Logaritm cu bază fracțională cum se rezolvă. Problema B7 - Conversia expresiilor logaritmice și exponențiale

Principalele proprietăți ale logaritmului natural, grafic, domeniu de definiție, set de valori, formule de bază, derivată, integrală, expansiune în serie de puterişi reprezentând funcţia ln x în termeni de numere complexe.

Definiție

logaritmul natural este funcția y = ln x, inversă exponentului, x \u003d e y , și care este logaritmul la baza numărului e: ln x = log e x.

Logaritmul natural este utilizat pe scară largă în matematică, deoarece derivata sa are cea mai simplă formă: (ln x)′ = 1/ x.

Bazat definiții, baza logaritmului natural este numărul e:
e ≅ 2,718281828459045...;
.

Graficul funcției y = ln x.

Graficul logaritmului natural (funcțiile y = ln x) se obține din graficul exponentului reflexie în oglindă relativ la dreapta y = x .

Logaritmul natural este definit la valori pozitive variabila x. Ea crește monoton pe domeniul său de definire.

Ca x → 0 limita logaritmului natural este minus infinitul ( - ∞ ).

Ca x → + ∞, limita logaritmului natural este plus infinitul ( + ∞ ). Pentru x mare, logaritmul crește destul de lent. Orice functie de putere x a cu exponent pozitiv a crește mai repede decât logaritmul.

Proprietățile logaritmului natural

Domeniu de definire, set de valori, extrema, crestere, scadere

Logaritmul natural este o funcție crescătoare monoton, deci nu are extreme. Principalele proprietăți ale logaritmului natural sunt prezentate în tabel.

ln x valori

log 1 = 0

Formule de bază pentru logaritmi naturali

Formule care rezultă din definiția funcției inverse:

Principala proprietate a logaritmilor și consecințele acesteia

Formula de înlocuire a bazei

Orice logaritm poate fi exprimat în termeni de logaritmi naturali folosind formula de schimbare a bazei:

Demonstrațiile acestor formule sunt prezentate în secțiunea „Logaritm”.

Funcție inversă

Reciproca logaritmului natural este exponentul.

Daca atunci

Daca atunci .

Derivată ln x

Derivată a logaritmului natural:
.
Derivată a logaritmului natural al modulo x:
.
Derivată de ordinul al n-lea:
.
Derivarea formulelor > > >

Integral

Integrala se calculează prin integrare pe părți:
.
Asa de,

Expresii în termeni de numere complexe

Să considerăm o funcție a unei variabile complexe z:
.
Să exprimăm variabila complexă z prin modul rși argumentare φ :
.
Folosind proprietățile logaritmului, avem:
.
Sau
.
Argumentul φ nu este definit în mod unic. Dacă punem
, unde n este un număr întreg,
atunci va fi același număr pentru n diferit.

Prin urmare, logaritmul natural, în funcție de o variabilă complexă, nu este o funcție cu o singură valoare.

Extinderea seriei de putere

Pentru , expansiunea are loc:

Referinte:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți ai instituțiilor de învățământ superior, Lan, 2009.

După cum știți, atunci când înmulțiți expresii cu puteri, exponenții lor se adună întotdeauna (a b * a c = a b + c). Acest legea matematică a fost derivat de Arhimede, iar mai târziu, în secolul al VIII-lea, matematicianul Virasen a creat un tabel de indicatori întregi. Ei au fost cei care au servit pentru descoperirea ulterioară a logaritmilor. Exemple de utilizare a acestei funcții pot fi găsite aproape peste tot acolo unde este necesară simplificarea înmulțirii greoaie la adunare simplă. Dacă petreceți 10 minute citind acest articol, vă vom explica ce sunt logaritmii și cum să lucrați cu ei. Limbaj simplu și accesibil.

Definiție în matematică

Logaritmul este o expresie de următoarea formă: log a b=c, adică logaritmul oricărei număr nenegativ(adică orice pozitiv) „b” la baza sa „a” este considerată puterea lui „c”, la care baza „a” trebuie ridicată pentru a obține în final valoarea „b”. Să analizăm logaritmul folosind exemple, să presupunem că există o expresie log 2 8. Cum să găsim răspunsul? Este foarte simplu, trebuie să găsești un astfel de grad încât de la 2 la gradul necesar să obții 8. După ce ai făcut niște calcule în minte, obținem numărul 3! Și pe bună dreptate, pentru că 2 la puterea lui 3 dă numărul 8 în răspuns.

Varietăți de logaritmi

Pentru mulți elevi și studenți, acest subiect pare complicat și de neînțeles, dar, de fapt, logaritmii nu sunt atât de înfricoșători, principalul lucru este să le înțelegeți sensul general și să vă amintiți proprietățile și unele reguli. Se află trei anumite tipuri expresii logaritmice:

  1. Logaritmul natural ln a, unde baza este numărul Euler (e = 2,7).
  2. Decimală a, unde baza este 10.
  3. Logaritmul oricărui număr b la baza a>1.

Fiecare dintre ele este hotărât într-un mod standard, care include simplificarea, reducerea și reducerea ulterioară la un logaritm folosind teoreme logaritmice. A primi valori corecte logaritmi, ar trebui să vă amintiți proprietățile lor și succesiunea acțiunilor în deciziile lor.

Reguli și unele restricții

În matematică, există mai multe reguli-limitări care sunt acceptate ca axiomă, adică nu sunt supuse discuției și sunt adevărate. De exemplu, nu puteți împărți numerele la zero și, de asemenea, este imposibil să extrageți rădăcina chiar gradul din numere negative. Logaritmii au, de asemenea, propriile reguli, după care puteți învăța cu ușurință cum să lucrați chiar și cu expresii logaritmice lungi și încăpătoare:

  • baza „a” trebuie să fie întotdeauna mai mare decât zero și, în același timp, să nu fie egală cu 1, altfel expresia își va pierde sensul, deoarece „1” și „0” în orice grad sunt întotdeauna egale cu valorile lor;
  • dacă a > 0, atunci a b > 0, se dovedește că „c” trebuie să fie mai mare decât zero.

Cum se rezolvă logaritmii?

De exemplu, având în vedere sarcina de a găsi răspunsul la ecuația 10 x \u003d 100. Este foarte ușor, trebuie să alegeți o astfel de putere prin ridicarea numărului zece la care obținem 100. Acesta, desigur, este 10 2 \u003d 100.

Acum să ne imaginăm expresie datăîn formă logaritmică. Obținem log 10 100 = 2. La rezolvarea logaritmilor, toate acțiunile converg practic către găsirea gradului în care trebuie introdusă baza logaritmului pentru a obține un număr dat.

Pentru o determinare fără erori a valorii grad necunoscut trebuie să înveți cum să lucrezi cu un tabel de grade. Arata cam asa:

După cum puteți vedea, unii exponenți pot fi ghiciți intuitiv dacă aveți o mentalitate tehnică și cunoștințe despre tabla înmulțirii. Cu toate acestea, pentru valori mari ai nevoie de un tabel de grade. Poate fi folosit chiar și de cei care nu înțeleg absolut nimic în complex subiecte matematice. Coloana din stânga conține numere (baza a), rândul de sus de numere este valoarea puterii c, la care se ridică numărul a. La intersecția din celule se determină valorile numerelor, care sunt răspunsul (a c =b). Să luăm, de exemplu, prima celulă cu numărul 10 și să o pătratăm, obținem valoarea 100, care este indicată la intersecția celor două celule ale noastre. Totul este atât de simplu și ușor încât până și cel mai adevărat umanist va înțelege!

Ecuații și inegalități

Se dovedește că în anumite condiții, exponentul este logaritmul. Prin urmare, orice expresii numerice matematice pot fi scrise ca o ecuație logaritmică. De exemplu, 3 4 =81 poate fi scris ca logaritmul lui 81 la baza 3, care este patru (log 3 81 = 4). Pentru puteri negative regulile sunt aceleași: 2 -5 \u003d 1/32 scriem sub forma unui logaritm, obținem log 2 (1/32) \u003d -5. Una dintre cele mai fascinante secțiuni ale matematicii este subiectul „logaritmilor”. Vom lua în considerare exemple și soluții de ecuații puțin mai jos, imediat după studierea proprietăților acestora. Acum să ne uităm la cum arată inegalitățile și cum să le distingem de ecuații.

Se dă o expresie de următoarea formă: log 2 (x-1) > 3 - este inegalitatea logaritmică, deoarece valoarea necunoscută „x” se află sub semnul logaritmului. Și, de asemenea, în expresie sunt comparate două mărimi: logaritmul numărului dorit în baza doi este mai mare decât numărul trei.

Cea mai importantă diferență între ecuațiile logaritmice și inegalități este că ecuațiile cu logaritmi (de exemplu, logaritmul lui 2 x = √9) implică unul sau mai multe specifice valori numerice, în timp ce în rezolvarea inegalităților sunt definite ca zonă valori admise, și punctele de discontinuitate ale acestei funcții. În consecință, răspunsul nu este un set simplu numere individuale ca în răspunsul ecuației și a serie continuă sau un set de numere.

Teoreme de bază despre logaritmi

La rezolvarea sarcinilor primitive privind găsirea valorilor logaritmului, este posibil ca proprietățile acestuia să nu fie cunoscute. Cu toate acestea, când vine vorba de ecuații sau inegalități logaritmice, în primul rând, este necesar să înțelegem clar și să aplici în practică toate proprietățile de bază ale logaritmilor. Ne vom familiariza cu exemple de ecuații mai târziu, să analizăm mai întâi fiecare proprietate mai detaliat.

  1. Identitatea de bază arată astfel: a logaB =B. Se aplică numai dacă a este mai mare decât 0, nu este egal cu unu și B este mai mare decât zero.
  2. Logaritmul produsului poate fi reprezentat în următoarea formulă: log d (s 1 *s 2) = log d s 1 + log d s 2. În plus, condiție prealabilă este: d, s 1 și s 2 > 0; a≠1. Puteți da o dovadă pentru această formulă de logaritmi, cu exemple și o soluție. Fie log a s 1 = f 1 și log a s 2 = f 2 , apoi a f1 = s 1 , a f2 = s 2. Obținem că s 1 *s 2 = a f1 *a f2 = a f1+f2 (proprietăți de grade) ), și mai departe prin definiție: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, ceea ce urma să fie demonstrat.
  3. Logaritmul coeficientului arată astfel: log a (s 1 / s 2) = log a s 1 - log a s 2.
  4. Teorema sub formă de formulă capătă următoarea vedere: log a q b n = n/q log a b.

Această formulă se numește „proprietatea gradului logaritmului”. Seamănă cu proprietățile gradelor obișnuite și nu este surprinzător, deoarece toată matematica se bazează pe postulate obișnuite. Să ne uităm la dovada.

Să log a b \u003d t, se dovedește a t \u003d b. Dacă ridici ambele părți la puterea m: a tn = b n ;

dar deoarece a tn = (a q) nt/q = b n , prin urmare log a q b n = (n*t)/t, atunci log a q b n = n/q log a b. Teorema a fost demonstrată.

Exemple de probleme și inegalități

Cele mai comune tipuri de probleme de logaritm sunt exemple de ecuații și inegalități. Ele se găsesc în aproape toate cărțile cu probleme și sunt, de asemenea, incluse în parte obligatorie examene de matematică. Pentru admitere la universitate sau promovare examenele de admitere la matematică, trebuie să știi să rezolvi corect astfel de probleme.

Din păcate, nu există un plan sau o schemă unică pentru rezolvarea și determinarea valorii necunoscute a logaritmului, totuși, pentru fiecare inegalitatea matematică sau se poate aplica ecuația logaritmică anumite reguli. În primul rând, ar trebui să aflați dacă expresia poate fi simplificată sau redusă la vedere generala. Simplifică lung expresii logaritmice Puteți, dacă le folosiți corect proprietățile. Să-i cunoaștem curând.

Când rezolvăm ecuații logaritmice, este necesar să stabilim ce tip de logaritm avem în fața noastră: un exemplu de expresie poate conține un logaritm natural sau unul zecimal.

Iată exemple ln100, ln1026. Soluția lor se rezumă la faptul că trebuie să determinați gradul în care baza 10 va fi egală cu 100, respectiv 1026. Pentru solutii logaritmi naturali trebuie să aplici identități logaritmice sau proprietățile lor. Să aruncăm o privire la soluția cu exemple. probleme logaritmice tip diferit.

Cum să utilizați formulele logaritmice: cu exemple și soluții

Deci, să ne uităm la exemple de utilizare a teoremelor principale pe logaritmi.

  1. Proprietatea logaritmului produsului poate fi utilizată în sarcini în care este necesară extinderea mare importanță numerele b în factori mai simpli. De exemplu, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Răspunsul este 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - după cum vedeți, aplicând a patra proprietate a gradului logaritmului, am reușit să rezolvăm la prima vedere o expresie complexă și de nerezolvat. Este necesar doar să factorizați baza și apoi să scoateți valorile exponentului din semnul logaritmului.

Sarcini de la examen

Logaritmii se găsesc adesea în examen de admitere, în special multe probleme logaritmice la examen ( Examen de stat pentru toți absolvenții de liceu). De obicei, aceste sarcini sunt prezente nu numai în partea A (cea mai ușoară parte de testare examen), dar și în partea C (cele mai dificile și mai voluminoase sarcini). Examenul presupune o cunoaștere exactă și perfectă a temei „Logaritmi naturali”.

Exemplele și soluțiile problemelor sunt preluate din oficial UTILIZAȚI opțiuni. Să vedem cum se rezolvă astfel de sarcini.

Dat log 2 (2x-1) = 4. Rezolvare:
să rescriem expresia, simplificând-o puțin log 2 (2x-1) = 2 2 , prin definiția logaritmului obținem că 2x-1 = 2 4 , deci 2x = 17; x = 8,5.

  • Toți logaritmii se reduc cel mai bine la aceeași bază, astfel încât soluția să nu fie greoaie și confuză.
  • Toate expresiile sub semnul logaritmului sunt indicate ca pozitive, prin urmare, la scoaterea exponentului exponentului expresiei, care se află sub semnul logaritmului și ca bază, expresia rămasă sub logaritm trebuie să fie pozitivă.

Expresii logaritmice, soluție de exemple. În acest articol, vom lua în considerare problemele legate de rezolvarea logaritmilor. Sarcinile ridică problema găsirii valorii expresiei. Trebuie remarcat faptul că conceptul de logaritm este folosit în multe sarcini și este extrem de important să înțelegem sensul acestuia. În ceea ce privește USE, logaritmul este folosit la rezolvarea ecuațiilor, în sarcini aplicate, de asemenea în sarcini legate de studiul funcţiilor.

Iată exemple pentru a înțelege însuși sensul logaritmului:


Identitatea logaritmică de bază:

Proprietățile logaritmilor pe care trebuie să le rețineți întotdeauna:

*Logaritmul produsului este egală cu suma logaritmii factorilor.

* * *

* Logaritmul coeficientului (fracției) este egal cu diferența logaritmilor factorilor.

* * *

*Logaritmul gradului este egal cu produsul exponent la logaritmul bazei sale.

* * *

*Tranziție la noua bază

* * *

Mai multe proprietăți:

* * *

Calcularea logaritmilor este strâns legată de utilizarea proprietăților exponenților.

Enumerăm câteva dintre ele:

esență proprietatea dată este că la transferul numărătorului la numitor și invers, semnul exponentului se schimbă în opus. De exemplu:

Consecința acestei proprietăți:

* * *

Când ridicați o putere la o putere, baza rămâne aceeași, dar exponenții sunt înmulțiți.

* * *

După cum puteți vedea, însuși conceptul de logaritm este simplu. Principalul lucru este ceea ce este necesar bun antrenament, care conferă o anumită îndemânare. Cu siguranță cunoașterea formulelor este obligatorie. Dacă nu se formează priceperea în transformarea logaritmilor elementari, atunci când se rezolvă sarcini simple este ușor să faci o greșeală.

Exersează, rezolvă mai întâi cele mai simple exemple de la cursul de matematică, apoi treci la altele mai complexe. Pe viitor, cu siguranță voi arăta cum se rezolvă logaritmii „urâți”, nu vor fi astfel de la examen, dar sunt de interes, nu ratați!

Asta e tot! Multă baftă!

Cu stimă, Alexander Krutitskikh

P.S: Aș fi recunoscător dacă ai spune despre site în rețelele de socializare.

Deci, avem puteri de doi. Dacă luați numărul din linia de jos, atunci puteți găsi cu ușurință puterea la care trebuie să ridicați un doi pentru a obține acest număr. De exemplu, pentru a obține 16, trebuie să ridici doi la a patra putere. Și pentru a obține 64, trebuie să ridici doi la a șasea putere. Acest lucru se vede din tabel.

Și acum - de fapt, definiția logaritmului:

Logaritmul la baza a a argumentului x este puterea la care trebuie ridicat numărul a pentru a obține numărul x .

Notație: log a x \u003d b, unde a este baza, x este argumentul, b este de fapt egal cu logaritmul.

De exemplu, 2 3 = 8 ⇒ log 2 8 = 3 (logaritmul de bază 2 al lui 8 este trei deoarece 2 3 = 8). Ar putea la fel de bine să înregistreze 2 64 = 6 pentru că 2 6 = 64 .

Operația de găsire a logaritmului unui număr la o bază dată se numește logaritm. Deci, să adăugăm un nou rând la tabelul nostru:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1log 2 4 = 2 log 2 8 = 3log 2 16 = 4 log 2 32 = 5log 2 64 = 6

Din păcate, nu toți logaritmii sunt considerați atât de ușor. De exemplu, încercați să găsiți log 2 5 . Numărul 5 nu este în tabel, dar logica dictează că logaritmul va fi undeva pe segment. Pentru că 2 2< 5 < 2 3 , а чем grad mai mare doi, cu atât numărul va fi mai mare.

Astfel de numere se numesc iraționale: numerele de după virgulă pot fi scrise la nesfârșit și nu se repetă niciodată. Dacă logaritmul se dovedește a fi irațional, este mai bine să-l lăsați astfel: log 2 5 , log 3 8 , log 5 100 .

Este important de înțeles că logaritmul este o expresie cu două variabile (bază și argument). La început, mulți oameni confundă unde este baza și unde este argumentul. A evita neînțelegeri nefericite doar uita-te la poza:

În fața noastră nu este nimic altceva decât definiția logaritmului. Tine minte: logaritmul este puterea, la care trebuie să ridicați baza pentru a obține argumentul. Este baza care este ridicată la o putere - în imagine este evidențiată cu roșu. Se dovedește că baza este întotdeauna în jos! Le spun studenților mei această regulă minunată chiar de la prima lecție - și nu există nicio confuzie.

Ne-am dat seama de definiție - rămâne să învățăm cum să numărăm logaritmii, de exemplu. scapă de semnul „bușten”. Pentru început, observăm că din definiție rezultă două fapte importante:

  1. Argumentul și baza trebuie să fie întotdeauna mai mari decât zero. Aceasta rezultă din definiția gradului indicator rațional, la care se reduce definiția logaritmului.
  2. Baza trebuie să fie diferită de unitate, deoarece o unitate pentru orice putere este încă o unitate. Din această cauză, întrebarea „la ce putere trebuie ridicat cineva pentru a obține doi” este lipsită de sens. Nu există o astfel de diplomă!

Se numesc astfel de restricții interval valid(ODZ). Rezultă că ODZ a logaritmului arată astfel: log a x = b ⇒ x > 0 , a > 0 , a ≠ 1 .

Rețineți că nu există restricții cu privire la numărul b (valoarea logaritmului) nu este impus. De exemplu, logaritmul poate fi negativ: log 2 0,5 \u003d -1, deoarece 0,5 = 2 −1 .

Cu toate acestea, deocamdată doar luăm în considerare expresii numerice, unde nu este necesară cunoașterea ODZ a logaritmului. Toate restricțiile au fost deja luate în considerare de către compilatorii problemelor. Dar când se duc ecuații logaritmiceși inegalitățile, cerințele DHS vor deveni obligatorii. Într-adevăr, în bază și argument pot exista construcții foarte puternice, care nu corespund neapărat restricțiilor de mai sus.

Acum luați în considerare schema generala calcule logaritmice. Acesta constă din trei etape:

  1. Exprimați baza a și argumentul x ca o putere cu cea mai mică bază posibilă mai mare decât unu. Pe parcurs, este mai bine să scapi de fracțiile zecimale;
  2. Rezolvați ecuația pentru variabila b: x = a b ;
  3. Numărul rezultat b va fi răspunsul.

Asta e tot! Dacă logaritmul se dovedește a fi irațional, acest lucru se va vedea deja la primul pas. Cerința ca baza să fie mai mare decât unu este foarte relevantă: aceasta reduce probabilitatea de eroare și simplifică foarte mult calculele. Similar cu zecimale: dacă le transpuneți imediat în cele obișnuite, vor fi de multe ori mai puține erori.

Să vedem cum funcționează această schemă cu exemple specifice:

Sarcină. Calculați logaritmul: log 5 25

  1. Să reprezentăm baza și argumentul ca o putere a lui cinci: 5 = 5 1 ; 25 = 52;
  2. Să facem și să rezolvăm ecuația:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. A primit un raspuns: 2.

Sarcină. Calculați logaritmul:

Sarcină. Calculați logaritmul: log 4 64

  1. Să reprezentăm baza și argumentul ca o putere a doi: 4 = 2 2 ; 64 = 26;
  2. Să facem și să rezolvăm ecuația:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. A primit un raspuns: 3.

Sarcină. Calculați logaritmul: log 16 1

  1. Să reprezentăm baza și argumentul ca o putere a doi: 16 = 2 4 ; 1 = 20;
  2. Să facem și să rezolvăm ecuația:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. A primit un raspuns: 0.

Sarcină. Calculați logaritmul: log 7 14

  1. Să reprezentăm baza și argumentul ca o putere de șapte: 7 = 7 1 ; 14 nu este reprezentat ca o putere a șapte, deoarece 7 1< 14 < 7 2 ;
  2. Din paragraful anterior rezultă că logaritmul nu este luat în considerare;
  3. Răspunsul este fără schimbare: log 7 14.

O mică notă pentru ultimul exemplu. Cum să vă asigurați că un număr nu este o putere exactă a altui număr? Foarte simplu - extindeți-l în factori primi. Dacă există cel puțin doi factori diferiți în expansiune, numărul nu este o putere exactă.

Sarcină. Aflați dacă puterile exacte ale numărului sunt: ​​8; 48; 81; 35; paisprezece .

8 \u003d 2 2 2 \u003d 2 3 - gradul exact, deoarece există un singur multiplicator;
48 = 6 8 = 3 2 2 2 2 = 3 2 4 nu este o putere exactă deoarece există doi factori: 3 și 2;
81 \u003d 9 9 \u003d 3 3 3 3 \u003d 3 4 - grad exact;
35 = 7 5 - din nou nu este un grad exact;
14 \u003d 7 2 - din nou nu este un grad exact;

De asemenea, observăm că noi numere prime sunt întotdeauna puteri exacte ale lor.

Logaritm zecimal

Unii logaritmi sunt atât de comune încât au un nume și o denumire specială.

Logaritmul zecimal al argumentului x este logaritmul de bază 10, adică. puterea la care trebuie să ridici numărul 10 pentru a obține numărul x. Denumire: lg x .

De exemplu, log 10 = 1; log 100 = 2; lg 1000 = 3 - etc.

De acum înainte, când în manual apare o expresie precum „Găsiți lg 0.01”, să știți că aceasta nu este o greșeală de tipar. Aceasta este logaritm zecimal. Cu toate acestea, dacă nu sunteți obișnuit cu o astfel de desemnare, o puteți rescrie oricând:
log x = log 10 x

Tot ceea ce este adevărat pentru logaritmii obișnuiți este valabil și pentru zecimale.

logaritmul natural

Există un alt logaritm care are propria sa notație. Într-un fel, este chiar mai important decât zecimalul. Este despre despre logaritmul natural.

Logaritmul natural al lui x este logaritmul de bază e, adică. puterea la care trebuie ridicat numărul e pentru a obține numărul x. Denumire: ln x .

Mulți se vor întreba: ce altceva este numărul e? Aceasta este număr irațional, a lui valoare exacta imposibil de găsit și înregistrat. Iată doar primele numere:
e = 2,718281828459...

Nu vom aprofunda ce este acest număr și de ce este necesar. Nu uitați că e este baza logaritmului natural:
ln x = log e x

Astfel ln e = 1 ; log e 2 = 2 ; ln e 16 = 16 - etc. Pe de altă parte, ln 2 este un număr irațional. În general, logaritmul natural al oricărui Numar rational iraţional. Cu excepția, desigur, unității: ln 1 = 0.

Pentru logaritmii naturali, toate regulile care sunt adevărate pentru logaritmii obișnuiți sunt valabile.

derivată din definiția sa. Și astfel logaritmul numărului b prin rațiune A definit ca exponentul la care trebuie ridicat un număr A pentru a obține numărul b(logaritmul există doar pentru numere pozitive).

Din această formulare rezultă că calculul x=log a b, este echivalent cu rezolvarea ecuației ax=b. De exemplu, log 2 8 = 3 deoarece 8 = 2 3 . Formularea logaritmului face posibilă justificarea că dacă b=a c, apoi logaritmul numărului b prin rațiune A egală cu. De asemenea, este clar că subiectul logaritmului este strâns legat de subiectul puterii unui număr.

Cu logaritmi, ca și în cazul oricăror numere, puteți performa operații de adunare, scădereși se transformă în toate modurile posibile. Dar având în vedere faptul că logaritmii nu sunt numere obișnuite, aici se aplică propriile reguli speciale, care sunt numite proprietăți de bază.

Adunarea și scăderea logaritmilor.

Să luăm doi logaritmi aceleași temeiuri: log xși log a y. Apoi eliminați este posibil să efectuați operații de adunare și scădere:

log a x+ log a y= log a (x y);

log a x - log a y = log a (x:y).

log a(X 1 . X 2 . X 3 ... x k) = log x 1 + log x 2 + log x 3 + ... + log a x k.

Din teoreme logaritmului coeficientului mai poate fi obținută o proprietate a logaritmului. Este bine cunoscut acel jurnal A 1= 0, prin urmare,

Buturuga A 1 /b= jurnal A 1 - jurnal a b= -log a b.

Deci există o egalitate:

log a 1 / b = - log a b.

Logaritmi a două numere reciproc reciproce pe aceeași bază vor diferi unele de altele numai prin semn. Asa de:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.