप में निरूपित करने की अनुमति देती है, फिर log c b=log c a log a b के रूप में। यह डिग्री के लघुगणक की संपत्ति का उपयोग करने के लिए बनी हुई है: लॉग सी ए लॉग ए बी = लॉग ए बी लॉग सी ए. इस प्रकार, समानता लॉग c b=log a b log c a सिद्ध होता है, जिसका अर्थ है कि लघुगणक के नए आधार में संक्रमण का सूत्र भी सिद्ध होता है।

    आइए लघुगणक के इस गुण को लागू करने के कुछ उदाहरण दिखाते हैं: और .

    एक नए आधार पर जाने का सूत्र आपको "सुविधाजनक" आधार वाले लघुगणक के साथ काम करने की अनुमति देता है। उदाहरण के लिए, इसकी मदद से आप प्राकृतिक पर स्विच कर सकते हैं या दशमलव लघुगणकताकि आप लघुगणक की तालिका से लघुगणक के मान की गणना कर सकें। लघुगणक के एक नए आधार में संक्रमण का सूत्र भी कुछ मामलों में मूल्य खोजने की अनुमति देता है दिया गया लघुगणकजब अन्य आधारों के साथ कुछ लघुगणक के मान ज्ञात होते हैं।

    अक्सर इस्तेमाल किया जाता है विशेष मामलाफॉर्म के c=b के लिए लघुगणक के एक नए आधार में संक्रमण के लिए सूत्र . यह दर्शाता है कि लॉग a b और लॉग b a – । उदाहरण के लिए, .

    अक्सर इस्तेमाल किया जाने वाला सूत्र है , जो लघुगणक मानों को खोजने के लिए उपयोगी है। अपने शब्दों की पुष्टि करने के लिए, हम दिखाएंगे कि फॉर्म के लॉगरिदम के मूल्य की गणना कैसे की जाती है। हमारे पास है . सूत्र सिद्ध करने के लिए यह लघुगणक के नए आधार के लिए संक्रमण सूत्र का उपयोग करने के लिए पर्याप्त है a: .

    यह लघुगणक के तुलनात्मक गुणों को साबित करने के लिए बनी हुई है।

    आइए हम सिद्ध करें कि किसी भी धनात्मक संख्या b 1 और b 2 , b 1 . के लिए लॉग a b 2 , और a>1 के लिए, असमानता लॉग a b 1

    अंत में, यह लघुगणक के प्रगणित गुणों में से अंतिम को सिद्ध करना बाकी है। हम स्वयं को इसके पहले भाग को सिद्ध करने तक ही सीमित रखते हैं, अर्थात हम यह सिद्ध करते हैं कि यदि a 1 >1 , a 2 >1 और a 1 1 सत्य है लॉग ए 1 बी>लॉग ए 2 बी। लघुगणक के इस गुण के शेष कथन इसी सिद्धांत से सिद्ध होते हैं।

    आइए विपरीत विधि का उपयोग करें। मान लीजिए कि a 1 >1 , a 2 >1 और a 1 . के लिए 1 log a 1 b≤log a 2 b सत्य है। लघुगणक के गुणों से, इन असमानताओं को फिर से लिखा जा सकता है और क्रमशः, और उनसे यह निम्नानुसार है कि लॉग बी ए 1 लॉग बी ए 2 और लॉग बी ए 1 लॉग बी ए 2, क्रमशः। फिर, समान आधारों वाली घातों के गुणों से, समानताएं b log b a 1 b log b a 2 और b log b a 1 ≥b log b a 2 को संतुष्ट किया जाना चाहिए, अर्थात a 1 a 2 । इस प्रकार, हम 1 . की स्थिति के विरोधाभास पर पहुंच गए हैं

ग्रंथ सूची।

  • कोलमोगोरोव ए.एन., अब्रामोव ए.एम., डुडनित्सिन यू.पी. और अन्य। बीजगणित और विश्लेषण की शुरुआत: सामान्य शैक्षिक संस्थानों के ग्रेड 10-11 के लिए एक पाठ्यपुस्तक।
  • गुसेव वी.ए., मोर्दकोविच ए.जी. गणित (तकनीकी स्कूलों के आवेदकों के लिए एक मैनुअल)।

हम लघुगणक का अध्ययन जारी रखते हैं। इस लेख में हम बात करेंगे लघुगणक की गणना, इस प्रक्रिया को कहा जाता है लोगारित्म. सबसे पहले, हम परिभाषा के अनुसार लघुगणक की गणना से निपटेंगे। इसके बाद, विचार करें कि लॉगरिदम के मूल्यों को उनके गुणों का उपयोग करके कैसे पाया जाता है। उसके बाद, हम अन्य लघुगणक के प्रारंभिक रूप से दिए गए मानों के माध्यम से लघुगणक की गणना पर ध्यान देंगे। अंत में, आइए जानें कि लघुगणक की तालिकाओं का उपयोग कैसे करें। संपूर्ण सिद्धांत विस्तृत समाधान के साथ उदाहरणों के साथ प्रदान किया गया है।

पृष्ठ नेविगेशन।

परिभाषा के अनुसार लघुगणक की गणना

सरलतम मामलों में, जल्दी और आसानी से प्रदर्शन करना संभव है परिभाषा के अनुसार लघुगणक ज्ञात करना. आइए विस्तार से देखें कि यह प्रक्रिया कैसे होती है।

इसका सार संख्या b को a c के रूप में निरूपित करना है, जहाँ से, लघुगणक की परिभाषा के अनुसार, संख्या c लघुगणक का मान है। अर्थात्, परिभाषा के अनुसार लघुगणक ज्ञात करना समानता की निम्नलिखित श्रृंखला से मेल खाता है: log a b=log a c =c ।

तो, लघुगणक की गणना, परिभाषा के अनुसार, ऐसी संख्या c खोजने के लिए नीचे आती है कि a c \u003d b, और संख्या c स्वयं लघुगणक का वांछित मान है।

पिछले पैराग्राफ की जानकारी को देखते हुए, जब लॉगरिदम के चिह्न के तहत संख्या लॉगरिदम के आधार के कुछ डिग्री द्वारा दी जाती है, तो आप तुरंत संकेत कर सकते हैं कि लॉगरिदम किसके बराबर है - यह एक्सपोनेंट के बराबर है। आइए उदाहरण दिखाते हैं।

उदाहरण।

log 2 2 −3 खोजें और e 5.3 का प्राकृत लघुगणक भी परिकलित करें।

फेसला।

लघुगणक की परिभाषा हमें तुरंत यह कहने की अनुमति देती है कि लघुगणक 2 2 −3 = −3 । वास्तव में, लघुगणक के चिह्न के नीचे की संख्या आधार 2 से −3 घात के बराबर होती है।

इसी तरह, हम दूसरा लघुगणक पाते हैं: lne 5.3 =5.3।

जवाब:

log 2 2 −3 = −3 और lne 5.3 =5.3 ।

यदि लॉगरिदम के चिन्ह के तहत संख्या b को लघुगणक के आधार की शक्ति के रूप में नहीं दिया गया है, तो आपको सावधानीपूर्वक विचार करने की आवश्यकता है कि क्या संख्या b का प्रतिनिधित्व a c के रूप में करना संभव है। अक्सर यह प्रतिनिधित्व काफी स्पष्ट होता है, खासकर जब लघुगणक के चिह्न के नीचे की संख्या 1, या 2, या 3 की शक्ति के आधार के बराबर होती है ...

उदाहरण।

लघुगणक की गणना करें लॉग 5 25 , और .

फेसला।

यह देखना आसान है कि 25=5 2 , यह आपको पहले लघुगणक की गणना करने की अनुमति देता है: log 5 25=log 5 5 2 =2 ।

हम दूसरे लघुगणक की गणना के लिए आगे बढ़ते हैं। एक संख्या को 7 की शक्ति के रूप में दर्शाया जा सकता है: (यदि आवश्यक हो तो देखें)। इसलिये, .

आइए तीसरे लघुगणक को निम्नलिखित रूप में फिर से लिखें। अब आप देख सकते हैं कि , जहां से हम यह निष्कर्ष निकालते हैं कि . इसलिए, लघुगणक की परिभाषा के अनुसार .

संक्षेप में, समाधान इस प्रकार लिखा जा सकता है:

जवाब:

लॉग 5 25=2 , और .

जब एक पर्याप्त रूप से बड़ी प्राकृतिक संख्या लॉगरिदम के संकेत के तहत होती है, तो इसे प्रमुख कारकों में विघटित करने में कोई दिक्कत नहीं होती है। यह अक्सर लघुगणक के आधार की कुछ शक्ति के रूप में ऐसी संख्या का प्रतिनिधित्व करने में मदद करता है, और इसलिए, परिभाषा के अनुसार इस लघुगणक की गणना करने के लिए।

उदाहरण।

लघुगणक का मान ज्ञात कीजिए।

फेसला।

लघुगणक के कुछ गुण आपको लघुगणक के मान को तुरंत निर्दिष्ट करने की अनुमति देते हैं। इन गुणों में एक के लघुगणक का गुण और आधार के बराबर किसी संख्या के लघुगणक का गुण शामिल होता है: log 1 1=log a a 0 =0 और log a=log a 1 =1 । अर्थात्, जब संख्या 1 या संख्या a, लघुगणक के चिह्न के नीचे, लघुगणक के आधार के बराबर होती है, तो इन मामलों में लघुगणक क्रमशः 0 और 1 होते हैं।

उदाहरण।

लघुगणक और lg10 क्या हैं?

फेसला।

चूँकि , यह लघुगणक की परिभाषा का अनुसरण करता है .

दूसरे उदाहरण में, लघुगणक के चिह्न के नीचे की संख्या 10 इसके आधार के साथ मेल खाती है, इसलिए दस का दशमलव लघुगणक एक के बराबर है, अर्थात lg10=lg10 1 =1 ।

जवाब:

और एलजी 10 = 1।

ध्यान दें कि परिभाषा के अनुसार लघुगणक की गणना (जिसकी हमने पिछले पैराग्राफ में चर्चा की थी) का तात्पर्य समानता लॉग a p =p के उपयोग से है, जो लघुगणक के गुणों में से एक है।

व्यवहार में, जब लघुगणक के चिह्न के नीचे की संख्या और लघुगणक के आधार को आसानी से किसी संख्या की शक्ति के रूप में दर्शाया जाता है, तो सूत्र का उपयोग करना बहुत सुविधाजनक होता है , जो लघुगणक के गुणों में से एक से मेल खाती है। इस सूत्र के उपयोग को दर्शाने वाले लघुगणक को खोजने के एक उदाहरण पर विचार करें।

उदाहरण।

के लघुगणक की गणना करें।

फेसला।

जवाब:

.

ऊपर वर्णित लघुगणक के गुण भी गणना में उपयोग किए जाते हैं, लेकिन हम इसके बारे में निम्नलिखित पैराग्राफ में बात करेंगे।

अन्य ज्ञात लघुगणक के संदर्भ में लघुगणक ढूँढना

इस अनुच्छेद की जानकारी उनकी गणना में लघुगणक के गुणों का उपयोग करने के विषय को जारी रखती है। लेकिन यहां मुख्य अंतर यह है कि लघुगणक के गुणों का उपयोग मूल लघुगणक को दूसरे लघुगणक के रूप में व्यक्त करने के लिए किया जाता है, जिसका मूल्य ज्ञात होता है। आइए स्पष्टीकरण के लिए एक उदाहरण लेते हैं। मान लें कि हम जानते हैं कि लॉग 2 3≈1.584963 , तो हम उदाहरण के लिए, लॉगरिदम के गुणों का उपयोग करके थोड़ा परिवर्तन करके लॉग 2 6 पा सकते हैं: लॉग 2 6=लॉग 2 (2 3)=लॉग 2 2+लॉग 2 3≈ 1+1,584963=2,584963 .

उपरोक्त उदाहरण में, हमारे लिए उत्पाद के लघुगणक की संपत्ति का उपयोग करना पर्याप्त था। हालांकि, दिए गए लोगों के संदर्भ में मूल लॉगरिदम की गणना करने के लिए आपको अक्सर लॉगरिदम के गुणों के व्यापक शस्त्रागार का उपयोग करना पड़ता है।

उदाहरण।

27 से आधार 60 के लघुगणक की गणना करें यदि यह ज्ञात हो कि लघुगणक 60 2=a और लघुगणक 60 5=b है।

फेसला।

तो हमें लॉग 60 27 खोजने की जरूरत है। यह देखना आसान है कि 27=3 3 , और मूल लघुगणक, डिग्री के लघुगणक के गुण के कारण, 3·log 60 3 के रूप में फिर से लिखा जा सकता है।

अब देखते हैं कि लॉग 60 3 को ज्ञात लघुगणक के रूप में कैसे व्यक्त किया जा सकता है। आधार के बराबर किसी संख्या के लघुगणक का गुण आपको समानता लॉग 60 60=1 लिखने की अनुमति देता है। दूसरी ओर, लघुगणक 60 60=log60(2 2 3 5)= लॉग 60 2 2 +लॉग 60 3+लॉग 60 5= 2 लॉग 60 2+लॉग 60 3+लॉग 60 5 . इस प्रकार, 2 लॉग 60 2+लॉग 60 3+लॉग 60 5=1. इसलिये, लॉग 60 3=1−2 लॉग 60 2−लॉग 60 5=1−2 a−b.

अंत में, हम मूल लघुगणक की गणना करते हैं: लघुगणक 60 27=3 लघुगणक 60 3= 3 (1−2 a−b)=3−6 a−3 b.

जवाब:

लॉग 60 27=3 (1−2 a−b)=3−6 a−3 b.

अलग-अलग, यह प्रपत्र के लघुगणक के एक नए आधार पर संक्रमण के सूत्र के अर्थ का उल्लेख करने योग्य है . यह आपको किसी भी आधार के साथ लघुगणक से एक विशिष्ट आधार के साथ लघुगणक में जाने की अनुमति देता है, जिसके मूल्य ज्ञात हैं या उन्हें खोजना संभव है। आमतौर पर, मूल लघुगणक से, संक्रमण सूत्र के अनुसार, वे आधार 2, ई या 10 में से किसी एक में लघुगणक पर स्विच करते हैं, क्योंकि इन आधारों के लिए लघुगणक की तालिकाएँ होती हैं जो एक निश्चित डिग्री के साथ उनके मूल्यों की गणना करने की अनुमति देती हैं। सटीकता का। अगले भाग में, हम दिखाएंगे कि यह कैसे किया जाता है।

लघुगणक की सारणी, उनका उपयोग

लघुगणक के मूल्यों की अनुमानित गणना के लिए, कोई उपयोग कर सकता है लघुगणक सारणी. सबसे अधिक इस्तेमाल किया जाने वाला आधार 2 लघुगणक तालिका, प्राकृतिक लघुगणक तालिका और दशमलव लघुगणक तालिका है। दशमलव संख्या प्रणाली में काम करते समय, आधार दस के लिए लघुगणक की एक तालिका का उपयोग करना सुविधाजनक होता है। इसकी सहायता से हम लघुगणक के मान ज्ञात करना सीखेंगे।










प्रस्तुत तालिका 1.000 से 9.999 (तीन दशमलव स्थानों के साथ) के दशमलव लघुगणक के मानों को खोजने के लिए, एक दस-हज़ारवें की सटीकता के साथ अनुमति देती है। हम एक विशिष्ट उदाहरण का उपयोग करके दशमलव लघुगणक की तालिका का उपयोग करके लघुगणक के मूल्य को खोजने के सिद्धांत का विश्लेषण करेंगे - यह स्पष्ट है। आइए खोजें lg1,256 ।

दशमलव लघुगणक की तालिका के बाएँ स्तंभ में हमें 1.256 संख्या के पहले दो अंक मिलते हैं, अर्थात्, हम 1.2 पाते हैं (यह संख्या स्पष्टता के लिए नीले रंग में परिक्रमा करती है)। संख्या 1.256 (संख्या 5) का तीसरा अंक दोहरी रेखा के बाईं ओर पहली या अंतिम पंक्ति में पाया जाता है (यह संख्या लाल रंग में परिक्रमा करती है)। मूल संख्या 1.256 (नंबर 6) का चौथा अंक दोहरी रेखा के दाईं ओर पहली या अंतिम पंक्ति में पाया जाता है (यह संख्या हरे रंग में परिक्रमा करती है)। अब हम चिह्नित पंक्ति और चिह्नित स्तंभों के चौराहे पर लघुगणक की तालिका के कक्षों में संख्याएँ पाते हैं (ये संख्याएँ नारंगी में हाइलाइट की गई हैं)। अंकित संख्याओं का योग दशमलव लघुगणक के चौथे दशमलव स्थान तक का वांछित मान देता है, अर्थात्, log1.236≈0.0969+0.0021=0.0990.

क्या उपरोक्त तालिका का उपयोग करके, दशमलव बिंदु के बाद तीन से अधिक अंकों वाली संख्याओं के दशमलव लघुगणक के मान ज्ञात करना और 1 से 9.999 तक की सीमा से आगे जाना संभव है? हाँ आप कर सकते हैं। आइए दिखाते हैं कि यह एक उदाहरण के साथ कैसे किया जाता है।

आइए lg102.76332 की गणना करें। सबसे पहले आपको लिखना होगा मानक रूप में संख्या: 102.76332=1.0276332 10 2। उसके बाद, मंटिसा को दशमलव के तीसरे स्थान तक गोल किया जाना चाहिए, हमारे पास 1.0276332 10 2 ≈1.028 10 2, जबकि मूल दशमलव लघुगणक परिणामी संख्या के लघुगणक के लगभग बराबर है, अर्थात, हम lg102.76332≈lg1.028·10 2 लेते हैं। अब लघुगणक के गुण लागू करें: एलजी1.028 10 2 =एलजी1.028+एलजी10 2 =एलजी1.028+2. अंत में, हम दशमलव लघुगणक की तालिका lg1.028≈0.0086+0.0034=0.012 के अनुसार लघुगणक lg1.028 का मान पाते हैं। नतीजतन, लघुगणक की गणना की पूरी प्रक्रिया इस तरह दिखती है: lg102.76332=lg1.0276332 10 2 lg1.028 10 2 = lg1.028+lg10 2 =lg1.028+2≈0.012+2=2.012.

अंत में, यह ध्यान देने योग्य है कि दशमलव लघुगणक की तालिका का उपयोग करके, आप किसी भी लघुगणक के अनुमानित मूल्य की गणना कर सकते हैं। ऐसा करने के लिए, दशमलव लघुगणक पर जाने, तालिका में उनके मान खोजने और शेष गणना करने के लिए संक्रमण सूत्र का उपयोग करना पर्याप्त है।

उदाहरण के लिए, आइए log 2 3 की गणना करें। लघुगणक के एक नए आधार में संक्रमण के सूत्र के अनुसार, हमारे पास . दशमलव लघुगणक की तालिका से हम lg3≈0.4771 और lg2≈0.3010 पाते हैं। इस प्रकार, .

ग्रंथ सूची।

  • कोलमोगोरोव ए.एन., अब्रामोव ए.एम., डुडनित्सिन यू.पी. और अन्य। बीजगणित और विश्लेषण की शुरुआत: सामान्य शैक्षिक संस्थानों के ग्रेड 10-11 के लिए एक पाठ्यपुस्तक।
  • गुसेव वी.ए., मोर्दकोविच ए.जी. गणित (तकनीकी स्कूलों के आवेदकों के लिए एक मैनुअल)।

जैसा कि आप जानते हैं, जब व्यंजकों को घातों से गुणा किया जाता है, तो उनके घातांक हमेशा जोड़ते हैं (a b * a c = a b + c)। यह गणितीय नियम आर्किमिडीज द्वारा प्राप्त किया गया था, और बाद में, 8 वीं शताब्दी में, गणितज्ञ विरासेन ने पूर्णांक संकेतकों की एक तालिका बनाई। यह वे थे जिन्होंने लघुगणक की आगे की खोज के लिए कार्य किया। इस फ़ंक्शन का उपयोग करने के उदाहरण लगभग हर जगह पाए जा सकते हैं जहां बोझिल गुणा को सरल जोड़ के लिए सरल बनाने की आवश्यकता होती है। यदि आप इस लेख को पढ़ने में 10 मिनट का समय लगाते हैं, तो हम आपको समझाएंगे कि लघुगणक क्या हैं और उनके साथ कैसे कार्य करें। सरल और सुलभ भाषा।

गणित में परिभाषा

लॉगरिदम निम्नलिखित रूप की अभिव्यक्ति है: लॉग ए बी = सी, यानी, किसी भी गैर-ऋणात्मक संख्या का लघुगणक (यानी कोई भी सकारात्मक) "बी" इसके आधार "ए" द्वारा "सी" की शक्ति माना जाता है। , जिससे आधार "ए" उठाया जाना चाहिए, ताकि अंत में "बी" मान प्राप्त हो। आइए उदाहरणों का उपयोग करते हुए लघुगणक का विश्लेषण करें, मान लें कि एक व्यंजक है लॉग 2 8. उत्तर कैसे खोजें? यह बहुत आसान है, आपको इतनी डिग्री ढूंढनी होगी कि 2 से आवश्यक डिग्री तक आपको 8 मिले। अपने दिमाग में कुछ गणना करने के बाद, हमें नंबर 3 मिलता है! और ठीक ही है, क्योंकि 2 का घात 3 उत्तर में 8 अंक देता है।

लघुगणक की किस्में

कई विद्यार्थियों और छात्रों के लिए, यह विषय जटिल और समझ से बाहर लगता है, लेकिन वास्तव में, लघुगणक इतने डरावने नहीं हैं, मुख्य बात यह है कि उनके सामान्य अर्थ को समझना और उनके गुणों और कुछ नियमों को याद रखना। लघुगणकीय व्यंजक तीन प्रकार के होते हैं:

  1. प्राकृतिक लघुगणक ln a, जहां आधार यूलर संख्या (e = 2.7) है।
  2. दशमलव a, जहाँ आधार 10 है।
  3. आधार a>1 से किसी भी संख्या b का लघुगणक।

उनमें से प्रत्येक को एक मानक तरीके से हल किया जाता है, जिसमें लॉगरिदमिक प्रमेयों का उपयोग करके सरलीकरण, कमी और बाद में एक लघुगणक में कमी शामिल है। लघुगणक के सही मान प्राप्त करने के लिए, व्यक्ति को उनके गुणों और उनके निर्णयों में क्रियाओं के क्रम को याद रखना चाहिए।

नियम और कुछ प्रतिबंध

गणित में, कई नियम-सीमाएँ हैं जिन्हें एक स्वयंसिद्ध के रूप में स्वीकार किया जाता है, अर्थात वे चर्चा के अधीन नहीं हैं और सत्य हैं। उदाहरण के लिए, संख्याओं को शून्य से विभाजित करना असंभव है, और ऋणात्मक संख्याओं से सम मूल लेना भी असंभव है। लॉगरिदम के भी अपने नियम होते हैं, जिनका पालन करके आप आसानी से सीख सकते हैं कि लंबी और विशाल लॉगरिदमिक अभिव्यक्तियों के साथ भी कैसे काम किया जाए:

  • आधार "ए" हमेशा शून्य से बड़ा होना चाहिए, और साथ ही 1 के बराबर नहीं होना चाहिए, अन्यथा अभिव्यक्ति अपना अर्थ खो देगी, क्योंकि "1" और "0" किसी भी डिग्री तक हमेशा उनके मूल्यों के बराबर होते हैं;
  • यदि a > 0, तो a b > 0, यह पता चलता है कि "c" शून्य से बड़ा होना चाहिए।

लघुगणक कैसे हल करें?

उदाहरण के लिए, समीकरण 10 x \u003d 100 का उत्तर खोजने का कार्य दिया गया है। यह बहुत आसान है, आपको दस की संख्या बढ़ाकर ऐसी शक्ति चुनने की आवश्यकता है जिससे हमें 100 मिले। यह निश्चित रूप से 10 2 है। \u003d 100.

अब इस व्यंजक को लघुगणक के रूप में निरूपित करते हैं। हमें लॉग 10 100 = 2 मिलता है। लॉगरिदम को हल करते समय, सभी क्रियाएं व्यावहारिक रूप से उस डिग्री को खोजने के लिए अभिसरण करती हैं जिस पर किसी दिए गए नंबर को प्राप्त करने के लिए लॉगरिदम का आधार दर्ज किया जाना चाहिए।

किसी अज्ञात डिग्री के मूल्य को सटीक रूप से निर्धारित करने के लिए, आपको यह सीखना होगा कि डिग्री की तालिका के साथ कैसे काम किया जाए। यह इस तरह दिख रहा है:

जैसा कि आप देख सकते हैं, कुछ घातांक का सहज रूप से अनुमान लगाया जा सकता है यदि आपके पास तकनीकी मानसिकता और गुणन तालिका का ज्ञान है। हालांकि, बड़े मूल्यों के लिए पावर टेबल की आवश्यकता होगी। इसका उपयोग उनके द्वारा भी किया जा सकता है जो जटिल गणितीय विषयों में कुछ भी नहीं समझते हैं। बाएँ स्तंभ में संख्याएँ (आधार a) हैं, संख्याओं की शीर्ष पंक्ति घात c का मान है, जिससे संख्या a उठाई जाती है। कोशिकाओं में प्रतिच्छेदन पर, संख्याओं के मान निर्धारित किए जाते हैं, जो उत्तर (a c =b) हैं। आइए, उदाहरण के लिए, संख्या 10 के साथ बहुत पहले सेल को लें और इसे वर्ग करें, हमें 100 का मान मिलता है, जो हमारे दो कोशिकाओं के चौराहे पर इंगित किया गया है। सब कुछ इतना सरल और आसान है कि सबसे वास्तविक मानवतावादी भी समझ जाएगा!

समीकरण और असमानता

यह पता चला है कि कुछ शर्तों के तहत, घातांक लघुगणक है। इसलिए, किसी भी गणितीय संख्यात्मक व्यंजक को लघुगणक समीकरण के रूप में लिखा जा सकता है। उदाहरण के लिए, 3 4 =81 को आधार 3 के 81 के लघुगणक के रूप में लिखा जा सकता है, जो चार है (लॉग 3 81 = 4)। नकारात्मक डिग्री के लिए, नियम समान हैं: 2 -5 = 1/32 हम एक लघुगणक के रूप में लिखते हैं, हमें लॉग 2 (1/32) = -5 मिलता है। गणित के सबसे आकर्षक वर्गों में से एक "लघुगणक" का विषय है। समीकरणों के गुणों का अध्ययन करने के तुरंत बाद, हम समीकरणों के उदाहरणों और समाधानों पर थोड़ा कम विचार करेंगे। अब आइए देखें कि असमानताएँ कैसी दिखती हैं और उन्हें समीकरणों से कैसे अलग किया जाए।

निम्नलिखित रूप की अभिव्यक्ति दी गई है: लॉग 2 (x-1)> 3 - यह एक लॉगरिदमिक असमानता है, क्योंकि अज्ञात मान "x" लॉगरिदम के संकेत के तहत है। और व्यंजक में भी दो मात्राओं की तुलना की जाती है: आधार दो में वांछित संख्या का लघुगणक संख्या तीन से अधिक है।

लघुगणकीय समीकरणों और असमानताओं के बीच सबसे महत्वपूर्ण अंतर यह है कि लघुगणक वाले समीकरण (उदाहरण के लिए, 2 x = 9 का लघुगणक) उत्तर में एक या अधिक विशिष्ट संख्यात्मक मान दर्शाते हैं, जबकि असमानता को हल करते समय, दोनों की सीमा स्वीकार्य मान और इस फ़ंक्शन को तोड़ने वाले बिंदु। एक परिणाम के रूप में, उत्तर व्यक्तिगत संख्याओं का एक सरल सेट नहीं है, जैसा कि समीकरण के उत्तर में है, बल्कि एक सतत श्रृंखला या संख्याओं का सेट है।

लघुगणक के बारे में मूल प्रमेय

लॉगरिदम के मूल्यों को खोजने पर आदिम कार्यों को हल करते समय, इसके गुणों का पता नहीं चल सकता है। हालांकि, जब लॉगरिदमिक समीकरणों या असमानताओं की बात आती है, तो सबसे पहले, लॉगरिदम के सभी बुनियादी गुणों को स्पष्ट रूप से समझना और व्यवहार में लागू करना आवश्यक है। हम बाद में समीकरणों के उदाहरणों से परिचित होंगे, आइए पहले प्रत्येक गुण का अधिक विस्तार से विश्लेषण करें।

  1. मूल पहचान इस तरह दिखती है: a logaB =B. यह केवल तभी लागू होता है जब a 0 से बड़ा हो, एक के बराबर न हो और B शून्य से बड़ा हो।
  2. उत्पाद के लघुगणक को निम्न सूत्र में दर्शाया जा सकता है: लॉग डी (एस 1 * एस 2) = लॉग डी एस 1 + लॉग डी एस 2. इस मामले में, पूर्वापेक्षा है: डी, ​​एस 1 और एस 2> 0; ए≠1. आप लघुगणक के इस सूत्र के लिए उदाहरण और समाधान के साथ एक प्रमाण दे सकते हैं। मान लीजिए a s 1 = f 1 लॉग करें और a s 2 = f 2 लॉग करें, फिर a f1 = s 1 , a f2 = s 2. हम पाते हैं कि s 1 *s 2 = a f1 *a f2 = a f1+f2 (डिग्री गुण) ), और आगे परिभाषा के अनुसार: लॉग a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, जिसे सिद्ध किया जाना था।
  3. भागफल का लघुगणक इस तरह दिखता है: लॉग ए (एस 1 / एस 2) = लॉग ए एस 1 - लॉग ए एस 2।
  4. सूत्र के रूप में प्रमेय निम्नलिखित रूप लेता है: log a q b n = n/q log a b।

इस सूत्र को "लघुगणक की डिग्री का गुण" कहा जाता है। यह सामान्य डिग्री के गुणों जैसा दिखता है, और यह आश्चर्य की बात नहीं है, क्योंकि सभी गणित नियमित पदों पर टिकी हुई है। आइए सबूत देखें।

लॉग a b \u003d t दें, यह a t \u003d b निकलता है। यदि आप दोनों भागों को घात m: a tn = b n तक बढ़ाते हैं;

लेकिन चूँकि a tn = (a q) nt/q = b n , इसलिए a q b n = (n*t)/t लॉग करें, फिर a q b n = n/q log a b लॉग करें। प्रमेय सिद्ध हो चुका है।

समस्याओं और असमानताओं के उदाहरण

सबसे आम प्रकार की लघुगणक समस्याएं समीकरणों और असमानताओं के उदाहरण हैं। वे लगभग सभी समस्या पुस्तकों में पाए जाते हैं, और गणित में परीक्षा के अनिवार्य भाग में भी शामिल हैं। किसी विश्वविद्यालय में प्रवेश करने या गणित में प्रवेश परीक्षा उत्तीर्ण करने के लिए, आपको यह जानना होगा कि ऐसे कार्यों को सही तरीके से कैसे हल किया जाए।

दुर्भाग्य से, लघुगणक के अज्ञात मूल्य को हल करने और निर्धारित करने के लिए कोई एकल योजना या योजना नहीं है, हालांकि, प्रत्येक गणितीय असमानता या लघुगणक समीकरण पर कुछ नियम लागू किए जा सकते हैं। सबसे पहले, आपको यह पता लगाना चाहिए कि क्या व्यंजक को सरल बनाया जा सकता है या सामान्य रूप में घटाया जा सकता है। यदि आप उनके गुणों का सही उपयोग करते हैं, तो आप लंबे लघुगणकीय व्यंजकों को सरल बना सकते हैं। आइए जल्द ही उन्हें जान लेते हैं।

लघुगणक समीकरणों को हल करते समय, यह निर्धारित करना आवश्यक है कि हमारे सामने किस प्रकार का लघुगणक है: एक अभिव्यक्ति के उदाहरण में एक प्राकृतिक लघुगणक या एक दशमलव हो सकता है।

यहाँ उदाहरण ln100, ln1026 हैं। उनका समाधान इस तथ्य तक उबाल जाता है कि आपको यह निर्धारित करने की आवश्यकता है कि आधार 10 क्रमशः 100 और 1026 के बराबर होगा। प्राकृतिक लघुगणक के समाधान के लिए, लघुगणकीय पहचान या उनके गुणों को लागू करना चाहिए। आइए विभिन्न प्रकार की लघुगणकीय समस्याओं को हल करने के उदाहरण देखें।

लघुगणक सूत्रों का उपयोग कैसे करें: उदाहरणों और समाधानों के साथ

तो, आइए लघुगणक पर मुख्य प्रमेयों के उपयोग के उदाहरण देखें।

  1. उत्पाद के लघुगणक की संपत्ति का उपयोग उन कार्यों में किया जा सकता है जहां संख्या बी के बड़े मूल्य को सरल कारकों में विघटित करना आवश्यक है। उदाहरण के लिए, लॉग 2 4 + लॉग 2 128 = लॉग 2 (4*128) = लॉग 2 512। उत्तर 9 है।
  2. लॉग 4 8 = लॉग 2 2 2 3 = 3/2 लॉग 2 2 = 1.5 - जैसा कि आप देख सकते हैं, लॉगरिदम की डिग्री की चौथी संपत्ति का उपयोग करके, हम पहली नज़र में एक जटिल और असफल अभिव्यक्ति को हल करने में कामयाब रहे। केवल आधार को गुणनखंड करना और फिर घातांक मानों को लघुगणक के चिह्न से बाहर निकालना आवश्यक है।

परीक्षा से कार्य

लॉगरिदम अक्सर प्रवेश परीक्षाओं में पाए जाते हैं, विशेष रूप से यूनिफाइड स्टेट परीक्षा (सभी स्कूल स्नातकों के लिए राज्य परीक्षा) में बहुत सारी लॉगरिदमिक समस्याएं। आमतौर पर ये कार्य न केवल भाग ए (परीक्षा का सबसे आसान परीक्षण भाग) में मौजूद होते हैं, बल्कि भाग सी (सबसे कठिन और भारी कार्य) में भी मौजूद होते हैं। परीक्षा का तात्पर्य "प्राकृतिक लघुगणक" विषय का सटीक और सही ज्ञान है।

समस्याओं के उदाहरण और समाधान परीक्षा के आधिकारिक संस्करणों से लिए गए हैं। आइए देखें कि ऐसे कार्यों को कैसे हल किया जाता है।

दिया गया लघुगणक 2 (2x-1) = 4. हल:
आइए व्यंजक को फिर से लिखें, इसे थोड़ा सा सरल करते हुए लॉग 2 (2x-1) = 2 2, लघुगणक की परिभाषा से हमें 2x-1 = 2 4 मिलता है, इसलिए 2x = 17; एक्स = 8.5।

  • सभी लघुगणक को एक ही आधार पर सबसे अच्छा कम किया जाता है ताकि समाधान बोझिल और भ्रमित न हो।
  • लघुगणक के चिह्न के तहत सभी भाव सकारात्मक के रूप में इंगित किए जाते हैं, इसलिए, अभिव्यक्ति के घातांक के घातांक को निकालते समय, जो लघुगणक के संकेत के तहत होता है और इसके आधार के रूप में, लघुगणक के तहत शेष अभिव्यक्ति सकारात्मक होनी चाहिए।

इसकी परिभाषा से व्युत्पन्न। और इसलिए संख्या का लघुगणक बीवजह से घातांक के रूप में परिभाषित किया गया है जिसके लिए एक संख्या को उठाया जाना चाहिए नंबर पाने के लिए बी(लघुगणक केवल सकारात्मक संख्याओं के लिए मौजूद है)।

इस सूत्रीकरण से यह निष्कर्ष निकलता है कि गणना एक्स = एक बी लॉग इन करें, समीकरण को हल करने के बराबर है कुल्हाड़ी = ख।उदाहरण के लिए, लॉग 2 8 = 3क्योंकि 8 = 2 3 . लघुगणक का निरूपण यह उचित ठहराना संभव बनाता है कि यदि बी = एक सी, तो संख्या का लघुगणक बीवजह से बराबरी साथ. यह भी स्पष्ट है कि लघुगणक का विषय किसी संख्या की घात के विषय से निकटता से संबंधित है।

लघुगणक के साथ, किसी भी संख्या के साथ, आप प्रदर्शन कर सकते हैं जोड़, घटाव के संचालनऔर हर संभव तरीके से रूपांतरित करें। लेकिन इस तथ्य को ध्यान में रखते हुए कि लॉगरिदम बिल्कुल सामान्य संख्या नहीं हैं, उनके अपने विशेष नियम यहां लागू होते हैं, जिन्हें कहा जाता है बुनियादी गुण.

लघुगणक का जोड़ और घटाव।

समान आधार वाले दो लघुगणक लें: लॉग एक्सऔर आप लॉग इन करें. फिर इसे हटा दें जोड़ और घटाव संचालन करना संभव है:

लॉग a x+ लॉग a y= लॉग a (x y);

लॉग ए एक्स - लॉग ए वाई = लॉग ए (एक्स: वाई)।

लॉग ए(एक्स 1 . एक्स 2 . एक्स 3 ... एक्स के) = लॉग एक्स 1 + लॉग एक्स 2 + लॉग एक्स 3 + ... + लॉग ए x k.

से भागफल लघुगणक प्रमेयलघुगणक का एक और गुण प्राप्त किया जा सकता है। यह सर्वविदित है कि लॉग 1= 0, इसलिए,

लॉग 1 /बी= लॉग 1 - लॉग एक बी= -लॉग एक बी.

तो एक समानता है:

लॉग ए 1 / बी = - लॉग ए बी।

दो परस्पर पारस्परिक संख्याओं के लघुगणकएक ही आधार पर केवल चिन्ह में एक दूसरे से भिन्न होंगे। इसलिए:

लघुगणक 3 9= - लघुगणक 3 1/9 ; लॉग 5 1 / 125 = -लॉग 5 125।