Explicația ecuațiilor exponențiale. Prelegere: „Metode de rezolvare a ecuațiilor exponențiale

Exemple:

\(4^x=32\)
\(5^(2x-1)-5^(2x-3)=4,8\)
\((\sqrt(7))^(2x+2)-50\cdot(\sqrt(7))^(x)+7=0\)

Cum se rezolvă ecuații exponențiale

Când rezolvăm orice ecuație exponențială, ne străduim să o aducem la forma \(a ^ (f (x)) \u003d a ^ (g (x)) \), apoi facem tranziția la egalitatea indicatorilor, adică:

\(a^(f(x))=a^(g(x))\) \(⇔\) \(f(x)=g(x)\)

De exemplu:\(2^(x+1)=2^2\) \(⇔\) \(x+1=2\)

Important! Din aceeași logică, urmează două cerințe pentru o astfel de tranziție:
- număr în stânga și dreapta ar trebui să fie la fel;
- grade stânga și dreapta trebuie să fie „pure”, adică să nu existe, înmulțiri, împărțiri etc.


De exemplu:


Pentru a aduce ecuația la forma \(a^(f(x))=a^(g(x))\) și sunt folosite.

Exemplu . Rezolvați ecuația exponențială \(\sqrt(27) 3^(x-1)=((\frac(1)(3)))^(2x)\)
Decizie:

\(\sqrt(27) 3^(x-1)=((\frac(1)(3)))^(2x)\)

Știm că \(27 = 3^3\). Având în vedere acest lucru, transformăm ecuația.

\(\sqrt(3^3) 3^(x-1)=((\frac(1)(3)))^(2x)\)

Prin proprietatea rădăcinii \(\sqrt[n](a)=a^(\frac(1)(n))\) obținem că \(\sqrt(3^3)=((3^3) )^( \frac(1)(2))\). În plus, folosind proprietatea gradului \((a^b)^c=a^(bc)\), obținem \(((3^3))^(\frac(1)(2))=3^( 3 \ cdot \frac(1)(2))=3^(\frac(3)(2))\).

\(3^(\frac(3)(2))\cdot 3^(x-1)=(\frac(1)(3))^(2x)\)

De asemenea, știm că \(a^b a^c=a^(b+c)\). Aplicând aceasta în partea stângă, obținem: \(3^(\frac(3)(2)) 3^(x-1)=3^(\frac(3)(2)+ x-1)=3 ^ (1,5 + x-1)=3^(x+0,5)\).

\(3^(x+0,5)=(\frac(1)(3))^(2x)\)

Acum amintiți-vă că: \(a^(-n)=\frac(1)(a^n)\). Această formulă poate fi folosită și în reversul: \(\frac(1)(a^n) =a^(-n)\). Apoi \(\frac(1)(3)=\frac(1)(3^1) =3^(-1)\).

\(3^(x+0,5)=(3^(-1))^(2x)\)

Aplicând proprietatea \((a^b)^c=a^(bc)\) în partea dreaptă, obținem: \((3^(-1))^(2x)=3^((-1) 2x) =3^(-2x)\).

\(3^(x+0,5)=3^(-2x)\)

Și acum avem bazele egale și nu există coeficienți de interferență etc. Deci putem face tranziția.

Exemplu . Rezolvați ecuația exponențială \(4^(x+0.5)-5 2^x+2=0\)
Decizie:

\(4^(x+0,5)-5 2^x+2=0\)

Folosim din nou proprietatea gradului \(a^b \cdot a^c=a^(b+c)\) în direcție inversă.

\(4^x 4^(0,5)-5 2^x+2=0\)

Acum amintiți-vă că \(4=2^2\).

\((2^2)^x (2^2)^(0,5)-5 2^x+2=0\)

Folosind proprietățile gradului, transformăm:
\((2^2)^x=2^(2x)=2^(x 2)=(2^x)^2\)
\((2^2)^(0,5)=2^(2 0,5)=2^1=2.\)

\(2 (2^x)^2-5 2^x+2=0\)

Privim cu atenție ecuația și vedem că înlocuirea \(t=2^x\) se sugerează aici.

\(t_1=2\) \(t_2=\frac(1)(2)\)

Cu toate acestea, am găsit valorile \(t\) și avem nevoie de \(x\). Ne întoarcem la X, făcând înlocuirea inversă.

\(2^x=2\) \(2^x=\frac(1)(2)\)

Transformăm a doua ecuație folosind proprietatea grad negativ

\(2^x=2^1\) \(2^x=2^(-1)\)

...si rezolva pana la raspuns.

\(x_1=1\) \(x_2=-1\)

Răspuns : \(-1; 1\).

Întrebarea rămâne - cum să înțelegeți când să aplicați ce metodă? Vine cu experiență. Între timp, nu l-ai câștigat, folosește recomandare generala pentru solutii sarcini provocatoare„Dacă nu știi ce să faci, fă ce poți.” Adică, căutați cum puteți transforma ecuația în principiu și încercați să o faceți - ce se întâmplă dacă iese? Principalul lucru este să faceți numai transformări justificate matematic.

ecuații exponențiale fără soluții

Să ne uităm la încă două situații care deseori derutează studenții:
- număr pozitiv este egal cu zero cu puterea, de exemplu, \(2^x=0\);
- număr pozitiv la puterea egală număr negativ, de exemplu, \(2^x=-4\).

Să încercăm să o rezolvăm prin forță brută. Dacă x este un număr pozitiv, atunci pe măsură ce x crește, întreaga putere \(2^x\) va crește doar:

\(x=1\); \(2^1=2\)
\(x=2\); \(2^2=4\)
\(x=3\); \(2^3=8\).

\(x=0\); \(2^0=1\)

Tot trecut. Există x-uri negative. Reamintind proprietatea \(a^(-n)=\frac(1)(a^n)\), verificăm:

\(x=-1\); \(2^(-1)=\frac(1)(2^1)=\frac(1)(2)\)
\(x=-2\); \(2^(-2)=\frac(1)(2^2) =\frac(1)(4)\)
\(x=-3\); \(2^(-3)=\frac(1)(2^3) =\frac(1)(8)\)

În ciuda faptului că numărul devine mai mic cu fiecare pas, nu va ajunge niciodată la zero. Deci nici gradul negativ nu ne-a salvat. Ajungem la o concluzie logica:

Un număr pozitiv pentru orice putere va rămâne un număr pozitiv.

Astfel, ambele ecuații de mai sus nu au soluții.

ecuații exponențiale cu baze diferite

În practică, uneori există ecuații exponențiale cu baze diferite care nu sunt reductibile între ele și, în același timp, cu aceiași exponenți. Ele arată astfel: \(a^(f(x))=b^(f(x))\), unde \(a\) și \(b\) sunt numere pozitive.

De exemplu:

\(7^(x)=11^(x)\)
\(5^(x+2)=3^(x+2)\)
\(15^(2x-1)=(\frac(1)(7))^(2x-1)\)

Astfel de ecuații pot fi rezolvate cu ușurință prin împărțirea la oricare dintre părțile ecuației (de obicei împărțind la partea dreaptă, adică la \ (b ^ (f (x))) \). Puteți împărți astfel, deoarece un pozitiv numărul este pozitiv în orice grad (adică nu împărțim la zero.) Obținem:

\(\frac(a^(f(x)))(b^(f(x)))\) \(=1\)

Exemplu . Rezolvați ecuația exponențială \(5^(x+7)=3^(x+7)\)
Decizie:

\(5^(x+7)=3^(x+7)\)

Aici nu putem transforma un cinci într-un trei sau invers (conform macar, fără utilizare). Deci nu putem ajunge la forma \(a^(f(x))=a^(g(x))\). În același timp, indicatorii sunt aceiași.
Să împărțim ecuația la partea dreaptă, adică la \(3^(x+7)\) (putem face asta, pentru că știm că triplul nu va fi zero în niciun grad).

\(\frac(5^(x+7))(3^(x+7))\) \(=\)\(\frac(3^(x+7))(3^(x+7) )\)

Acum amintiți-vă proprietatea \((\frac(a)(b))^c=\frac(a^c)(b^c)\) și utilizați-o din stânga în direcția opusă. În dreapta, pur și simplu reducem fracția.

\((\frac(5)(3))^(x+7)\) \(=1\)

Nu părea să fie mai bine. Dar amintiți-vă o altă proprietate a gradului: \(a^0=1\), cu alte cuvinte: „orice număr în grad zero este egal cu \(1\)". Este adevărat și invers: „o unitate poate fi reprezentată ca orice număr ridicat la puterea lui zero”. Folosim acest lucru făcând baza din dreapta la fel cu cea din stânga.

\((\frac(5)(3))^(x+7)\) \(=\) \((\frac(5)(3))^0\)

Voila! Scăpăm de fundații.

Noi scriem răspunsul.

Răspuns : \(-7\).


Uneori, „asemănarea” exponenților nu este evidentă, dar utilizarea cu pricepere a proprietăților gradului rezolvă această problemă.

Exemplu . Rezolvați ecuația exponențială \(7^( 2x-4)=(\frac(1)(3))^(-x+2)\)
Decizie:

\(7^( 2x-4)=(\frac(1)(3))^(-x+2)\)

Ecuația pare foarte tristă... Nu numai asta, bazele nu pot fi reduse la acelasi numar(cei șapte nu vor fi egali cu \(\frac(1)(3)\)), deci și indicatorii sunt diferiți... Totuși, să avem un deuce în indicatorul gradului stâng.

\(7^( 2(x-2))=(\frac(1)(3))^(-x+2)\)

Ținând cont de proprietatea \((a^b)^c=a^(b c)\), transformați din stânga:
\(7^(2(x-2))=7^(2 (x-2))=(7^2)^(x-2)=49^(x-2)\).

\(49^(x-2)=(\frac(1)(3))^(-x+2)\)

Acum, amintindu-ne de proprietatea puterii negative \(a^(-n)=\frac(1)(a)^n\), transformăm în dreapta: \((\frac(1)(3))^(- x+2) =(3^(-1))^(-x+2)=3^(-1(-x+2))=3^(x-2)\)

\(49^(x-2)=3^(x-2)\)

Aleluia! Scorurile sunt aceleași!
Acționând conform schemei deja cunoscute nouă, decidem înainte de răspuns.

Răspuns : \(2\).

Prelegere: „Metode de rezolvare a ecuațiilor exponențiale”.

1 . ecuații exponențiale.

Ecuațiile care conțin necunoscute în exponent se numesc ecuații exponențiale. Cea mai simplă dintre acestea este ecuația ax = b, unde a > 0 și a ≠ 1.

1) Pentru b< 0 и b = 0 это уравнение, согласно свойству 1 functie exponentiala, nu are solutie.

2) Pentru b > 0, folosind monotonitatea funcției și teorema rădăcinii, ecuația are o singură rădăcină. Pentru a-l găsi, b trebuie reprezentat ca b = aс, ax = bс ó x = c sau x = logab.

ecuaţii exponenţiale prin transformări algebrice duce la ecuație standard, care se rezolvă prin următoarele metode:

1) metoda de reducere la o bază;

2) metoda de evaluare;

3) metoda grafica;

4) metoda introducerii de noi variabile;

5) metoda factorizării;

6) indicativ - ecuații de putere;

7) exponențial cu un parametru.

2 . Metoda de reducere la o singură bază.

Metoda se bazează pe următoarea proprietate a gradelor: dacă două grade sunt egale și bazele lor sunt egale, atunci exponenții lor sunt egali, adică, ecuația ar trebui încercată să fie redusă la forma

Exemple. Rezolvați ecuația:

1 . 3x=81;

Să reprezentăm partea dreaptă a ecuației sub forma 81 = 34 și să scriem ecuația echivalentă cu originalul 3 x = 34; x = 4. Răspuns: 4.

2. https://pandia.ru/text/80/142/images/image004_8.png" width="52" height="49"> și mergeți la ecuația pentru exponenți 3x+1 = 3 – 5x; 8x = 4; x = 0,5 Răspuns: 0,5

3. https://pandia.ru/text/80/142/images/image006_8.png" width="105" height="47">

Rețineți că numerele 0,2, 0,04, √5 și 25 sunt puteri ale lui 5. Să profităm de acest lucru și să transformăm ecuația inițială după cum urmează:

, de unde 5-x-1 = 5-2x-2 ó - x - 1 = - 2x - 2, din care găsim soluția x = -1. Raspunsul 1.

5. 3x = 5. Prin definiția logaritmului, x = log35. Răspuns: log35.

6. 62x+4 = 33x. 2x+8.

Să rescriem ecuația ca 32x+4.22x+4 = 32x.2x+8, adică..png" width="181" height="49 src="> Prin urmare, x - 4 =0, x = 4. Răspuns: 4.

7 . 2∙3x+1 - 6∙3x-2 - 3x = 9. Folosind proprietățile puterilor, scriem ecuația sub forma e. x+1 = 2, x =1. Raspunsul 1.

Banca de sarcini nr 1.

Rezolvați ecuația:

Testul numărul 1.

1) 0 2) 4 3) -2 4) -4

A2 32x-8 = √3.

1)17/4 2) 17 3) 13/2 4) -17/4

A3

1) 3;1 2) -3;-1 3) 0;2 4) fără rădăcini

1) 7;1 2) fără rădăcini 3) -7;1 4) -1;-7

A5

1) 0;2; 2) 0;2;3 3) 0 4) -2;-3;0

A6

1) -1 2) 0 3) 2 4) 1

Testul #2

A1

1) 3 2) -1;3 3) -1;-3 4) 3;-1

A2

1) 14/3 2) -14/3 3) -17 4) 11

A3

1) 2;-1 2) fără rădăcini 3) 0 4) -2;1

A4

1) -4 2) 2 3) -2 4) -4;2

A5

1) 3 2) -3;1 3) -1 4) -1;3

3 Metoda de evaluare.

Teorema rădăcinii: dacă funcția f (x) crește (descrește) pe intervalul I, numărul a este orice valoare luată de f pe acest interval, atunci ecuația f (x) = a are o singură rădăcină pe intervalul I.

La rezolvarea ecuațiilor prin metoda estimării se utilizează această teoremă și proprietățile de monotonitate ale funcției.

Exemple. Rezolvarea ecuațiilor: 1. 4x = 5 - x.

Decizie. Să rescriem ecuația ca 4x + x = 5.

1. dacă x \u003d 1, atunci 41 + 1 \u003d 5, 5 \u003d 5 este adevărat, atunci 1 este rădăcina ecuației.

Funcția f(x) = 4x crește pe R și g(x) = x crește pe R => h(x)= f(x)+g(x) crește pe R ca suma funcțiilor crescătoare, deci x = 1 este singura rădăcină a ecuației 4x = 5 – x. Raspunsul 1.

2.

Decizie. Rescriem ecuația sub forma .

1. dacă x = -1, atunci , 3 = 3-adevărat, deci x = -1 este rădăcina ecuației.

2. dovedesc că este unic.

3. Funcția f(x) = - scade pe R, iar g(x) = - x - scade pe R => h(x) = f(x) + g(x) - scade pe R, pe măsură ce suma a funcţiilor descrescătoare . Deci, după teorema rădăcinii, x = -1 este singura rădăcină a ecuației. Raspunsul 1.

Banca de sarcini nr 2. rezolva ecuatia

a) 4x + 1 = 6 - x;

b)

c) 2x – 2 =1 – x;

4. Metoda de introducere a noilor variabile.

Metoda este descrisă în secțiunea 2.1. Introducerea unei noi variabile (substituție) se realizează de obicei după transformări (simplificare) termenilor ecuației. Luați în considerare exemple.

Exemple. R Ecuația de mâncare: 1. .

Să rescriem altfel ecuația: https://pandia.ru/text/80/142/images/image030_0.png" width="128" height="48 src="> i.e..png" width="210" height = „45”>

Decizie. Să rescriem altfel ecuația:

Indicați https://pandia.ru/text/80/142/images/image035_0.png" width="245" height="57"> - nu este potrivit.

t = 4 => https://pandia.ru/text/80/142/images/image037_0.png" width="268" height="51"> - ecuație irațională. Am notat asta

Soluția ecuației este x = 2,5 ≤ 4, deci 2,5 este rădăcina ecuației. Răspuns: 2.5.

Decizie. Să rescriem ecuația sub forma și să împărțim ambele părți la 56x+6 ≠ 0. Obținem ecuația

2x2-6x-7 = 2x2-6x-8 +1 = 2(x2-3x-4)+1, deci..png" width="118" height="56">

Rădăcinile ecuației pătratice - t1 = 1 și t2<0, т. е..png" width="200" height="24">.

Decizie . Rescriem ecuația sub forma

și rețineți că este o ecuație omogenă de gradul doi.

Împărțim ecuația la 42x, obținem

Înlocuiește https://pandia.ru/text/80/142/images/image049_0.png" width="16" height="41 src="> .

Răspuns: 0; 0,5.

Task Bank #3. rezolva ecuatia

b)

G)

Testul #3 cu o alegere de răspunsuri. Nivel minim.

A1

1) -0,2;2 2) log52 3) –log52 4) 2

А2 0,52x – 3 0,5x +2 = 0.

1) 2;1 2) -1;0 3) fără rădăcini 4) 0

1) 0 2) 1; -1/3 3) 1 4) 5

A4 52x-5x - 600 = 0.

1) -24;25 2) -24,5; 25,5 3) 25 4) 2

1) fără rădăcini 2) 2;4 3) 3 4) -1;2

Testul #4 cu o alegere de răspunsuri. Nivel general.

A1

1) 2;1 2) ½;0 3)2;0 4) 0

А2 2x – (0,5)2x – (0,5)x + 1 = 0

1) -1;1 2) 0 3) -1;0;1 4) 1

1) 64 2) -14 3) 3 4) 8

1)-1 2) 1 3) -1;1 4) 0

A5

1) 0 2) 1 3) 0;1 4) fără rădăcini

5. Metoda de factorizare.

1. Rezolvați ecuația: 5x+1 - 5x-1 = 24.

Soluție..png" width="169" height="69"> , de unde

2. 6x + 6x+1 = 2x + 2x+1 + 2x+2.

Decizie. Să scoatem 6x din partea stângă a ecuației și 2x din partea dreaptă. Obținem ecuația 6x(1+6) = 2x(1+2+4) ó 6x = 2x.

Deoarece 2x >0 pentru tot x, putem împărți ambele părți ale acestei ecuații la 2x fără teama de a pierde soluțiile. Obținem 3x = 1ó x = 0.

3.

Decizie. Rezolvăm ecuația prin factorizare.

Selectăm pătratul binomului

4. https://pandia.ru/text/80/142/images/image067_0.png" width="500" height="181">

x = -2 este rădăcina ecuației.

Ecuația x + 1 = 0 " style="border-collapse:collapse;border:none">

A1 5x-1 +5x -5x+1 = -19.

1) 1 2) 95/4 3) 0 4) -1

A2 3x+1 +3x-1 =270.

1) 2 2) -4 3) 0 4) 4

A3 32x + 32x+1 -108 = 0. x=1,5

1) 0,2 2) 1,5 3) -1,5 4) 3

1) 1 2) -3 3) -1 4) 0

A5 2x -2x-4 = 15.x=4

1) -4 2) 4 3) -4;4 4) 2

Testul #6 Nivel general.

A1 (22x-1)(24x+22x+1)=7.

1) ½ 2) 2 3) -1;3 4) 0,2

A2

1) 2,5 2) 3;4 3) log43/2 4) 0

A3 2x-1-3x=3x-1-2x+2.

1) 2 2) -1 3) 3 4) -3

A4

1) 1,5 2) 3 3) 1 4) -4

A5

1) 2 2) -2 3) 5 4) 0

6. Exponenţial - ecuaţii de putere.

Ecuațiile exponențiale sunt alăturate de așa-numitele ecuații de putere exponențială, adică ecuații de forma (f(x))g(x) = (f(x))h(x).

Dacă se știe că f(x)>0 și f(x) ≠ 1, atunci ecuația, ca și cea exponențială, se rezolvă prin egalarea exponenților g(x) = f(x).

Dacă condiția nu exclude posibilitatea f(x)=0 și f(x)=1, atunci trebuie să luăm în considerare aceste cazuri atunci când rezolvăm ecuația puterii exponențiale.

1..png" width="182" height="116 src=">

2.

Decizie. x2 +2x-8 - are sens pentru orice x, deoarece un polinom, deci ecuația este echivalentă cu mulțimea

https://pandia.ru/text/80/142/images/image078_0.png" width="137" height="35">

b)

7. Ecuații exponențiale cu parametri.

1. Pentru ce valori ale parametrului p are ecuația 4 (5 – 3) 2 +4p2–3p = 0 (1) singura decizie?

Decizie. Să introducem modificarea 2x = t, t > 0, atunci ecuația (1) va lua forma t2 – (5p – 3)t + 4p2 – 3p = 0. (2)

Discriminantul ecuației (2) este D = (5p – 3)2 – 4(4p2 – 3p) = 9(p – 1)2.

Ecuația (1) are o soluție unică dacă ecuația (2) are o rădăcină pozitivă. Acest lucru este posibil în următoarele cazuri.

1. Dacă D = 0, adică p = 1, atunci ecuația (2) va lua forma t2 – 2t + 1 = 0, deci t = 1, prin urmare, ecuația (1) are o soluție unică x = 0.

2. Dacă p1, atunci 9(p – 1)2 > 0, atunci ecuația (2) are două rădăcini diferite t1 = p, t2 = 4p – 3. Mulțimea sistemelor satisface condiția problemei

Înlocuind t1 și t2 în sisteme, avem

https://pandia.ru/text/80/142/images/image084_0.png" alt="(!LANG:no35_11" width="375" height="54"> в зависимости от параметра a?!}

Decizie. Lasa atunci ecuația (3) va lua forma t2 – 6t – a = 0. (4)

Să găsim valorile parametrul a pentru care cel puțin o rădăcină a ecuației (4) satisface condiția t > 0.

Să introducem funcția f(t) = t2 – 6t – a. Următoarele cazuri sunt posibile.

https://pandia.ru/text/80/142/images/image087.png" alt="(!LANG:http://1september.ru/ru/mat/2002/35/no35_14.gif" align="left" width="215" height="73 src=">где t0 - абсцисса вершины параболы и D - дискриминант !} trinom pătrat f(t);

https://pandia.ru/text/80/142/images/image089.png" alt="(!LANG:http://1september.ru/ru/mat/2002/35/no35_16.gif" align="left" width="60" height="51 src=">!}

Cazul 2. Ecuația (4) are un unic decizie pozitivă, dacă

D = 0, dacă a = – 9, atunci ecuația (4) va lua forma (t – 3)2 = 0, t = 3, x = – 1.

Cazul 3. Ecuația (4) are două rădăcini, dar una dintre ele nu satisface inegalitatea t > 0. Acest lucru este posibil dacă

https://pandia.ru/text/80/142/images/image092.png" alt="(!LANG:no35_17" width="267" height="63">!}

Astfel, la a 0 ecuația (4) are o singură rădăcină pozitivă . Atunci ecuația (3) are o soluție unică

Pentru o< – 9 уравнение (3) корней не имеет.

în cazul în care un< – 9, то корней нет; если – 9 < a < 0, то
dacă a = – 9, atunci x = – 1;

dacă a  0, atunci

Să comparăm metodele de rezolvare a ecuațiilor (1) și (3). Rețineți că atunci când rezolvarea ecuației (1) a fost redusă la o ecuație pătratică, al cărei discriminant este un pătrat complet; astfel, rădăcinile ecuației (2) au fost imediat calculate prin formula rădăcinilor ecuației pătratice, iar apoi s-au tras concluzii cu privire la aceste rădăcini. Ecuația (3) a fost redusă la o ecuație pătratică (4), al cărei discriminant nu este un pătrat perfect, prin urmare, la rezolvarea ecuației (3), este recomandabil să folosiți teoreme privind locația rădăcinilor unui trinom pătrat și un model grafic. Rețineți că ecuația (4) poate fi rezolvată folosind teorema Vieta.

Să rezolvăm ecuații mai complexe.

Sarcina 3. Rezolvați ecuația

Decizie. ODZ: x1, x2.

Să introducem un înlocuitor. Fie 2x = t, t > 0, apoi, ca urmare a transformărilor, ecuația va lua forma t2 + 2t – 13 – a = 0. (*) Să găsim valorile lui a pentru care cel puțin o rădăcină a lui ecuația (*) îndeplinește condiția t > 0.

https://pandia.ru/text/80/142/images/image098.png" alt="(!LANG:http://1september.ru/ru/mat/2002/35/no35_23.gif" align="left" width="71" height="68 src=">где t0 - абсцисса вершины f(t) = t2 + 2t – 13 – a, D - дискриминант квадратного трехчлена f(t).!}

https://pandia.ru/text/80/142/images/image100.png" alt="(!LANG:http://1september.ru/ru/mat/2002/35/no35_25.gif" align="left" width="360" height="32 src=">!}

https://pandia.ru/text/80/142/images/image102.png" alt="(!LANG:http://1september.ru/ru/mat/2002/35/no35_27.gif" align="left" width="218" height="42 src=">!}

Răspuns: dacă a > - 13, a  11, a  5, atunci dacă a - 13,

a = 11, a = 5, atunci nu există rădăcini.

Bibliografie.

1. Fundamentele Guzeev ale tehnologiei educaționale.

2. Tehnologia Guzeev: de la recepție la filozofie.

M. „Director” nr. 4, 1996

3. Guzeev și forme organizatoriceînvăţare.

4. Guzeev și practica tehnologiei educaționale integrale.

M." educație publică", 2001

5. Guzeev din formele lecției - seminar.

Matematica la scoala nr 2, 1987, p. 9 - 11.

6. Tehnologii educaționale Selevko.

M. „Educația oamenilor”, 1998

7. Scolarii Episheva invata matematica.

M. „Iluminismul”, 1990

8. Ivanov să pregătească lecții - ateliere.

Matematica la Scoala Nr.6, 1990, p. 37-40.

9. Modelul Smirnov de predare a matematicii.

Matematica la Scoala Nr.1, 1997, p. 32-36.

10. Tarasenko moduri de organizare a lucrărilor practice.

Matematica la Scoala Nr.1, 1993, p. 27 - 28.

11. Despre unul dintre tipurile de muncă individuală.

Matematica la Scoala Nr 2, 1994, p. 63 - 64.

12. Khazankin Abilități creativeşcolari.

Matematica la Scoala Nr.2, 1989, p. zece.

13. Scanavi. Editura, 1997

14. et al.Algebra şi începuturile analizei. Materiale didactice pentru

15. Sarcini Krivonogov în matematică.

M. „Primul septembrie”, 2002

16. Cerkasov. Manual pentru elevii de liceu și

intrarea la universitati. „A S T – școala de presă”, 2002

17. Zhevnyak pentru solicitanții la universități.

Minsk și RF „Review”, 1996

18. Scris D. Pregătirea pentru examenul la matematică. M. Rolf, 1999

19. şi altele.Învăţarea rezolvării ecuaţiilor şi inegalităţilor.

M. „Intelectul – Centru”, 2003

20. si altele.educativ - Materiale de antrenament să se pregătească pentru E G E.

M. „Intelect – Centru”, 2003 și 2004

21 și altele.Variante ale CMM. Centrul de testare al Ministerului Apărării al Federației Ruse, 2002, 2003

22. Ecuații Goldberg. „Quantum” nr. 3, 1971

23. Volovich M. Cum se preda cu succes matematica.

Matematică, 1997 Nr. 3.

24 Okunev pentru lecție, copii! M. Iluminismul, 1988

25. Yakimanskaya - învăţare orientată la scoala.

26. Liimets lucreaza la lectie. M. Cunoașterea, 1975

Primul nivel

ecuații exponențiale. Ghid cuprinzător (2019)

Hei! Astăzi vom discuta cu tine cum să rezolvi ecuațiile care pot fi atât elementare (și sper că, după ce am citit acest articol, aproape toate vor fi așa pentru tine), cât și cele cărora li se acordă de obicei „rămbleu”. Aparent, să adorm complet. Dar voi încerca să fac tot posibilul pentru ca acum să nu ai probleme când te confrunți cu acest tip de ecuație. Nu voi mai bate în jurul tufișului, dar voi deschide imediat secret mic: azi vom lucra ecuații exponențiale.

Înainte de a trece la o analiză a modalităților de rezolvare a acestora, vă voi contura imediat un cerc de întrebări (destul de mic) pe care ar trebui să le repetați înainte de a vă grăbi să asalteze acest subiect. Deci, pentru a obține cel mai bun rezultat, Vă rog, repeta:

  1. proprietăţi şi
  2. Soluție și ecuații

Repetat? Uimitor! Atunci nu vă va fi greu să observați că rădăcina ecuației este un număr. Ești sigur că înțelegi cum am făcut-o? Adevăr? Apoi continuăm. Acum răspunde-mi la întrebarea, ce este egal cu a treia putere? Ai dreptate: . Opt este ce putere a doi? Așa este - al treilea! Pentru că. Ei bine, acum să încercăm să rezolvăm următoarea problemă: Lasă-mă să înmulțesc numărul cu el însuși o dată și să obțin rezultatul. Întrebarea este de câte ori m-am înmulțit singur? Desigur, puteți verifica acest lucru direct:

\begin(align) & 2=2 \\ & 2\cdot 2=4 \\ & 2\cdot 2\cdot 2=8 \\ & 2\cdot 2\cdot 2\cdot 2=16 \\ \end( alinia)

Atunci poți trage concluzia că am înmulțit ori singur. Cum altfel poate fi verificat acest lucru? Și iată cum: direct după definiția gradului: . Dar, trebuie să recunoașteți, dacă aș întreba de câte ori doi trebuie înmulțiți singuri pentru a obține, să zicem, mi-ați spune: nu mă voi păcăli și mă voi înmulți singur până nu voi fi albastru la față. Și ar avea perfectă dreptate. Pentru că cum poți notează pe scurt toate acțiunile(și concizia este sora talentului)

unde - acesta este chiar "ori" când te înmulți singuri.

Cred că știți (și dacă nu știți, urgent, foarte urgent repetați diplomele!) că atunci problema mea va fi scrisă sub forma:

Cum puteți concluziona în mod rezonabil că:

Așa că, în liniște, am notat cel mai simplu ecuație exponențială:

Și chiar l-a găsit rădăcină. Nu crezi că totul este destul de banal? Exact asta cred si eu. Iată un alt exemplu pentru tine:

Dar ce să faci? La urma urmei, nu poate fi scris ca un grad al unui număr (rezonabil). Să nu disperăm și să observăm că ambele numere sunt perfect exprimate în termeni de putere a aceluiași număr. Ce? Dreapta: . Apoi ecuația inițială este transformată în forma:

De unde, așa cum ați înțeles deja, . Să nu mai tragem și să scriem definiție:

În cazul nostru cu dumneavoastră: .

Aceste ecuații se rezolvă prin reducerea lor la forma:

cu rezolvarea ulterioară a ecuației

Noi, de fapt, am făcut asta în exemplul anterior: am primit asta. Și am rezolvat cea mai simplă ecuație cu tine.

Pare să nu fie nimic complicat, nu? Să exersăm mai întâi pe cel mai simplu. exemple:

Vedem din nou că părțile din dreapta și din stânga ecuației trebuie reprezentate ca o putere a unui număr. Adevărat, acest lucru s-a făcut deja în stânga, dar în dreapta există un număr. Dar, la urma urmei, e în regulă și ecuația mea miraculos se va transforma in aceasta:

Ce a trebuit să fac aici? Ce regula? Regulă putere la putere care scrie:

Ce-ar fi dacă:

Înainte de a răspunde la această întrebare, să completăm următorul tabel cu tine:

Nu ne este greu să observăm că cu cât mai puțin, cu atât valoare mai mică, dar cu toate acestea, toate aceste valori sunt mai mari decât zero. SI VA FI Intotdeauna ASA!!! Aceeași proprietate este valabilă PENTRU ORICE BAZĂ CU ORICE INDEX!! (pentru orice și). Atunci ce putem concluziona despre ecuație? Și iată unul: acesta nu are rădăcini! La fel ca orice ecuație nu are rădăcini. Acum să exersăm și Să rezolvăm câteva exemple simple:

Sa verificam:

1. Aici nu ți se cere nimic, decât să cunoști proprietățile puterilor (pe care, de altfel, ți-am cerut să le repeți!) De regulă, totul duce la cea mai mică bază: , . Atunci ecuația inițială va fi echivalentă cu următoarea: Tot ce am nevoie este să folosesc proprietățile puterilor: la înmulțirea numerelor cu aceeași bază, se adună exponenții, iar la împărțire se scad. Apoi voi obține: Ei bine, acum cu conștiința curată voi trece de la ecuația exponențială la cea liniară: \begin(align)
& 2x+1+2(x+2)-3x=5 \\
& 2x+1+2x+4-3x=5 \\
&x=0. \\
\end(align)

2. În al doilea exemplu, trebuie să fii mai atent: problema este că în partea stângă nu vom putea reprezenta același număr ca o putere. În acest caz, uneori este util reprezintă numere ca produs de puteri cu baze diferite, dar aceiași exponenți:

Partea stângă a ecuației va lua forma: Ce ne-a dat asta? Și iată ce: Se pot înmulți numere cu baze diferite, dar cu același exponent.În acest caz, bazele sunt înmulțite, dar exponentul nu se modifică:

Aplicat situației mele, aceasta va da:

\begin(align)
& 4\cdot ((64)^(x))((25)^(x))=6400, \\
& 4\cdot (((64\cdot 25))^(x))=6400, \\
& ((1600)^(x))=\frac(6400)(4), \\
& ((1600)^(x))=1600, \\
&x=1. \\
\end(align)

Nu-i rău, nu?

3. Nu-mi place când am doi termeni pe o parte a ecuației și niciunul pe cealaltă (uneori, desigur, acest lucru este justificat, dar nu este cazul acum). Mutați termenul minus la dreapta:

Acum, ca și înainte, voi scrie totul prin puterile triplei:

Adun puterile din stânga și obțin o ecuație echivalentă

Îi puteți găsi cu ușurință rădăcina:

4. Ca și în exemplul trei, termenul cu minus - un loc în partea dreaptă!

În stânga, aproape totul este în regulă cu mine, în afară de ce? Da, „gradul greșit” al zeului mă deranjează. Dar pot rezolva cu ușurință acest lucru scriind: . Eureka - în stânga, toate bazele sunt diferite, dar toate gradele sunt la fel! Ne inmultim repede!

Din nou, totul este clar: (dacă nu ați înțeles cât de magic am obținut ultima egalitate, luați o pauză de un minut, luați o pauză și citiți din nou proprietățile gradului cu mare atenție. Cine a spus că puteți sări peste grad cu indicator negativ? Ei bine, aici sunt cam același lucru pe care nimeni nu). Acum voi primi:

\begin(align)
& ((2)^(4\left((x) -9 \right)))=((2)^(-1)) \\
&4((x) -9)=-1 \\
&x=\frac(35)(4). \\
\end(align)

Iată sarcinile pe care să le exersați, la care voi da doar răspunsurile (dar într-o formă „mixtă”). Rezolvă-le, verifică și ne vom continua cercetările!

Gata? Răspunsuri ca acestea:

  1. orice număr

Bine, bine, glumeam! Iată schița soluțiilor (unele sunt destul de scurte!)

Nu crezi că nu este o coincidență că o fracție din stânga este o alta „inversată”? Ar fi un păcat să nu folosești asta:

Această regulă este foarte des folosită la rezolvarea ecuațiilor exponențiale, rețineți-o bine!

Atunci ecuația inițială devine:

Rezolvarea ecuație pătratică, veți obține următoarele rădăcini:

2. O altă soluție: împărțirea ambelor părți ale ecuației la expresia din stânga (sau dreapta). Voi împărți la ceea ce este în dreapta, apoi voi obține:

Unde (de ce?!)

3. Nici nu vreau să mă repet, totul a fost deja „mestecat” atât de mult.

4. echivalent cu o ecuație pătratică, rădăcinile

5. Trebuie să utilizați formula dată în prima sarcină, apoi veți obține:

Ecuația s-a transformat într-o identitate banală, ceea ce este adevărat pentru orice. Atunci răspunsul este orice număr real.

Ei bine, aici sunteți și exersați să decideți cele mai simple ecuații exponențiale. Acum vreau să vă dau câteva exemple de viață, ceea ce vă va ajuta să înțelegeți de ce sunt necesare în principiu. Aici voi da două exemple. Unul dintre ele este destul de cotidian, dar celălalt are un interes mai mult științific decât practic.

Exemplul 1 (comercial) Lasă-ți ruble, dar vrei să le transformi în ruble. Banca vă oferă să luați acești bani de la dvs. la o dobândă anuală cu o capitalizare lunară a dobânzii (cumulare lunară). Întrebarea este, pentru câte luni trebuie să deschideți un depozit pentru a încasa suma finală dorită? O sarcină destul de banală, nu-i așa? Cu toate acestea, soluția sa este legată de construcția ecuației exponențiale corespunzătoare: Fie - suma inițială, - suma finală, - rata dobânzii pe perioadă, - numărul de perioade. Apoi:

În cazul nostru (dacă rata este pe an, atunci se calculează pe lună). De ce este împărțit în? Dacă nu știți răspunsul la această întrebare, amintiți-vă de subiectul „”! Apoi obținem următoarea ecuație:

Această ecuație exponențială poate fi deja rezolvată doar cu un calculator (s aspect sugerează acest lucru, iar acest lucru necesită cunoștințe de logaritmi, cu care ne vom familiariza puțin mai târziu), ceea ce voi face: ... Astfel, pentru a primi un milion, trebuie să facem un depozit pentru o lună (nu foarte repede, nu?).

Exemplul 2 (mai degrabă științific). In ciuda lui, o oarecare „izolare”, iti recomand sa-i acorzi atentie: in mod regulat „se strecoara la examen!! (sarcină preluată din versiunea „reală”) În timpul colapsului izotop radioactiv masa sa scade conform legii, unde (mg) este masa inițială a izotopului, (min) este timpul scurs din momentul inițial, (min) este timpul de înjumătățire. LA momentul initial masa izotopului timp mg. Timpul său de înjumătățire este de min. În câte minute va fi masa izotopului egală cu mg? E în regulă: luăm și înlocuim toate datele din formula propusă:

Să împărțim ambele părți la, „în speranța” că în stânga obținem ceva digerabil:

Ei bine, suntem foarte norocoși! Stă în stânga, apoi să trecem la ecuația echivalentă:

Unde min.

După cum puteți vedea, ecuațiile exponențiale au o aplicație foarte reală în practică. Acum vreau să discut cu tine un alt mod (simplu) de a rezolva ecuațiile exponențiale, care se bazează pe scoaterea factorului comun din paranteze și apoi gruparea termenilor. Nu vă fie teamă de cuvintele mele, această metodă ați întâlnit-o deja în clasa a VII-a când ați studiat polinoamele. De exemplu, dacă trebuie să factorizați expresia:

Să grupăm: primul și al treilea termen, precum și al doilea și al patrulea. Este clar că primul și al treilea sunt diferența dintre pătrate:

iar al doilea şi al patrulea au factor comun primele trei:

Atunci expresia originală este echivalentă cu aceasta:

Unde să eliminați factorul comun nu mai este dificil:

Prin urmare,

Cam așa vom acționa atunci când rezolvăm ecuații exponențiale: căutați „comunalitate” între termeni și scoateți-o din paranteze, apoi - orice ar fi, cred că vom avea noroc =)) De exemplu:

În dreapta este departe de puterea lui șapte (am verificat!) Și în stânga - puțin mai bine, puteți, desigur, să „tai” factorul a din primul termen și din al doilea, apoi să te ocupi de ce ai, dar hai să facem mai prudent cu tine. Nu vreau să mă ocup de fracțiile care sunt produse inevitabil de „selecție”, așa că nu ar trebui să suport mai bine? Atunci nu voi avea fracții: după cum se spune, atât lupii sunt plini, cât și oile sunt în siguranță:

Numărați expresia dintre paranteze. Magic, magic, se dovedește că (în mod surprinzător, deși la ce să ne mai așteptăm?).

Apoi reducem ambele părți ale ecuației cu acest factor. Obținem: unde.

Iată un exemplu mai complicat (destul de puțin, într-adevăr):

Iată necazul! Nu avem unul aici teren comun! Nu este complet clar ce să faci acum. Și să facem ce putem: în primul rând, vom muta „patru” într-o direcție, iar „cinci” în cealaltă:

Acum să scoatem „comunul” din stânga și din dreapta:

Deci ce acum? Care este beneficiul unei astfel de grupări stupide? La prima vedere, nu este deloc vizibil, dar haideți să privim mai profund:

Ei bine, acum să facem astfel încât în ​​stânga să avem doar expresia c, iar în dreapta - orice altceva. Cum putem face acest lucru? Și iată cum: Împărțim mai întâi ambele părți ale ecuației cu (deci scăpăm de exponentul din dreapta), apoi împărțim ambele părți cu (deci scăpăm de factorul numeric din stânga). În sfârșit obținem:

Incredibil! În stânga avem o expresie, iar în dreapta - doar. Atunci tragem imediat concluzia că

Iată un alt exemplu de consolidat:

Îl voi aduce solutie scurta(nu vă deranjez cu adevărat să explic), încercați să vă dați seama singur toate „subtilitățile” soluției.

Acum consolidarea finală a materialului acoperit. Încercați să rezolvați singur următoarele probleme. voi aduce doar recomandări scurte si sfaturi pentru rezolvarea acestora:

  1. Să scoatem factorul comun din paranteze:
  2. Reprezentăm prima expresie sub forma: , împărțim ambele părți la și obținem asta
  3. , apoi ecuația originală este convertită în forma: Ei bine, acum un indiciu - căutați unde am rezolvat deja această ecuație!
  4. Imaginați-vă cum, cum, ah, bine, apoi împărțiți ambele părți la, astfel încât să obțineți cea mai simplă ecuație exponențială.
  5. Scoate-l din paranteze.
  6. Scoate-l din paranteze.

ECUATII EXPOZIONALE. NIVEL MIJLOCIU

Presupun că după ce am citit primul articol, care spunea ce sunt ecuațiile exponențiale și cum să le rezolvi ai stăpânit minim necesar cunoștințe necesare pentru a rezolva exemple simple.

Acum voi analiza o altă metodă de rezolvare a ecuațiilor exponențiale, aceasta este

„metoda de introducere a unei noi variabile” (sau substituție). Rezolvă majoritatea problemelor „dificile”, pe tema ecuațiilor exponențiale (și nu numai a ecuațiilor). Această metodă este una dintre cele mai frecvent utilizate în practică. În primul rând, vă recomand să vă familiarizați cu subiectul.

După cum ați înțeles deja din nume, esența acestei metode este să introduceți o astfel de schimbare a variabilei, încât ecuația dvs. exponențială să se transforme în mod miraculos într-una pe care o puteți rezolva deja cu ușurință. Tot ce vă rămâne după rezolvarea acestei „ecuații simplificate” este să faceți o „înlocuire inversă”: adică să reveniți de la înlocuit la înlocuit. Să ilustrăm ceea ce tocmai am spus cu un exemplu foarte simplu:

Exemplul 1:

Această ecuație este rezolvată printr-o „înlocuire simplă”, așa cum o numesc în mod disprețuitor matematicienii. Într-adevăr, înlocuirea aici este cea mai evidentă. Trebuie doar văzut că

Atunci ecuația inițială devine:

Dacă ne imaginăm în plus cum, atunci este destul de clar ce trebuie înlocuit: desigur, . Ce devine atunci ecuația originală? Și iată ce:

Îi poți găsi cu ușurință rădăcinile pe cont propriu:. Ce ar trebui să facem acum? Este timpul să revenim la variabila inițială. Ce am uitat să includ? Și anume: la înlocuirea unui anumit grad cu o variabilă nouă (adică la înlocuirea unui tip), voi fi interesat de numai rădăcini pozitive! Tu însuți poți răspunde cu ușurință de ce. Astfel, nu suntem interesați de tine, dar a doua rădăcină este destul de potrivită pentru noi:

Atunci unde.

Răspuns:

După cum puteți vedea, în exemplul anterior, înlocuitorul ne cerea mâinile. Din păcate, acest lucru nu este întotdeauna cazul. Cu toate acestea, să nu trecem direct la trist, ci să exersăm pe încă un exemplu cu o înlocuire destul de simplă

Exemplul 2

Este clar că cel mai probabil va fi necesară înlocuirea (aceasta este cea mai mică dintre puterile incluse în ecuația noastră), totuși, înainte de a introduce o înlocuire, ecuația noastră trebuie să fie „pregătită” pentru aceasta, și anume: , . Apoi puteți înlocui, ca urmare voi obține următoarea expresie:

Oh Doamne: ecuația cubică cu formule absolut groaznice de rezolvare (bine, vorbind în termeni generali). Dar să nu disperăm imediat, ci să ne gândim la ce ar trebui să facem. Îți voi sugera să înșeli: știm că pentru a obține un răspuns „frumos”, trebuie să obținem o putere de trei (de ce ar fi asta, nu?). Și să încercăm să ghicim cel puțin o rădăcină a ecuației noastre (voi începe să ghicesc din puterile lui trei).

Prima presupunere. Nu este o rădăcină. vai și ah...

.
Partea stângă este egală.
Partea dreapta:!
Există! Am ghicit prima rădăcină. Acum lucrurile vor deveni mai ușoare!

Știți despre schema de împărțire „colț”? Bineînțeles că știi, îl folosești când împărți un număr la altul. Dar puțini oameni știu că același lucru se poate face cu polinoamele. Există o teoremă minunată:

Aplicabil situației mele, îmi spune ce este divizibil fără rest prin. Cum se realizează împărțirea? Așa:

Mă uit la ce monom ar trebui să înmulțesc pentru a obține Clear, apoi:

Scăd expresia rezultată din, obțin:

Acum, ce trebuie să înmulțesc pentru a obține? Este clar că pe, atunci voi obține:

și din nou scădeți expresia rezultată din cea rămasă:

Ei bine, ultimul pas, înmulțesc cu și scad din expresia rămasă:

Ura, diviziunea s-a terminat! Ce am acumulat în privat? De la sine: .

Apoi am obținut următoarea extindere a polinomului original:

Să rezolvăm a doua ecuație:

Are rădăcini:

Apoi ecuația inițială:

are trei rădăcini:

Desigur, aruncăm ultima rădăcină, deoarece ea mai putin de zero. Și primele două după înlocuirea inversă ne vor da două rădăcini:

Răspuns: ..

Prin acest exemplu, nu am vrut deloc să te sperii, ci mai degrabă mi-am propus să arăt că măcar ne-am ajuns. înlocuire simplă, cu toate acestea a dus la destul ecuație complexă, a cărui soluție ne-a cerut niște aptitudini speciale. Ei bine, nimeni nu este imun la asta. Dar înlocuirea în acest caz era destul de evident.

Iată un exemplu cu o înlocuire puțin mai puțin evidentă:

Nu este deloc clar ce ar trebui să facem: problema este că în ecuația noastră sunt două baze diferite iar un fundament nu se obține dintr-un altul ridicându-l la orice grad (rezonabil, firesc). Totuși, ce vedem? Ambele baze diferă doar prin semn, iar produsul lor este diferența de pătrate egală cu unu:

Definiție:

Astfel, numerele care sunt baze în exemplul nostru sunt conjugate.

În acest caz, mișcarea inteligentă ar fi înmulțiți ambele părți ale ecuației cu numărul conjugat.

De exemplu, pe, atunci partea stângă a ecuației va deveni egală, iar partea dreaptă. Dacă facem o înlocuire, atunci ecuația noastră originală cu tine va deveni astfel:

rădăcinile sale, atunci, dar amintindu-ne asta, obținem asta.

Răspuns: , .

De regulă, metoda înlocuirii este suficientă pentru a rezolva majoritatea ecuațiilor exponențiale „școlare”. Următoarele sarcini sunt preluate din USE C1 ( nivel ridicat dificultăți). Sunteți deja suficient de alfabetizat pentru a rezolva singur aceste exemple. Voi oferi doar înlocuirea necesară.

  1. Rezolvați ecuația:
  2. Găsiți rădăcinile ecuației:
  3. Rezolvați ecuația: . Găsiți toate rădăcinile acestei ecuații care aparțin segmentului:

Acum pentru câteva explicații și răspunsuri rapide:

  1. Aici este suficient să observăm că și. Atunci ecuația inițială va fi echivalentă cu aceasta: Această ecuație rezolvat prin înlocuire Faceți singur calcule suplimentare. În final, sarcina ta se va reduce la rezolvarea celei mai simple trigonometrice (în funcție de sinus sau cosinus). Decizie exemple similare vom explora în alte secțiuni.
  2. Aici puteți face chiar și fără o înlocuire: mutați pur și simplu subtrahendul la dreapta și reprezentați ambele baze prin puteri de doi: și apoi treceți imediat la ecuația pătratică.
  3. A treia ecuație este de asemenea rezolvată într-un mod destul de standard: imaginați-vă cum. Apoi, înlocuind obținem o ecuație pătratică: atunci,

    Știți deja ce este un logaritm? Nu? Atunci citeste urgent subiectul!

    Prima rădăcină, evident, nu aparține segmentului, iar a doua este de neînțeles! Dar vom afla foarte curând! Deoarece, atunci (aceasta este o proprietate a logaritmului!) Să comparăm:

    Scădem din ambele părți, atunci obținem:

    Partea stângă poate fi reprezentată ca:

    înmulțiți ambele părți cu:

    poate fi înmulțit cu, atunci

    Atunci să comparăm:

    de atunci:

    Apoi a doua rădăcină aparține intervalului dorit

    Răspuns:

Cum vedeți, selectarea rădăcinilor ecuațiilor exponențiale necesită suficient Cunoaștere profundă proprietățile logaritmilor, așa că vă sfătuiesc să fiți cât mai atenți când rezolvați ecuații exponențiale. După cum știți, în matematică totul este interconectat! După cum obișnuia să spună profesorul meu de matematică: „Nu poți citi matematică ca istoria peste noapte”.

De regulă, toate dificultatea în rezolvarea problemelor C1 este tocmai alegerea rădăcinilor ecuaţiei. Să exersăm cu un alt exemplu:

Este clar că ecuația în sine este rezolvată destul de simplu. După ce am făcut înlocuirea, reducem ecuația noastră inițială la următoarea:

Să ne uităm mai întâi la prima rădăcină. Compara si: de atunci. (proprietatea funcției logaritmice, la). Atunci este clar că nici prima rădăcină nu aparține intervalului nostru. Acum a doua rădăcină: . Este clar că (din moment ce funcția este în creștere). Rămâne de comparat și

de atunci, în acelaşi timp. Astfel, pot „conduce un cuier” între și. Acest cui este un număr. Prima expresie este mai mică decât și a doua este mai mare decât. Atunci a doua expresie este mai mare decât prima și rădăcina aparține intervalului.

Răspuns: .

În concluzie, să ne uităm la un alt exemplu de ecuație în care înlocuirea este mai degrabă nestandard:

Să începem imediat cu ce poți face și ce - în principiu, poți, dar e mai bine să nu faci asta. Este posibil - să reprezinte totul prin puterile lui trei, doi și șase. Unde duce? Da, și nu va duce la nimic: un amestec de grade, dintre care unele vor fi destul de greu de scăpat. Atunci de ce este nevoie? Să observăm că a Și ce ne va oferi? Și faptul că putem reduce soluția acestui exemplu la soluția unei ecuații exponențiale destul de simple! Mai întâi, să ne rescriem ecuația ca:

Acum împărțim ambele părți ale ecuației rezultate în:

Eureka! Acum putem înlocui, obținem:

Ei bine, acum este rândul tău să rezolvi problemele pentru demonstrație și le voi face doar scurte comentarii ca să nu rătăciți! Noroc!

1. Cel mai dificil! Să vezi un înlocuitor aici este oh, ce urât! Cu toate acestea, acest exemplu poate fi rezolvat complet folosind alocare pătrat plin . Pentru a o rezolva, este suficient să rețineți că:

Deci, iată înlocuitorul tău:

(Rețineți că aici, în înlocuirea noastră, nu putem arunca rădăcină negativă!!! De ce crezi?)

Acum, pentru a rezolva exemplul, trebuie să rezolvați două ecuații:

Ambele sunt rezolvate prin „înlocuirea standard” (dar al doilea într-un exemplu!)

2. Observați asta și faceți o înlocuire.

3. Extindeți numărul în factori coprimi și simplificați expresia rezultată.

4. Împărțiți numărătorul și numitorul fracției la (sau dacă preferați) și faceți înlocuirea sau.

5. Rețineți că numerele și sunt conjugate.

ECUATII EXPOZIONALE. NIVEL AVANSAT

În plus, să ne uităm la un alt mod - rezolvarea ecuațiilor exponențiale prin metoda logaritmului. Nu pot spune că soluția ecuațiilor exponențiale prin această metodă este foarte populară, dar în unele cazuri doar aceasta ne poate conduce la decizia corectă ecuația noastră. Mai ales adesea este folosit pentru a rezolva așa-numitul " ecuații mixte ': adică cele unde există funcții de diferite tipuri.

De exemplu, o ecuație ca:

în caz general poate fi rezolvată doar luând logaritmul ambelor părți (de exemplu, după bază), în care ecuația inițială se transformă în următoarea:

Să luăm în considerare următorul exemplu:

Este clar că ne interesează doar ODZ-ul funcției logaritmice. Totuși, acest lucru rezultă nu numai din ODZ al logaritmului, ci și din alt motiv. Cred că nu vă va fi greu să ghiciți care dintre ele.

Să luăm logaritmul ambelor părți ale ecuației noastre la bază:

După cum puteți vedea, luarea logaritmului ecuației noastre originale ne-a condus rapid la răspunsul corect (și frumos!). Să exersăm cu un alt exemplu:

Nici aici nu trebuie să vă faceți griji: luăm logaritmul ambelor părți ale ecuației în termeni de bază, apoi obținem:

Să facem un înlocuitor:

Totuși, am omis ceva! Ai observat unde am greșit? La urma urmei, atunci:

care nu satisface cerința (gândiți-vă de unde a venit!)

Răspuns:

Încercați să scrieți soluția ecuațiilor exponențiale de mai jos:

Acum verifică-ți soluția cu asta:

1. Logaritmăm ambele părți la bază, având în vedere că:

(a doua rădăcină nu ne convine din cauza înlocuirii)

2. Logaritmul la bază:

Să transformăm expresia rezultată în următoarea formă:

ECUATII EXPOZIONALE. SCURTĂ DESCRIERE ȘI FORMULA DE BAZĂ

ecuație exponențială

Tip ecuație:

numit cea mai simplă ecuație exponențială.

Proprietăți de grad

Abordări ale soluției

  • Reducere la aceeași bază
  • Casting la acelasi indicator grade
  • Substituție variabilă
  • Simplificați expresia și aplicați una dintre cele de mai sus.

Ecuațiile se numesc exponențiale dacă necunoscuta este conținută în exponent. Cea mai simplă ecuație exponențială are forma: a x \u003d a b, unde a> 0 și 1, x este o necunoscută.

Principalele proprietăți ale gradelor, cu ajutorul cărora se transformă ecuațiile exponențiale: a>0, b>0.

La rezolvarea ecuațiilor exponențiale se folosesc și următoarele proprietăți ale funcției exponențiale: y = a x , a > 0, a1:

Pentru a reprezenta un număr ca putere, utilizați baza identitate logaritmică: b = , a > 0, a1, b > 0.

Sarcini și teste pe tema „Ecuații exponențiale”

  • ecuații exponențiale

    Lecții: 4 Teme: 21 Teste: 1

  • ecuații exponențiale - Subiecte importante a repeta examenul la matematică

    Sarcini: 14

  • Sisteme de ecuații exponențiale și logaritmice - Demonstrativ și funcții logaritmice Clasa a 11a

    Lecții: 1 Teme: 15 Teste: 1

  • §2.1. Rezolvarea ecuațiilor exponențiale

    Lecții: 1 Teme: 27

  • §7 Ecuații și inegalități exponențiale și logaritmice - Secțiunea 5. Funcții exponențiale și logaritmice Gradul 10

    Lecții: 1 Teme: 17

Pentru solutie de succes Ecuații exponențiale Trebuie să cunoașteți proprietățile de bază ale puterilor, proprietățile funcției exponențiale, identitatea logaritmică de bază.

La rezolvarea ecuațiilor exponențiale se folosesc două metode principale:

  1. trecerea de la ecuația a f(x) = a g(x) la ecuația f(x) = g(x);
  2. introducerea de noi linii.

Exemple.

1. Ecuații care se reduc la cel mai simplu. Ele se rezolvă prin aducerea ambelor părți ale ecuației la o putere cu aceeași bază.

3x \u003d 9x - 2.

Decizie:

3 x \u003d (3 2) x - 2;
3x = 3 2x - 4;
x = 2x -4;
x=4.

Răspuns: 4.

2. Ecuații rezolvate prin paranteza factorului comun.

Decizie:

3x - 3x - 2 = 24
3 x - 2 (3 2 - 1) = 24
3 x - 2 x 8 = 24
3 x - 2 = 3
x - 2 = 1
x=3.

Răspuns: 3.

3. Ecuații rezolvate prin modificarea variabilei.

Decizie:

2 2x + 2 x - 12 = 0
Notăm 2 x \u003d y.
y 2 + y - 12 = 0
y 1 = - 4; y 2 = 3.
a) 2 x = - 4. Ecuația nu are soluții, deoarece 2 x > 0.
b) 2 x = 3; 2 x = 2 log 2 3 ; x = log 2 3.

Răspuns: log 2 3.

4. Ecuații care conțin puteri cu două baze diferite (nereductibile una la alta).

3 × 2 x + 1 - 2 × 5 x - 2 \u003d 5 x + 2 x - 2.

3 x 2 x + 1 - 2 x - 2 = 5 x - 2 x 5 x - 2
2 x - 2 × 23 = 5 x - 2
×23
2 x - 2 = 5 x - 2
(5/2) x– 2 = 1
x - 2 = 0
x = 2.

Răspuns: 2.

5. Ecuații care sunt omogene față de a x și b x .

Forma generală: .

9 x + 4 x = 2,5 x 6 x .

Decizie:

3 2x – 2,5 × 2x × 3x +2 2x = 0 |: 2 2x > 0
(3/2) 2x - 2,5 × (3/2) x + 1 = 0.
Notați (3/2) x = y.
y 2 - 2,5y + 1 \u003d 0,
y 1 = 2; y2 = ½.

Răspuns: log 3/2 2; - jurnal 3/2 2.

Pe canalul de youtube al site-ului nostru pentru a fi la curent cu toate noile lecții video.

Pentru început, să ne amintim formule de bază grade și proprietățile acestora.

Produsul unui număr A se întâmplă de n ori, putem scrie această expresie ca a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n / a m \u003d a n - m

Putere sau ecuații exponențiale- Acestea sunt ecuații în care variabilele sunt în puteri (sau exponenți), iar baza este un număr.

Exemple de ecuații exponențiale:

LA acest exemplu numărul 6 este baza, este întotdeauna în partea de jos, iar variabila X grad sau măsură.

Să dăm mai multe exemple de ecuații exponențiale.
2 x *5=10
16x-4x-6=0

Acum să vedem cum se rezolvă ecuațiile exponențiale?

Să luăm o ecuație simplă:

2 x = 2 3

Un astfel de exemplu poate fi rezolvat chiar și în minte. Se poate observa că x=3. La urma urmei, astfel încât stânga și partea dreaptă au fost egale, trebuie să puneți numărul 3 în loc de x.
Acum să vedem cum ar trebui luată această decizie:

2 x = 2 3
x = 3

Pentru a rezolva această ecuație, am eliminat aceleași temeiuri(adică doi) și a notat ce a mai rămas, acestea sunt grade. Am primit răspunsul pe care îl căutam.

Acum să rezumăm soluția noastră.

Algoritm pentru rezolvarea ecuației exponențiale:
1. Trebuie verificat aceeași fie că bazele ecuației din dreapta și din stânga. Dacă motivele nu sunt aceleași, căutăm opțiuni pentru a rezolva acest exemplu.
2. După ce bazele sunt aceleași, echivala grad și rezolvați noua ecuație rezultată.

Acum să rezolvăm câteva exemple:

Să începem simplu.

Bazele din stânga și din dreapta sunt egale cu numărul 2, ceea ce înseamnă că putem arunca baza și echivalăm gradele lor.

x+2=4 Cea mai simplă ecuație a rezultat.
x=4 - 2
x=2
Răspuns: x=2

LA exemplul următor Se poate observa că bazele sunt diferite - 3 și 9.

3 3x - 9 x + 8 = 0

Pentru început, le transferăm pe cele nouă în partea dreaptă, obținem:

Acum trebuie să faci aceleași baze. Știm că 9=3 2 . Să folosim formula puterii (a n) m = a nm .

3 3x \u003d (3 2) x + 8

Obținem 9 x + 8 \u003d (3 2) x + 8 \u003d 3 2 x + 16

3 3x \u003d 3 2x + 16 acum puteți vedea că în stânga și partea dreapta bazele sunt aceleași și egale cu trei, ceea ce înseamnă că le putem elimina și echivala gradele.

3x=2x+16 are cea mai simplă ecuație
3x-2x=16
x=16
Răspuns: x=16.

Să ne uităm la următorul exemplu:

2 2x + 4 - 10 4 x \u003d 2 4

În primul rând, ne uităm la baze, bazele sunt diferite două și patru. Și trebuie să fim la fel. Transformăm cvadruplul după formula (a n) m = a nm .

4 x = (2 2) x = 2 2x

Și folosim, de asemenea, o formulă a n a m = a n + m:

2 2x+4 = 2 2x 2 4

Adăugați la ecuație:

2 2x 2 4 - 10 2 2x = 24

Am dat un exemplu din aceleași motive. Dar alte numere 10 și 24 interferează cu noi. Ce să facem cu ele? Dacă te uiți cu atenție, poți vedea că în partea stângă repetăm ​​2 2x, iată răspunsul - putem pune 2 2x din paranteze:

2 2x (2 4 - 10) = 24

Să calculăm expresia dintre paranteze:

2 4 — 10 = 16 — 10 = 6

Împărțim întreaga ecuație la 6:

Imaginează-ți 4=2 2:

2 2x \u003d 2 2 baze sunt aceleași, aruncați-le și egalați gradele.
2x \u003d 2 s-a dovedit a fi cea mai simplă ecuație. Împărțim la 2, obținem
x = 1
Răspuns: x = 1.

Să rezolvăm ecuația:

9 x - 12*3 x +27= 0

Să transformăm:
9 x = (3 2) x = 3 2x

Obtinem ecuatia:
3 2x - 12 3 x +27 = 0

Bazele sunt aceleași pentru noi, egale cu trei. În acest exemplu, se poate observa că primul triplu are un grad de două ori (2x) decât al doilea (doar x). În acest caz, puteți decide metoda de substitutie. Număr cu cel mai mic grad a inlocui:

Atunci 3 2x \u003d (3 x) 2 \u003d t 2

Inlocuim toate gradele cu x din ecuatie cu t:

t 2 - 12t + 27 \u003d 0
Obținem o ecuație pătratică. Rezolvăm prin discriminant, obținem:
D=144-108=36
t1 = 9
t2 = 3

Înapoi la Variabilă X.

Luăm t 1:
t 1 \u003d 9 \u003d 3 x

Acesta este,

3 x = 9
3 x = 3 2
x 1 = 2

S-a găsit o rădăcină. Îl căutăm pe al doilea, din t 2:
t 2 \u003d 3 \u003d 3 x
3 x = 3 1
x 2 = 1
Răspuns: x 1 \u003d 2; x 2 = 1.

Pe site puteti in sectiunea AJUTA LA DECIZI sa puneti intrebari de interes, va vom raspunde cu siguranta.

Alăturați-vă unui grup