primäres Kohlenhydrat. Kohlenhydrate: bedeutet, in welche Gruppen Kohlenhydrate eingeteilt werden und welche Rolle sie im menschlichen Körper spielen

Kohlenhydrate sind organische Verbindungen aus Kohlenstoff und Sauerstoff. Es gibt einfache Kohlenhydrate oder Monosaccharide, wie Glucose, und komplexe oder Polysaccharide, die in niedrigere unterteilt werden und wenige Reste enthalten. einfache Kohlenhydrate, wie Disaccharide und höher, mit sehr große Moleküle aus vielen Resten einfacher Kohlenhydrate. In tierischen Organismen beträgt der Kohlenhydratgehalt etwa 2 % Trockengewicht.

Der durchschnittliche Tagesbedarf eines Erwachsenen an Kohlenhydraten beträgt 500 g und bei intensiver Muskelarbeit 700-1000 g.

Die Menge an Kohlenhydraten pro Tag sollte 60 Gewichtsprozent und 56 Gewichtsprozent betragen. gesamt Lebensmittel.

Glukose ist im Blut enthalten, in dem seine Menge konstant gehalten wird (0,1-0,12%). Nach der Absorption im Darm werden Monosaccharide vom Blut dorthin transportiert, wo die Synthese von Glykogen aus Monosacchariden, die Teil des Zytoplasmas sind, stattfindet. Glykogenspeicher werden hauptsächlich in den Muskeln und in der Leber gespeichert.

Die Gesamtmenge an Glykogen in einem 70 kg schweren menschlichen Körper beträgt etwa 375 g, davon 245 g in den Muskeln, 110 g (bis 150 g) in der Leber, 20 g im Blut und anderen Körperflüssigkeiten der Körper einer trainierten Person, Glykogen ist 40 -50% mehr als untrainierte.

Kohlenhydrate - Hauptquelle Energie für das Leben und Arbeiten des Körpers.

Im Körper werden Kohlenhydrate unter sauerstofffreien (anaeroben) Bedingungen zu Milchsäure abgebaut, wodurch Energie freigesetzt wird. Dieser Vorgang wird Glykolyse genannt. Unter Beteiligung von Sauerstoff (aerobe Bedingungen) werden sie in Kohlendioxid gespalten und setzen dabei deutlich mehr Energie frei. groß biologische Bedeutung hat einen anaeroben Abbau von Kohlenhydraten unter Beteiligung von Phosphorsäure - Phosphorylierung.

Die Phosphorylierung von Glukose erfolgt in der Leber unter Beteiligung von Enzymen. Die Glukosequelle können Aminosäuren und Fette sein. In der Leber werden aus vorphosphorylierter Glukose riesige Polysaccharidmoleküle, Glykogen, gebildet. Die Menge an Glykogen in der menschlichen Leber hängt von der Art der Ernährung und der Muskelaktivität ab. Unter Beteiligung anderer Enzyme in der Leber wird Glykogen zur Glukose-Zucker-Bildung abgebaut. Der Glykogenabbau in Leber und Skelettmuskulatur bei Fasten und Muskelarbeit geht mit einer gleichzeitigen Glykogensynthese einher. Glukose, die in der Leber gebildet wird, dringt ein und wird mit ihr an alle Zellen und Gewebe abgegeben.

Nur ein kleiner Teil der Proteine ​​und Fette setzt beim Prozess des desmolytischen Abbaus Energie frei und dient somit als direkte Energiequelle. Ein erheblicher Teil der Proteine ​​und Fette wird noch vor dem vollständigen Zerfall erst in den Muskeln in Kohlenhydrate umgewandelt. Darüber hinaus gelangen die Hydrolyseprodukte von Proteinen und Fetten aus dem Verdauungskanal in die Leber, wo Aminosäuren und Fette in Glukose umgewandelt werden. Dieser Vorgang wird als Glukoneogenese bezeichnet. Die Hauptquelle der Glukosebildung in der Leber ist Glykogen, ein viel kleinerer Teil der Glukose wird durch Gluconeogenese gewonnen, bei der die Bildung von Ketonkörpern verzögert wird. Somit beeinflusst der Kohlenhydratstoffwechsel den Stoffwechsel und das Wasser erheblich.

Wenn der Glukoseverbrauch durch arbeitende Muskeln um das 5- bis 8-fache ansteigt, wird Glykogen in der Leber aus Fetten und Proteinen gebildet.

Im Gegensatz zu Proteinen und Fetten werden Kohlenhydrate leicht abgebaut, sodass sie vom Körper schnell und mit hohem Energieaufwand mobilisiert werden (Muskelarbeit, Schmerzgefühle, Angst, Wut usw.). Der Abbau von Kohlenhydraten hält den Körper stabil und ist die Hauptenergiequelle für die Muskeln. Kohlenhydrate sind für die normale Funktion des Nervensystems unerlässlich. Eine Abnahme des Blutzuckers führt zu einem Abfall der Körpertemperatur, Schwäche und Ermüdung der Muskeln und Störungen der Nervenaktivität.

Im Gewebe wird nur ein sehr kleiner Teil der vom Blut gelieferten Glukose unter Energiefreisetzung verbraucht. Die Hauptquelle des Kohlenhydratstoffwechsels in Geweben ist Glykogen, das zuvor aus Glukose synthetisiert wurde.

Während der Arbeit der Muskeln - der Hauptverbraucher von Kohlenhydraten - werden die Glykogenreserven in ihnen verbraucht, und erst nachdem diese Reserven vollständig aufgebraucht sind, beginnt die direkte Verwendung von Glukose, die durch das Blut an die Muskeln geliefert wird. Dabei wird Glukose verbraucht, die aus Glykogenspeichern in der Leber gebildet wird. Nach der Arbeit erneuern die Muskeln ihre Versorgung mit Glykogen, indem sie es aus Blutzucker und der Leber synthetisieren - aufgrund von absorbierten Monosacchariden im Verdauungstrakt und dem Abbau von Proteinen und Fetten.

Beispielsweise wird bei einem Anstieg des Blutzuckers über 0,15-0,16% aufgrund seines reichlichen Gehalts an Nahrungsmitteln, der als Nahrungsmittelhyperglykämie bezeichnet wird, dieser mit Urin - Glykosurie - aus dem Körper ausgeschieden.

Andererseits nimmt der Glukosespiegel im Blut auch bei längerem Fasten nicht ab, da Glukose während des Abbaus von Glykogen in den Geweben in das Blut gelangt.

Kurze Beschreibung der Zusammensetzung, Struktur und ökologischen Rolle von Kohlenhydraten

Kohlenhydrate sind organische Substanzen, die aus Kohlenstoff, Wasserstoff und Sauerstoff bestehen und die allgemeine Formel C n (H 2 O) m (für die überwiegende Mehrheit dieser Substanzen) haben.

Der Wert von n ist entweder gleich m (für Monosaccharide) oder größer als m (für andere Klassen von Kohlenhydraten). Obenstehendes allgemeine Formel entspricht nicht der Desoxyribose.

Kohlenhydrate werden in Monosaccharide, Di(Oligo)saccharide und Polysaccharide unterteilt. Nachfolgend finden Sie eine kurze Beschreibung einzelne Vertreter jede Klasse von Kohlenhydraten.

Kurze Beschreibung von Monosacchariden

Monosaccharide sind Kohlenhydrate, deren allgemeine Formel C n (H 2 O) n ist (Ausnahme ist Desoxyribose).

Klassifikationen von Monosacchariden

Monosaccharide sind ziemlich umfangreich und komplexe Gruppe Verbindungen, so haben sie komplexe Klassifizierung aus verschiedenen Gründen:

1) nach der Anzahl der in einem Monosaccharidmolekül enthaltenen Kohlenstoffe werden Tetrosen, Pentosen, Hexosen, Heptosen unterschieden; größte praktischer Wert Pentosen und Hexosen haben;

2) Monosaccharide werden nach funktionellen Gruppen in Ketosen und Aldosen unterteilt;

3) nach der Anzahl der im zyklischen Monosaccharidmolekül enthaltenen Atome werden Pyranosen (enthalten 6 Atome) und Furanosen (enthalten 5 Atome) unterschieden;

4) Aufgrund der räumlichen Anordnung des "glucosidischen" Hydroxids (dieses Hydroxid wird durch Anhängen eines Wasserstoffatoms an den Sauerstoff der Carbonylgruppe erhalten) werden Monosaccharide in Alpha- und Beta-Formen unterteilt. Werfen wir einen Blick auf einige der wichtigsten Monosaccharide von größter biologischer und ökologischer Bedeutung in der Natur.

Kurze Beschreibung der Pentosen

Pentosen sind Monosaccharide, deren Molekül 5 Kohlenstoffatome enthält. Diese Substanzen können sowohl offenkettige als auch zyklische, Aldosen und Ketosen, Alpha- und Beta-Verbindungen sein. Unter ihnen sind Ribose und Desoxyribose von größter praktischer Bedeutung.

Ribose-Formel in Gesamtansicht C 5 H 10 O 5. Ribose ist eine der Substanzen, aus denen Ribonukleotide synthetisiert werden, aus denen anschließend verschiedene Ribonukleinsäuren (RNA) gewonnen werden. Daher ist die Furanose (5-gliedrige) Alpha-Form der Ribose von größter Bedeutung (in Formeln wird RNA in Form eines regelmäßigen Fünfecks dargestellt).

Die Formel von Desoxyribose in allgemeiner Form ist C 5 H 10 O 4. Desoxyribose ist eine der Substanzen, aus denen Desoxyribonukleotide in Organismen synthetisiert werden; Letztere sind die Ausgangsmaterialien für die Synthese von Desoxyribo Nukleinsäuren(DNA). Daher ist die zyklische Alpha-Form der Desoxyribose, der am zweiten Kohlenstoffatom im Zyklus ein Hydroxid fehlt, von größter Bedeutung.

Die offenkettigen Formen von Ribose und Desoxyribose sind Aldosen, dh sie enthalten 4 (3) Hydroxidgruppen und eine Aldehydgruppe. Beim vollständigen Abbau von Nukleinsäuren werden Ribose und Desoxyribose zu Kohlendioxid und Wasser oxidiert; Dieser Vorgang wird von der Freisetzung von Energie begleitet.

Kurze Beschreibung der Hexosen

Hexosen sind Monosaccharide, deren Moleküle sechs Kohlenstoffatome enthalten. Die allgemeine Formel von Hexosen ist C 6 (H 2 O) 6 oder C 6 H 12 O 6. Alle Varianten von Hexosen sind Isomere entsprechend der obigen Formel. Unter Hexosen gibt es Ketosen und Aldosen und Alpha- und Betaformen von Molekülen, offenkettige und zyklische Formen, Pyranose- und zyklische Furanoseformen von Molekülen. Von größter Bedeutung in der Natur sind Glucose und Fructose, die im Folgenden kurz besprochen werden.

1. Glukose. Wie jede Hexose hat es die allgemeine Formel C 6 H 12 O 6 . Es gehört zu den Aldosen, d.h. es enthält eine funktionelle Aldehydgruppe und 5 Hydroxidgruppen (charakteristisch für Alkohole), daher ist Glucose ein mehratomiger Aldehydalkohol (diese Gruppen sind in offenkettiger Form enthalten, die Aldehydgruppe fehlt im cyclischen bilden, da es sich in ein Hydroxid umwandelt, eine Gruppe namens "Glucosid-Hydroxid"). Die zyklische Form kann entweder fünfgliedrig (Furanose) oder sechsgliedrig (Pyranose) sein. Die wichtigste in der Natur ist die Pyranoseform des Glucosemoleküls. Die cyclischen Pyranose- und Furanoseformen können entweder Alpha- oder Betaformen sein, abhängig von der Position des glucosidischen Hydroxids relativ zu anderen Hydroxidgruppen im Molekül.

Aufgrund seiner physikalischen Eigenschaften ist Glukose ein weißer, kristalliner Feststoff mit süßem Geschmack (die Intensität dieses Geschmacks ähnelt der von Saccharose), der in Wasser gut löslich ist und übersättigte Lösungen („Sirupe“) bilden kann. Da das Glucosemolekül asymmetrische Kohlenstoffatome enthält (d. h. Atome, die mit vier verschiedenen Radikalen verbunden sind), haben Glucoselösungen optische Aktivität, daher werden D-Glucose und L-Glucose unterschieden, die unterschiedliche biologische Aktivität haben.

Aus biologischer Sicht ist die Fähigkeit von Glucose, leicht nach dem Schema zu oxidieren, am wichtigsten:

С 6 Н 12 O 6 (Glucose) → (Zwischenstufen) → 6СO 2 + 6Н 2 O.

Glukose ist eine biologisch wichtige Verbindung, da sie vom Körper durch ihre Oxidation als universeller Nährstoff und leicht verfügbare Energiequelle verwendet wird.

2. Fruktose. Dies ist Ketose, seine allgemeine Formel ist C 6 H 12 O 6, dh es ist ein Isomer von Glucose, es ist durch offenkettige und zyklische Formen gekennzeichnet. Das wichtigste ist Beta-B-Fructofuranose oder kurz Beta-Fructose. Saccharose wird aus Beta-Fructose und Alpha-Glucose hergestellt. Unter bestimmten Bedingungen kann Fructose während der Isomerisierungsreaktion in Glucose umgewandelt werden. Fruktose hat ähnliche physikalische Eigenschaften wie Glukose, ist aber süßer als sie.

Kurze Beschreibung von Disacchariden

Disaccharide sind Produkte der Dikondensationsreaktion gleicher oder verschiedener Moleküle von Monosacchariden.

Disaccharide sind eine der Arten von Oligosacchariden (eine kleine Anzahl von Monosaccharidmolekülen (gleich oder verschieden) ist an der Bildung ihrer Moleküle beteiligt.

Der wichtigste Vertreter der Disaccharide ist Saccharose (Rüben- oder Rohrzucker). Saccharose ist ein Produkt der Wechselwirkung von Alpha-D-Glucopyranose (Alpha-Glucose) und Beta-D-Fructofuranose (Beta-Fructose). Seine allgemeine Formel ist C 12 H 22 O 11. Saccharose ist eines der vielen Isomere von Disacchariden.

Es ist weiß kristalline Substanz, der in verschiedenen Zuständen vorliegt: grobkörnig ("Zuckerköpfe"), feinkristallin (Kristallzucker), amorph (Puderzucker). Es löst sich gut in Wasser auf, besonders in heißem Wasser (im Vergleich zu heißes Wasser, die Löslichkeit von Saccharose in kaltem Wasser ist relativ gering), so dass Saccharose in der Lage ist, "übersättigte Lösungen" zu bilden - es entstehen Sirupe, die "kandiert", d.h. es entstehen feinkristalline Suspensionen. Konzentrierte Saccharoselösungen können spezielle glasartige Systeme bilden - Karamell, das vom Menschen verwendet wird, um bestimmte Arten von Süßigkeiten zu erhalten. Saccharose ist eine süße Substanz, aber die Intensität des süßen Geschmacks ist geringer als die von Fructose.

Die wichtigste chemische Eigenschaft von Saccharose ist ihre Fähigkeit zur Hydrolyse, bei der Alpha-Glucose und Beta-Fructose gebildet werden, die Koeingehen.

Für den Menschen ist Saccharose eines der wichtigsten Lebensmittel, da sie eine Quelle für Glukose ist. Ein übermäßiger Konsum von Saccharose ist jedoch schädlich, da er zu einer Störung des Kohlenhydratstoffwechsels führt, die mit dem Auftreten von Krankheiten einhergeht: Diabetes, Zahnerkrankungen, Fettleibigkeit.

Allgemeine Eigenschaften von Polysacchariden

Polysaccharide genannt werden natürliche Polymere, die Produkte der Polykondensationsreaktion von Monosacchariden sind. Als Monomere zur Bildung von Polysacchariden können Pentosen, Hexosen und andere Monosaccharide verwendet werden. Von praktischer Bedeutung sind die Hexose-Polykondensationsprodukte. Es sind auch Polysaccharide bekannt, deren Moleküle Stickstoffatome enthalten, wie beispielsweise Chitin.

Auf Hexose basierende Polysaccharide haben die allgemeine Formel (C 6 H 10 O 5)n. Sie sind in Wasser unlöslich, während einige von ihnen kolloidale Lösungen bilden können. Die wichtigsten dieser Polysaccharide sind verschiedene Sorten pflanzlicher und tierischer Stärke (letztere werden als Glykogen bezeichnet) sowie Sorten von Zellulose (Faser).

Allgemeine Merkmale der Eigenschaften und ökologische Rolle von Stärke

Stärke ist ein Polysaccharid, das ein Produkt der Polykondensationsreaktion von Alpha-Glucose (Alpha-D-Glucopyranose) ist. Nach Herkunft werden pflanzliche und tierische Stärken unterschieden. Tierische Stärken werden Glykogen genannt. Stärkemoleküle haben zwar im Allgemeinen eine gemeinsame Struktur, dieselbe Zusammensetzung, aber die individuellen Eigenschaften von Stärke, die aus verschiedenen Pflanzen gewonnen wird, sind unterschiedlich. Kartoffelstärke unterscheidet sich also von Maisstärke usw. Aber alle Stärkesorten haben gemeinsame Eigenschaften. Dies sind feste, weiße, feinkristalline oder amorphe Substanzen, die sich „spröde“ anfühlen, in Wasser unlöslich sind, aber in heißem Wasser kolloidale Lösungen bilden können, die auch beim Abkühlen ihre Stabilität behalten. Stärke bildet sowohl Sole (z. B. flüssiges Gelee) als auch Gele (z. B. Gelee mit hohem Stärkegehalt ist eine gallertartige Masse, die mit einem Messer geschnitten werden kann).

Die Fähigkeit der Stärke, kolloidale Lösungen zu bilden, hängt mit der Kugelförmigkeit ihrer Moleküle zusammen (das Molekül wird sozusagen zu einer Kugel gerollt). Bei Kontakt mit warmem oder heißem Wasser dringen Wassermoleküle zwischen die Windungen von Stärkemolekülen ein, das Molekül nimmt an Volumen zu und die Dichte der Substanz nimmt ab, was zum Übergang von Stärkemolekülen in einen für kolloidale Systeme charakteristischen beweglichen Zustand führt. Die allgemeine Formel von Stärke lautet: (C 6 H 10 O 5) n, die Moleküle dieser Substanz haben zwei Arten, von denen eine Amylose genannt wird (es gibt keine Seitenketten in diesem Molekül) und die andere Amylopektin (das Moleküle haben Seitenketten, bei denen die Verbindung über 1 - 6 Kohlenstoffatome durch eine Sauerstoffbrücke erfolgt).

Die wichtigste chemische Eigenschaft, die die biologische und ökologische Rolle von Stärke bestimmt, ist ihre Fähigkeit zur Hydrolyse, die letztendlich entweder das Disaccharid Maltose oder Alpha-Glucose bildet (dies ist das Endprodukt der Stärkehydrolyse):

(C 6 H 10 O 5) n + nH 2 O → nC 6 H 12 O 6 (alpha-Glucose).

Der Prozess findet in Organismen unter der Wirkung einer ganzen Gruppe von Enzymen statt. Durch diesen Prozess wird der Körper mit Glukose angereichert – der wichtigsten Nährstoffverbindung.

Eine qualitative Reaktion auf Stärke ist ihre Wechselwirkung mit Jod, bei der eine rotviolette Farbe auftritt. Diese Reaktion wird zum Nachweis von Stärke in verschiedenen Systemen verwendet.

Die biologische und ökologische Rolle der Stärke ist ziemlich groß. Dies ist einer der wichtigsten Speicherstoffe in pflanzlichen Organismen, beispielsweise in Pflanzen aus der Familie der Getreidegewächse. Für Tiere ist Stärke die wichtigste trophische Substanz.

Kurze Beschreibung der Eigenschaften und der ökologischen und biologischen Rolle von Cellulose (Faser)

Cellulose (Faser) ist ein Polysaccharid, das ein Produkt der Polykondensationsreaktion von Beta-Glucose (Beta-D-Glucopyranose) ist. Seine allgemeine Formel ist (C 6 H 10 O 5) n. Im Gegensatz zu Stärke sind Zellulosemoleküle streng linear und haben eine fibrilläre ("fadenförmige") Struktur. Der Unterschied in der Struktur von Stärke- und Zellulosemolekülen erklärt den Unterschied in ihrer biologischen und ökologischen Rolle. Cellulose ist weder eine Reserve- noch eine trophische Substanz, da sie von den meisten Organismen nicht verdaut werden kann (mit Ausnahme einiger Bakterienarten, die Cellulose hydrolysieren und Beta-Glucose assimilieren können). Cellulose ist nicht in der Lage, kolloidale Lösungen zu bilden, aber sie kann mechanisch starke fadenförmige Strukturen bilden, die Schutz für einzelne Zellorganellen und die mechanische Festigkeit verschiedener Pflanzengewebe bieten. Cellulose wird wie Stärke unter bestimmten Bedingungen hydrolysiert, und das Endprodukt ihrer Hydrolyse ist Beta-Glucose (Beta-D-Glucopyranose). In der Natur spielt dieser Prozess eine relativ geringe Rolle (aber er ermöglicht der Biosphäre, Zellulose zu „assimilieren“).

(C 6 H 10 O 5) n (Faser) + n (H 2 O) → n (C 6 H 12 O 6) (Beta-Glucose oder Beta-D-Glucopyranose) (bei unvollständiger Hydrolyse der Faser, Bildung von ein lösliches Disaccharid ist möglich - Cellobiose).

BEIM natürliche Bedingungen Faser (nach dem Absterben von Pflanzen) wird zersetzt, wodurch die Bildung verschiedener Verbindungen möglich ist. Durch diesen Prozess entsteht Humus (ein organischer Bestandteil des Bodens), Verschiedene Arten Kohle (Öl und Kohle werden aus den toten Überresten verschiedener tierischer und pflanzlicher Organismen in Abwesenheit gebildet, dh unter anaeroben Bedingungen ist der gesamte Komplex organischer Substanzen, einschließlich Kohlenhydrate, an ihrer Bildung beteiligt).

Die ökologische und biologische Rolle von Fasern besteht darin, dass sie: a) schützend sind; b) mechanisch; c) eine Bildungsverbindung (für einige Bakterien erfüllt sie eine trophische Funktion). Die toten Überreste von Pflanzenorganismen sind ein Substrat für einige Organismen - Insekten, Pilze, verschiedene Mikroorganismen.

Kurze Beschreibung der ökologischen und biologischen Rolle von Kohlenhydraten

Wenn wir das obige Material in Bezug auf die Eigenschaften von Kohlenhydraten zusammenfassen, können wir die folgenden Schlussfolgerungen über ihre ökologische und biologische Rolle ziehen.

1. Sie erfüllen sowohl in Zellen als auch im gesamten Körper eine aufbauende Funktion, da sie Teil der zell- und gewebebildenden Strukturen sind (dies gilt insbesondere für Pflanzen und Pilze), z. B. Zellmembranen, verschiedene Membranen usw. Darüber hinaus sind Kohlenhydrate an der Bildung biologisch notwendiger Substanzen beteiligt, die eine Reihe von Strukturen bilden, beispielsweise an der Bildung von Nukleinsäuren, die die Basis von Chromosomen bilden; Kohlenhydrate sind Teil komplexer Proteine ​​- Glykoproteine, die bei der Bildung von besonderer Bedeutung sind Zellstrukturen und Interzellularsubstanz.

2. Die wichtigste Funktion von Kohlenhydraten ist die trophische Funktion, die darin besteht, dass viele von ihnen Nahrungsprodukte heterotropher Organismen sind (Glukose, Fruktose, Stärke, Saccharose, Maltose, Laktose usw.). Diese Substanzen bilden in Kombination mit anderen Verbindungen Nahrungsprodukte, die vom Menschen verwendet werden (verschiedene Getreide; Früchte und Samen einzelner Pflanzen, die Kohlenhydrate in ihrer Zusammensetzung enthalten, sind Nahrung für Vögel, und Monosaccharide, die in einen Kreislauf verschiedener Umwandlungen eintreten, tragen dazu bei zur Bildung ihrer eigenen Kohlenhydrate, charakteristisch für gegebenen Organismus, und andere organobiochemische Verbindungen (Fette, Aminosäuren (aber nicht ihre Proteine), Nukleinsäuren usw.).

3. Kohlenhydrate zeichnen sich auch durch eine Energiefunktion aus, die darin besteht, dass Monosaccharide (insbesondere Glucose) in Organismen leicht oxidiert werden (das Endprodukt der Oxidation ist CO 2 und H 2 O), während eine große Menge an Energie vorhanden ist freigesetzt, begleitet von der Synthese von ATP.

4. Sie haben auch eine Schutzfunktion, die darin besteht, dass aus Kohlenhydraten Strukturen (und bestimmte Organellen in der Zelle) entstehen, die entweder die Zelle oder den Körper als Ganzes vor verschiedenen Schäden schützen, einschließlich mechanischer (z. B. Chitinhüllen). von Insekten, die äußere Skelette bilden, Zellmembranen von Pflanzen und vielen Pilzen, einschließlich Zellulose usw.).

5. Große Rolle spielen die mechanischen und formgebenden Funktionen von Kohlenhydraten, das heißt die Fähigkeit, Strukturen, die entweder durch Kohlenhydrate oder in Kombination mit anderen Verbindungen gebildet werden, dem Körper zu verleihen bestimmte Form und machen sie mechanisch stark; so bilden die Zellmembranen des mechanischen Gewebes und der Gefäße des Xylems das Gerüst (inneres Skelett) von Gehölzen, Sträuchern und krautigen Pflanzen, das äußere Skelett von Insekten wird von Chitin gebildet usw.

Kurze Beschreibung des Kohlenhydratstoffwechsels in einem heterotrophen Organismus (am Beispiel eines menschlichen Körpers)

Eine wichtige Rolle für das Verständnis von Stoffwechselprozessen spielt die Kenntnis der Umwandlungen, die Kohlenhydrate in heterotrophen Organismen durchlaufen. Im menschlichen Körper ist dieser Prozess durch die folgende schematische Beschreibung gekennzeichnet.

Kohlenhydrate in der Nahrung gelangen über den Mund in den Körper. Monozucker rein Verdauungstrakt werden praktisch nicht umgewandelt, Disaccharide werden zu Monosacchariden hydrolysiert und Polysaccharide werden ziemlich erheblich umgewandelt (dies gilt für Polysaccharide, die vom Körper verzehrt werden, und Kohlenhydrate, die keine Lebensmittel sind, z. B. Cellulose, einige Pektine, werden entfernt den Körper mit Kotmassen).

BEIM Mundhöhle Lebensmittel werden zerkleinert und homogenisiert (werden homogener als vor dem Eintritt). Die Nahrung wird durch Speichel beeinflusst, der von den Speicheldrüsen abgesondert wird. Es enthält Ptyalin und hat alkalische Reaktion Medium, wodurch die primäre Hydrolyse von Polysacchariden beginnt, was zur Bildung von Oligosacchariden (Kohlenhydraten mit einem kleinen n-Wert) führt.

Ein Teil der Stärke kann sich sogar in Disaccharide umwandeln, was bei längerem Kauen von Brot zu sehen ist (saures Schwarzbrot wird süß).

Gekaute Nahrung, reichlich mit Speichel behandelt und von den Zähnen zerkleinert, gelangt in Form eines Nahrungsklumpens durch die Speiseröhre in den Magen, wo sie dem Magensaft mit einer Säurereaktion des Mediums ausgesetzt wird, das Enzyme enthält, die auf Proteine ​​​​und Nukleinsäuren einwirken. Bei Kohlenhydraten passiert im Magen fast nichts.

Dann gelangt der Nahrungsbrei in den ersten Darmabschnitt (Dünndarm), beginnend mit dem Zwölffingerdarm. Es erhält Pankreassaft (Pankreassekret), der einen Enzymkomplex enthält, der die Verdauung von Kohlenhydraten fördert. Kohlenhydrate werden in Monosaccharide umgewandelt, die wasserlöslich und resorbierbar sind. Kohlenhydrate aus der Nahrung werden schließlich im Dünndarm verdaut, und in dem Teil, in dem sich die Zotten befinden, werden sie in das Blut aufgenommen und gelangen in das Kreislaufsystem.

Mit dem Blutfluss werden Monosaccharide zu verschiedenen Geweben und Zellen des Körpers transportiert, aber zuerst passiert das gesamte Blut die Leber (wo es von schädlichen Stoffwechselprodukten befreit wird). Im Blut liegen Monosaccharide hauptsächlich in Form von Alpha-Glucose vor (aber auch andere Hexose-Isomere wie Fructose sind möglich).

Wenn der Blutzucker unter dem Normalwert liegt, wird ein Teil des in der Leber enthaltenen Glykogens zu Glukose hydrolysiert. Ein Überschuss an Kohlenhydraten kennzeichnet eine schwere menschliche Krankheit - Diabetes.

Aus dem Blut gelangen Monosaccharide in die Zellen, wo die meisten von ihnen für die Oxidation (in Mitochondrien) verbraucht werden, während der ATP synthetisiert wird, das Energie in einer „bequemen“ Form für den Körper enthält. ATP wird verwendet für verschiedene Prozesse die Energie benötigen (Synthese von Substanzen, die für den Körper notwendig sind, die Durchführung physiologischer und anderer Prozesse).

Ein Teil der Kohlenhydrate in der Nahrung wird verwendet, um die Kohlenhydrate eines bestimmten Organismus zu synthetisieren, die für die Bildung von Zellstrukturen oder Verbindungen erforderlich sind, die für die Bildung von Stoffen anderer Verbindungsklassen erforderlich sind (so werden Fette, Nukleinsäuren usw . kann aus Kohlenhydraten gewonnen werden). Die Fähigkeit von Kohlenhydraten, sich in Fette umzuwandeln, ist eine der Ursachen für Fettleibigkeit - eine Krankheit, die einen Komplex anderer Krankheiten nach sich zieht.

Daher ist der Verzehr von überschüssigen Kohlenhydraten schädlich menschlicher Körper das muss bei der Organisation einer ausgewogenen Ernährung berücksichtigt werden.

Bei autotrophen Pflanzenorganismen ist der Kohlenhydratstoffwechsel etwas anders. Kohlenhydrate (Monozucker) werden vom Körper mithilfe von Sonnenenergie aus Kohlendioxid und Wasser selbst synthetisiert. Di-, Oligo- und Polysaccharide werden aus Monosacchariden synthetisiert. Ein Teil der Monosaccharide wird in die Synthese von Nukleinsäuren einbezogen. Pflanzliche Organismen verwenden eine gewisse Menge Monosaccharide (Glucose) in den Atmungsprozessen zur Oxidation, in der (wie in heterotrophen Organismen) ATP synthetisiert wird.

Kohlenhydrate in Lebensmitteln.

Kohlenhydrate sind einfach und einfach verfügbare Quelle Energie für den menschlichen Körper. Alle Kohlenhydrate sind komplexe Moleküle bestehend aus Kohlenstoff (C), Wasserstoff (H) und Sauerstoff (O), der Name kommt von den Wörtern „Kohle“ und „Wasser“.

Von den uns bekannten Hauptenergiequellen können drei unterschieden werden:

Kohlenhydrate (bis zu 2 % der Reserven)
- Fette (bis zu 80% der Reserven)
- Proteine ​​(bis zu 18 % der Bestände )

Kohlenhydrate sind der schnellste Brennstoff, der hauptsächlich zur Energieerzeugung verwendet wird, aber ihre Reserven sind sehr gering (im Durchschnitt 2 % der Gesamtmenge). Ihre Ansammlung erfordert viel Wasser (um 1 g Kohlenhydrate zu speichern, werden 4 g Wasser benötigt), und für die Ablagerung von Fetten ist kein Wasser erforderlich.

Die Hauptvorräte an Kohlenhydraten werden im Körper in Form von Glykogen (ein komplexes Kohlenhydrat) gespeichert. Der größte Teil seiner Masse befindet sich in den Muskeln (ca. 70 %), der Rest in der Leber (30 %).
Alle weiteren Funktionen der Kohlenhydrate sowie deren chemische Struktur erfährst du hier

Kohlenhydrate in Lebensmitteln werden wie folgt klassifiziert.

Arten von Kohlenhydraten.

Kohlenhydrate werden in einer einfachen Klassifizierung in zwei Hauptklassen unterteilt: einfach und komplex. Einfache wiederum bestehen aus Monosacchariden und Oligosacchariden, komplexe aus Polysacchariden und faserige.

Einfache Kohlenhydrate.


Monosaccharide

Glucose("Traubenzucker", Dextrose).
Glucose- das wichtigste aller Monosaccharide, da es die Struktureinheit der meisten diätetischen Di- und Polysaccharide ist. Glukose ist im menschlichen Körper die wichtigste und vielseitigste Energiequelle für Stoffwechselvorgänge. Alle Zellen des tierischen Körpers haben die Fähigkeit, Glukose aufzunehmen. Gleichzeitig ist die Möglichkeit, andere Energiequellen zu nutzen - zum Beispiel kostenlos Fettsäure und Glycerin, Fructose oder Milchsäure - besitzen nicht alle Körperzellen, sondern nur einige ihrer Typen. Im Stoffwechsel werden sie in einzelne Monosaccharidmoleküle zerlegt, die im Laufe mehrstufiger chemischer Reaktionen in andere Stoffe umgewandelt und schließlich zu Kohlendioxid und Wasser oxidiert werden – als „Brennstoff“ für die Zellen. Glukose ist ein wesentlicher Bestandteil des Stoffwechsels Kohlenhydrate. Bei einer Abnahme des Blutspiegels oder einer hohen Konzentration und der Unfähigkeit zur Anwendung, wie dies bei Diabetes der Fall ist, tritt Schläfrigkeit auf, und es kann zu Bewusstlosigkeit (hypoglykämisches Koma) kommen.
Glukose „in reiner Form“, als Monosaccharid, kommt in Gemüse und Obst vor. Besonders reich an Glukose sind Weintrauben - 7,8 %, Kirschen, Kirschen - 5,5 %, Himbeeren - 3,9 %, Erdbeeren - 2,7 %, Pflaumen - 2,5 %, Wassermelonen - 2,4 %. Von Gemüse findet sich die meiste Glukose im Kürbis - 2,6%, in Weißkohl- 2,6 %, in Karotten - 2,5 %.
Glucose ist weniger süß als das bekannteste Disaccharid Saccharose. Wenn wir die Süße von Saccharose mit 100 Einheiten annehmen, dann beträgt die Süße von Glukose 74 Einheiten.

Fruktose(Fruchtzucker).
Fruktose ist eine der häufigsten Kohlenhydrate Früchte. Im Gegensatz zu Glukose kann es ohne Beteiligung von Insulin (einem Hormon, das den Blutzuckerspiegel senkt) aus dem Blut in die Gewebezellen gelangen. Aus diesem Grund wird Fruktose als sicherste Quelle empfohlen. Kohlenhydrate für Diabetiker. Ein Teil der Fruktose gelangt in die Leberzellen, die sie in einen universelleren "Brennstoff" umwandeln - Glukose, so dass Fruktose auch den Blutzuckerspiegel erhöhen kann, wenn auch in viel größerem Maße. geringeren Grades als andere Einfachzucker. Fruktose wird leichter in Fett umgewandelt als Glukose. Der Hauptvorteil von Fructose besteht darin, dass sie 2,5-mal süßer als Glucose und 1,7-mal süßer als Saccharose ist. Seine Verwendung anstelle von Zucker kann die Gesamtaufnahme reduzieren Kohlenhydrate.
Die Hauptquellen für Fruktose in Lebensmitteln sind Weintrauben – 7,7 %, Äpfel – 5,5 %, Birnen – 5,2 %, Kirschen, Süßkirschen – 4,5 %, Wassermelonen – 4,3 %, schwarze Johannisbeeren – 4,2 %, Himbeeren – 3,9 %, Erdbeeren – 2,4 % %, Melonen - 2,0 %. In Gemüse ist der Fruktosegehalt gering – von 0,1 % in Rüben bis 1,6 % in Weißkohl. Fructose ist in Honig enthalten - etwa 3,7%. Fructose, die eine viel höhere Süße als Saccharose hat, verursacht nachweislich keine Karies, die durch Zuckerkonsum gefördert wird.

Galaktose(eine Art Milchzucker).
Galaktose kommt in Produkten nicht in freier Form vor. Es bildet ein Disaccharid mit Glukose - Laktose (Milchzucker) - der Hauptbestandteil Kohlenhydrat Milch und Milchprodukte.

Oligosaccharide

Saccharose(Haushaltszucker).
Saccharose ist ein Disaccharid (aus zwei Komponenten bestehendes Kohlenhydrat), das aus Glukose- und Fruktosemolekülen gebildet wird. Die häufigste Art von Saccharose ist - Zucker. Der Gehalt an Saccharose in Zucker beträgt 99,5 %, tatsächlich ist Zucker reine Saccharose.
Zucker wird im Magen-Darm-Trakt schnell abgebaut, Glucose und Fructose werden ins Blut aufgenommen und dienen als Energielieferant und wichtigste Vorstufe von Glykogen und Fetten. Er wird oft als „leerer Kalorienträger“ bezeichnet, da Zucker rein ist Kohlenhydrat und enthält keine anderen Nährstoffe, wie zum Beispiel Vitamine, Mineralsalze. Von den pflanzlichen Produkten findet sich die meiste Saccharose in Rüben – 8,6 %, Pfirsichen – 6,0 %, Melonen – 5,9 %, Pflaumen – 4,8 %, Mandarinen – 4,5 %. In Gemüse, mit Ausnahme von Rüben, wird in Karotten ein erheblicher Gehalt an Saccharose festgestellt - 3,5%. In anderen Gemüsesorten liegt der Saccharosegehalt zwischen 0,4 und 0,7 %. Neben Zucker selbst sind die Hauptquellen für Saccharose in Lebensmitteln Marmelade, Honig, Süßwaren, süße Getränke und Eiscreme.

Laktose(Milch Zucker).
Laktose durch die Wirkung des Enzyms im Magen-Darm-Trakt zu Glukose und Galaktose abgebaut Laktase. Ein Mangel an diesem Enzym führt bei manchen Menschen zu einer Milchunverträglichkeit. Unverdaute Laktose dient als guter Nährstoff für die Darmflora. Gleichzeitig ist eine reichliche Gasbildung möglich, der Magen „schwillt an“. In fermentierten Milchprodukten wird der größte Teil der Laktose zu Milchsäure fermentiert, sodass Menschen mit Laktasemangel fermentierte Milchprodukte ohne unangenehme Folgen vertragen können. Darüber hinaus hemmen Milchsäurebakterien in fermentierten Milchprodukten die Aktivität der Darmflora und reduzieren die unerwünschten Wirkungen von Laktose.
Galactose, die beim Abbau von Lactose entsteht, wird in der Leber in Glucose umgewandelt. Bei einem angeborenen erblichen Mangel oder Fehlen eines Enzyms, das Galaktose in Glukose umwandelt, entwickelt sich eine schwere Krankheit - Galaktosämie , was zu geistiger Behinderung führt.
Der Laktosegehalt in Kuhmilch beträgt 4,7%, in Hüttenkäse - von 1,8% bis 2,8%, in Sauerrahm - von 2,6 bis 3,1%, in Kefir - von 3,8 bis 5,1%, in Joghurt - etwa 3%.

Maltose(Malzzucker).
Entsteht, wenn sich zwei Glukosemoleküle verbinden. Enthalten in Produkten wie: Malz, Honig, Bier, Melasse, Back- und Süßwaren, die unter Zusatz von Melasse hergestellt werden.

Sportler sollten die Einnahme von Glukose in reiner Form und Lebensmittel, die reich an einfachen Zuckern sind, in großen Mengen vermeiden, da sie den Prozess der Fettbildung auslösen.

Komplexe Kohlenhydrate.


Komplexe Kohlenhydrate bestehen hauptsächlich aus sich wiederholenden Einheiten von Glukoseverbindungen. (Glucose-Polymere)

Polysaccharide

Pflanzliche Polysaccharide (Stärke).
Stärke- das wichtigste der verdauten Polysaccharide, es ist eine komplexe Kette, die aus Glucose besteht. Es macht bis zu 80 % der mit der Nahrung aufgenommenen Kohlenhydrate aus. Stärke ist ein komplexes oder "langsames" Kohlenhydrat, daher ist es die bevorzugte Energiequelle sowohl für die Gewichtszunahme als auch für die Gewichtsabnahme. Stärke wird im Magen-Darm-Trakt hydrolysiert (Zersetzung eines Stoffes unter Wassereinwirkung), sie wird in Dextrine (Stärkebruchstücke) und damit in Glukose zerlegt und in dieser Form vom Körper aufgenommen.
Die Stärkequelle sind pflanzliche Produkte, hauptsächlich Getreide: Getreide, Mehl, Brot und Kartoffeln. Getreide enthält die meiste Stärke: von 60 % in Buchweizen (Kern) bis 70 % in Reis. Von den Getreiden ist die geringste Stärke in Haferflocken und ihren verarbeiteten Produkten enthalten: Haferflocken, Haferflocken "Hercules" - 49%. Nudeln enthalten 62 bis 68 % Stärke, Roggenmehlbrot je nach Sorte 33 % bis 49 %, Weizenbrot und andere Produkte aus Weizenmehl - 35 bis 51 % Stärke, Mehl - 56 (Roggen) bis 68 % (Weizenprämie). Auch Hülsenfrüchte enthalten viel Stärke – von 40 % in Linsen bis 44 % in Erbsen. Und es kann auch ein nicht geringer Stärkegehalt in Kartoffeln festgestellt werden (15-18%).

Tierische Polysaccharide (Glykogen).
Glykogen-besteht aus stark verzweigten Ketten von Glukosemolekülen. Nach einer Mahlzeit beginnt eine große Menge Glukose in den Blutkreislauf zu gelangen und der menschliche Körper speichert überschüssige Glukose in Form von Glykogen. Wenn der Blutzuckerspiegel zu sinken beginnt (zum Beispiel während des Trainings), baut der Körper Glykogen mit Hilfe von Enzymen ab, wodurch der Glukosespiegel normal bleibt und die Organe (einschließlich der Muskeln während des Trainings) genug davon für die Energieproduktion bekommen . Glykogen lagert sich hauptsächlich in der Leber und den Muskeln ab und kommt in geringen Mengen in tierischen Produkten vor (2-10 % in der Leber, 0,3-1 % im Muskelgewebe). Die Gesamtzufuhr an Glykogen beträgt 100-120 g.Beim Bodybuilding zählt nur das im Muskelgewebe enthaltene Glykogen.

faserig

Ballaststoffe (unverdaulich, faserig)
Ballaststoffe oder Ballaststoffe bezieht sich auf Nährstoffe, die wie Wasser und Mineralsalze dem Körper keine Energie liefern, aber eine große Rolle in seinem Leben spielen. Ballaststoffe, die hauptsächlich in pflanzlichen Lebensmitteln enthalten sind, die wenig oder sehr wenig Zucker enthalten. Es wird normalerweise mit anderen Nährstoffen kombiniert.

Arten von Fasern.


Cellulose und Hemicellulose
Zellulose enthalten in Vollkornmehl, Kleie, Kohl, Babyerbsen, grünen und Wachsbohnen, Brokkoli, Rosenkohl, Gurkenschalen, Paprika, Äpfeln, Karotten.
Hemicellulose gefunden in Kleie, Getreide, unraffiniertem Getreide, Rüben, Rosenkohl, senfgrünen Trieben.
Zellulose und Hemizellulose absorbieren Wasser und erleichtern so die Aktivität des Dickdarms. Im Wesentlichen "volumen" sie den Abfall und bewegen ihn schneller durch den Dickdarm. Das beugt nicht nur Verstopfung vor, sondern schützt auch vor Divertikulose, krampfartiger Kolitis, Hämorrhoiden, Darmkrebs und Krampfadern.

Lignin
Diese Art von Ballaststoffen findet sich in Frühstückszerealien, Kleie, altbackenem Gemüse (wenn Gemüse gelagert wird, steigt der Ligningehalt darin und es ist weniger verdaulich) sowie in Auberginen, grünen Bohnen, Erdbeeren, Erbsen und Radieschen.
Lignin verringert die Verdaulichkeit anderer Fasern. Darüber hinaus bindet es an Gallensäuren, hilft, den Cholesterinspiegel zu senken und beschleunigt die Nahrungspassage durch den Darm.

Gummi und Pektin
Komödie gefunden in Haferflocken und anderen Haferprodukten, in getrockneten Bohnen.
Pektin vorhanden in Äpfeln, Zitrusfrüchten, Karotten, Blumenkohl und Kohl, getrockneten Erbsen, grünen Bohnen, Kartoffeln, Erdbeeren, Erdbeeren, Fruchtgetränken.
Gummi und Pektin beeinflussen die Resorptionsprozesse im Magen und Dünndarm. Durch die Bindung an Gallensäuren reduzieren sie die Fettaufnahme und senken den Cholesterinspiegel. Sie verzögern die Magenentleerung und verlangsamen durch Umhüllen des Darms die Aufnahme von Zucker nach einer Mahlzeit, was für Diabetiker sinnvoll ist, da es die erforderliche Insulindosis reduziert.

Wenn man die Arten von Kohlenhydraten und ihre Funktionen kennt, stellt sich die folgende Frage:

Welche Kohlenhydrate und wie viel essen?

In den meisten Produkten sind Kohlenhydrate der Hauptbestandteil, daher sollte es keine Probleme geben, sie aus der Nahrung zu gewinnen, daher machen Kohlenhydrate den Großteil der täglichen Ernährung der meisten Menschen aus.
Kohlenhydrate, die mit der Nahrung in unseren Körper gelangen, haben drei Stoffwechselwege:

1) Glykogenese(Die komplexe Kohlenhydratnahrung, die in unseren Magen-Darm-Trakt gelangt, wird in Glukose zerlegt und dann in Form von komplexen Kohlenhydraten – Glykogen – in Muskel- und Leberzellen gespeichert und als Backup-Ernährungsquelle verwendet, wenn die Konzentration von Glukose im Blut ansteigt ist niedrig)
2) Gluconeogenese(der Bildungsprozess in der Leber und der kortikalen Substanz der Nieren (etwa 10%) - Glukose, aus Aminosäuren, Milchsäure, Glycerin)
3) Glykolyse(Abbau von Glukose und anderen Kohlenhydraten unter Energiefreisetzung)

Der Stoffwechsel von Kohlenhydraten wird hauptsächlich durch das Vorhandensein von Glukose im Blutkreislauf bestimmt, dieser wichtigen und vielseitigen Energiequelle des Körpers. Das Vorhandensein von Glukose im Blut hängt von der letzten Mahlzeit und der Nährstoffzusammensetzung der Nahrung ab. Das heißt, wenn Sie kürzlich gefrühstückt haben, ist die Glukosekonzentration im Blut hoch, wenn lange Zeit auf Nahrung verzichten - gering. Weniger Glukose - weniger Energie im Körper, das ist offensichtlich, weshalb es auf nüchternen Magen zu einem Zusammenbruch kommt. Zu einer Zeit, in der der Glukosegehalt im Blutkreislauf niedrig ist, und dies sehr gut beobachtet werden kann Morgenstunden, nach einem langen Schlaf, in dem Sie den verfügbaren Glukosespiegel im Blut nicht mit Portionen kohlenhydrathaltiger Nahrung aufrechterhalten haben, wird der Körper mit Hilfe der Glykolyse in einem Hungerzustand aufgefüllt - 75% und 25% mit Hilfe der Gluconeogenese, also dem Abbau komplex gespeicherter Kohlenhydrate, sowie Aminosäuren, Glycerin und Milchsäure.
Auch nicht viel Bedeutung bei der Regulierung der Glukosekonzentration im Blut hat ein Hormon der Bauchspeicheldrüse - Insulin. Insulin ist ein Transporthormon, das überschüssige Glukose zu Muskelzellen und anderen Geweben des Körpers transportiert und dadurch den maximalen Glukosespiegel im Blut reguliert. Bei übergewichtigen Menschen, die ihre Diät nicht einhalten, wandelt Insulin überschüssige Kohlenhydrate aus der Nahrung in Fett um, dies ist hauptsächlich charakteristisch für schnelle Kohlenhydrate.
Wählen die richtigen Kohlenhydrate der ganzen Vielfalt von Lebensmitteln wird ein solches Konzept verwendet als - glykämischer Index.

Glykämischer Index ist die Absorptionsrate von Kohlenhydraten aus der Nahrung in den Blutkreislauf und die Insulinreaktion der Bauchspeicheldrüse. Es zeigt die Wirkung von Lebensmitteln auf den Blutzuckerspiegel. Dieser Index wird auf einer Skala von 0 bis 100 gemessen, er hängt von der Art der Produkte ab, verschiedene Kohlenhydrate werden unterschiedlich verdaut, einige schnell, und dementsprechend haben sie einen hohen glykämischen Index, andere langsam, der Standard für eine schnelle Absorption ist reine Glukose , es hat einen glykämischen Index von 100.

Der GI eines Produkts hängt von mehreren Faktoren ab:

- Art der Kohlenhydrate (einfache Kohlenhydrate haben einen hohen GI, komplexe Kohlenhydrate haben einen niedrigen GI)
- Die Menge an Ballaststoffen (je mehr Ballaststoffe in der Nahrung enthalten sind, desto niedriger ist der GI)
- Die Art und Weise, wie Lebensmittel verarbeitet werden (z. B. steigt der GI während der Wärmebehandlung)
- Der Gehalt an Fetten und Proteinen (je mehr davon in Lebensmitteln, desto niedriger der GI)

Da sind viele verschiedene Tische Bestimmung des glykämischen Index von Lebensmitteln, hier ist einer davon:

Die glykämische Indextabelle für Lebensmittel ermöglicht Ihnen die Einnahme richtige Entscheidungen, zu entscheiden, welche Lebensmittel in Ihre tägliche Ernährung aufgenommen und welche bewusst ausgeschlossen werden sollen.
Das Prinzip ist einfach: Je höher der glykämische Index, desto seltener nehmen Sie solche Lebensmittel in Ihre Ernährung auf. Umgekehrt gilt: Je niedriger der glykämische Index, desto häufiger essen Sie diese Lebensmittel.

Aber auch bei so wichtigen Mahlzeiten kommen uns schnelle Kohlenhydrate zugute:

- morgens (nach einem langen Schlaf ist die Glukosekonzentration im Blut sehr niedrig und muss so schnell wie möglich wieder aufgefüllt werden, um zu verhindern, dass der Körper mit Hilfe von Aminosäuren die notwendige Energie für das Leben erhält, durch Zerstörung von Muskelfasern)
- und nach dem Training (wenn Energiekosten für intensive körperliche Arbeit deutlich die Konzentration von Glukose im Blut nach dem Training reduzieren perfekte Wahl Kohlenhydrate schneller zu sich nehmen, um diese so schnell wie möglich wieder aufzufüllen und Katabolismus vorzubeugen)

Wie viel Kohlenhydrate essen?

Beim Bodybuilding und Fitness sollten Kohlenhydrate mindestens 50 % aller Nährstoffe ausmachen (wir sprechen natürlich nicht von „Abtrocknen“ oder Abnehmen).
Es gibt viele Gründe, sich mit vielen Kohlenhydraten aufzuladen, besonders wenn es um vollwertige, unverarbeitete Lebensmittel geht. Zuallererst müssen Sie jedoch verstehen, dass die Fähigkeit des Körpers, sie anzusammeln, eine gewisse Grenze hat. Stellen Sie sich einen Gastank vor: Er kann nur eine bestimmte Anzahl Liter Benzin aufnehmen. Wenn Sie versuchen, mehr hineinzugießen, wird der Überschuss unweigerlich verschüttet. Einmal werden Kohlenhydratspeicher umgebaut erforderliche Menge Glykogen, die Leber beginnt, ihren Überschuss in Fett zu verarbeiten, das dann unter der Haut und in anderen Teilen des Körpers gespeichert wird.
Die Menge an Muskelglykogen, die Sie speichern können, hängt davon ab, wie viel Muskelmasse Sie haben. So wie einige Benzintanks größer sind als andere, so sind auch die Muskeln darin unterschiedliche Leute. Je muskulöser du bist, desto mehr Glykogen kann dein Körper speichern.
Um sicherzustellen, dass Sie die richtige Menge an Kohlenhydraten zu sich nehmen – nicht mehr als Sie sollten – berechnen Sie Ihre tägliche Kohlenhydrataufnahme mit der folgenden Formel. Um Muskelmasse pro Tag aufzubauen, sollten Sie Folgendes einnehmen:

7g Kohlenhydrate pro Kilogramm Körpergewicht (multiplizieren Sie Ihr Gewicht in Kilogramm mit 7).

Indem Sie Ihre Kohlenhydrataufnahme auf das erforderliche Niveau erhöhen, müssen Sie zusätzliches Krafttraining hinzufügen. Reichlich Kohlenhydrate während des Bodybuildings versorgen Sie mit mehr Energie, sodass Sie härter und länger trainieren und bessere Ergebnisse erzielen können.
Sie können Ihre tägliche Ernährung berechnen, indem Sie diesen Artikel genauer studieren.

Für diejenigen, die dick werden wollen.

Kohlenhydrate werden Ihnen helfen.

Wie Sie wissen, besteht ein Fettmolekül aus vier Glukosemolekülen plus vier Wassermolekülen. Das heißt, mit einer erhöhten Aufnahme von Kohlenhydraten in Kombination mit einer Wasseraufnahme erhalten Sie das erwartete Ergebnis. Ich werde nur eines bemerken, es ist wünschenswert, komplexere Kohlenhydrate zu konsumieren, da einfache Kohlenhydrate zu Diabetes und Bluthochdruck führen können. Ich hoffe, dass Sie mit moderner Ernährung (eine Reihe von Produkten in Geschäften) unterwegs keine Schwierigkeiten haben werden. Das Wichtigste zum Thema Kohlenhydrate steht unten, dank "Wikipedia"

(Zucker, Saccharide) - organische Substanzen, die eine Carbonylgruppe und mehrere enthalten Hydroxylgruppen. Der Name der Verbindungsklasse stammt von den Wörtern "Kohlenhydrate", sie wurde erstmals 1844 von K. Schmidt vorgeschlagen. Das Auftreten eines solchen Namens ist darauf zurückzuführen, dass die ersten der Wissenschaft bekannten Kohlenhydrate durch die grobe Formel Cx(H2O)y beschrieben wurden, die formal Verbindungen aus Kohlenstoff und Wasser waren.
Kohlenhydrate sind eine sehr breite Klasse organischer Verbindungen, darunter gibt es Stoffe mit ganz unterschiedlichen Eigenschaften. Dadurch können Kohlenhydrate eine Vielzahl von Funktionen in lebenden Organismen erfüllen. Verbindungen dieser Klasse machen etwa 80 % der Trockenmasse von Pflanzen und 2-3 % der Masse von Tieren aus.

Einfache und komplexe Kohlenhydrate

Links ist D-Glycerinaldehyd, rechts Dihydroxyaceton.

Kohlenhydrate sind ein integraler Bestandteil der Zellen und Gewebe aller lebenden Organismen der Flora und Fauna und machen (nach Masse) den Hauptteil der organischen Substanz auf der Erde aus. Die Kohlenhydratquelle für alle lebenden Organismen ist der von Pflanzen durchgeführte Prozess der Photosynthese. Entsprechend der Fähigkeit, in Monomere zu hydrolysieren, werden Kohlenhydrate in zwei Gruppen eingeteilt: einfache (Monosaccharide) und komplexe (Disaccharide und Polysaccharide). Komplexe Kohlenhydrate können im Gegensatz zu einfachen zu Monosacchariden, Monomeren, hydrolysieren. Einfache Kohlenhydrate sind leicht wasserlöslich und werden in grünen Pflanzen synthetisiert. Komplexe Kohlenhydrate sind Produkte der Polykondensation einfacher Zucker (Monosaccharide) und bilden im Prozess der hydrolytischen Spaltung Hunderte und Tausende von Monosaccharidmolekülen.

Monosaccharide

Das häufigste Monosaccharid in der Natur ist Beta-D-Glucose.

Monosaccharide(vom griechischen Monos - der einzige, Sacchar - Zucker) - die einfachsten Kohlenhydrate, die nicht zu einfacheren Kohlenhydraten hydrolysieren - sie sind normalerweise farblos, leicht löslich in Wasser, schlecht in Alkohol und völlig unlöslich in Ether, feste transparente organische Verbindungen , eine der Hauptgruppen von Kohlenhydraten, am meisten einfache Form Sahara. Wässrige Lösungen haben einen neutralen pH-Wert. Einige Monosaccharide haben einen süßen Geschmack. Monosaccharide enthalten eine Carbonylgruppe (Aldehyd oder Keton), sodass sie als Derivate betrachtet werden können mehrwertige Alkohole. Ein Monosaccharid mit einer Carbonylgruppe am Kettenende ist ein Aldehyd und wird Aldose genannt. An jeder anderen Position der Carbonylgruppe ist das Monosaccharid ein Keton und wird als Ketose bezeichnet. Je nach Länge der Kohlenstoffkette (drei bis zehn Atome) werden Triosen, Tetrosen, Pentosen, Hexosen, Heptosen usw. unterschieden. Unter ihnen sind Pentosen und Hexosen in der Natur am weitesten verbreitet. Monosaccharide sind die Bausteine, aus denen Disaccharide, Oligosaccharide und Polysaccharide synthetisiert werden.
In der Natur kommt in freier Form am häufigsten D-Glucose (Traubenzucker oder Dextrose, C6H12O6) vor - ein sechsatomiger Zucker (Hexose), eine Struktureinheit (Monomer) vieler Polysaccharide (Polymere) -Disaccharide: (Maltose, Saccharose und Lactose) und Polysaccharide (Cellulose, Stärke). Andere Monosaccharide sind allgemein als Bestandteile von Di-, Oligo- oder Polysacchariden bekannt und in freiem Zustand selten. Natürliche Polysaccharide dienen als Hauptquellen für Monosaccharide

Disaccharide

Maltose (Malzzucker) ist ein natürliches Disaccharid, das aus zwei Glucoseresten besteht.

Maltose(Malzzucker) - ein natürliches Disaccharid, das aus zwei Glucoseresten besteht
Disaccharide (aus di - zwei, sacchar - Zucker) - komplexe organische Verbindungen, eine der Hauptgruppen von Kohlenhydraten, während der Hydrolyse zerfällt jedes Molekül in zwei Moleküle Monosaccharide, sind private solcheMolygosaccharide. Disaccharide sind strukturell Glykoside, bei denen zwei Monosaccharidmoleküle durch eine glykosidische Bindung miteinander verbunden sind, die durch die Wechselwirkung von Hydroxylgruppen (zwei Halbacetal oder ein Halbacetal und ein Alkohol) gebildet wird. Je nach Struktur werden Disaccharide in zwei Gruppen eingeteilt: reduzierend und nicht reduzierend. Beispielsweise hat im Maltosemolekül der zweite Rest des Monosaccharids (Glucose) ein freies Halbacetal-Hydroxyl, das diesem Disaccharid reduzierende Eigenschaften verleiht. Disaccharide sind zusammen mit Polysacchariden eine der Hauptquellen für Kohlenhydrate in der Ernährung von Menschen und Tieren.

Oligosaccharide

Rafinose- natürliches Trisaccharid, bestehend aus Resten von D-Galactose, D-Glucose und D-Fructose.
Oligosaccharide- Kohlenhydrate, deren Moleküle aus 2-10 Monosaccharidresten synthetisiert werden, die durch glykosidische Bindungen verbunden sind. Dementsprechend unterscheiden sie: Disaccharide, Trisaccharide und so weiter. Oligosaccharide, die aus identischen Monosaccharidresten bestehen, werden Homopolysaccharide genannt, und solche, die aus unterschiedlichen Monosacchariden bestehen, werden als Heteropolysaccharide bezeichnet. Unter den Oligosacchariden kommen Disaccharide am häufigsten vor.
Unter den natürlichen Trisacchariden ist Raffinose das häufigste – ein nicht reduzierendes Oligosaccharid, das Reste von Fructose, Glucose und Galactose enthält –, das in großen Mengen in Zuckerrüben und vielen anderen Pflanzen vorkommt.

Polysaccharide

Polysaccharide- der allgemeine Name der Klasse komplexer hochmolekularer Kohlenhydrate, deren Moleküle aus zehn, hundert oder tausend Monomeren bestehen - Monosaccharide. Aus Sicht der allgemeinen Strukturprinzipien in der Gruppe der Polysaccharide ist es möglich, zwischen Homopolysacchariden, die aus der gleichen Art von Monosaccharideinheiten synthetisiert wurden, und Heteropolysacchariden zu unterscheiden, die durch das Vorhandensein von zwei oder mehr Arten von monomeren Resten gekennzeichnet sind.
Homopolysaccharide (Glykane), bestehend aus Resten eines Monosaccharids, können Hexosen oder Pentosen sein, dh als Monomer kann Hexose oder Pentose verwendet werden. Je nach chemischer Natur des Polysaccharids werden Glucane (aus Glucoseresten), Mannane (aus Mannose), Galactane (aus Galactose) und andere ähnliche Verbindungen unterschieden. Die Gruppe der Homopolysaccharide umfasst organische Verbindungen pflanzlichen (Stärke, Zellulose, Pektin), tierischen (Glykogen, Chitin) und bakteriellen (Dextrane) Ursprungs.
Polysaccharide sind für das Leben von Tieren und Pflanzen essentiell. Es ist eine der Hauptenergiequellen des Körpers, die aus dem Stoffwechsel resultiert. Polysaccharide nehmen an Immunprozessen teil, sorgen für die Adhäsion von Zellen in Geweben und machen den Großteil der organischen Substanz in der Biosphäre aus.

Links ist Stärke, rechts Glykogen.

Stärke

(C6H10O5) n ist eine Mischung aus zwei Homopolysacchariden: linear - Amylose und verzweigt - Amylopektin, dessen Monomer Alpha-Glucose ist. Weiße amorphe Substanz, in kaltem Wasser unlöslich, quellfähig und teilweise in heißem Wasser löslich. Molekulargewicht 105–107 Dalton. Stärke, die von verschiedenen Pflanzen in Chloroplasten unter Einwirkung von Licht während der Photosynthese synthetisiert wird, unterscheidet sich etwas in der Struktur der Körner, dem Polymerisationsgrad der Moleküle, der Struktur der Polymerketten und den physikalisch-chemischen Eigenschaften. In der Regel beträgt der Gehalt an Amylose in Stärke 10-30%, Amylopektin - 70-90%. Das Amylosemolekül enthält im Durchschnitt etwa 1.000 Glucosereste, die durch Alpha-1,4-Bindungen verbunden sind. Getrennte lineare Abschnitte des Amylopektinmoleküls bestehen aus 20–30 solcher Einheiten, und an den Verzweigungspunkten von Amylopektin sind Glucosereste durch Zwischenketten-alpha-1,6-Bindungen verbunden. Mit teilweise Säurehydrolyse Stärke, Polysaccharide mit einem niedrigeren Polymerisationsgrad werden gebildet - Dextrine (C6H10O5)p und bei vollständiger Hydrolyse - Glucose.
Glykogen (C6H10O5)n ist ein aus Alpha-D-Glucose-Resten aufgebautes Polysaccharid – das Hauptreserve-Polysaccharid höherer Tiere und Menschen, ist in Form von Granulat im Zytoplasma von Zellen in fast allen Organen und Geweben enthalten, jedoch am größten Menge reichert sich in Muskeln und Leber an. Das Glykogenmolekül ist aus verzweigten Polyglucosidketten aufgebaut, in deren linearer Folge Glucosereste durch Alpha-1,4-Bindungen und an den Verzweigungspunkten durch Interchain-Alpha-1,6-Bindungen verbunden sind. Die Summenformel von Glykogen ist identisch mit der von Stärke. In seiner chemischen Struktur ähnelt Glykogen dem Amylopektin mit ausgeprägteren Kettenverzweigungen, weshalb es manchmal als ungenaue Bezeichnung "tierische Stärke" bezeichnet wird. Molekulargewicht 105–108 Dalton und darüber. In tierischen Organismen ist es ein strukturelles und funktionelles Analogon des pflanzlichen Polysaccharids - Stärke. Glykogen bildet eine Energiereserve, die bei Bedarf zum Ausgleich eines plötzlichen Glukosemangels schnell mobilisiert werden kann - eine starke Verzweigung seiner Moleküle führt zum Vorhandensein einer großen Anzahl endständiger Reste, die die Fähigkeit zur schnellen Spaltung bieten erforderliche Menge an Glukosemolekülen. Anders als der Speicher von Triglyceriden (Fetten) ist der Speicher von Glykogen nicht so umfangreich (in Kalorien pro Gramm). Nur Glykogen, das in Leberzellen (Hepatozyten) gespeichert ist, kann in Glukose umgewandelt werden, um den ganzen Körper zu ernähren, während Hepatozyten bis zu 8 Prozent ihres Gewichts in Form von Glykogen speichern können maximale Konzentration unter allen Zelltypen. Die Gesamtmasse an Glykogen in der Leber von Erwachsenen kann 100-120 Gramm erreichen. In den Muskeln wird Glykogen ausschließlich für den lokalen Verbrauch zu Glukose abgebaut und reichert sich dennoch in viel geringeren Konzentrationen (maximal 1 % der gesamten Muskelmasse) an allgemeiner Bestand in den Muskeln kann die in Hepatozyten angesammelte Reserve überschreiten.

Zellulose (Faser) ist das häufigste strukturelle Polysaccharid Flora, bestehend aus Alpha-Glucose-Resten, die in Beta-Pyranose-Form vorliegen. Somit sind im Zellulosemolekül beta-Glucopyranose-Monomereinheiten durch beta-1,4-Bindungen linear miteinander verbunden. Bei partieller Hydrolyse von Cellulose entsteht das Disaccharid Cellobiose und bei vollständiger Hydrolyse D-Glucose. Im menschlichen Gastrointestinaltrakt wird Zellulose nicht als Satz verdaut Verdauungsenzyme enthält keine Beta-Glucosidase. Das Vorhandensein einer optimalen Menge an Pflanzenfasern in der Nahrung trägt jedoch zur normalen Kotbildung bei. Zellulose besitzt eine hohe mechanische Festigkeit und dient beispielsweise als Trägermaterial für Pflanzen in der Zusammensetzung von Holz, ihr Anteil variiert zwischen 50 und 70%, und Baumwolle besteht zu fast 100 Prozent aus Zellulose.
Chitin ist ein strukturelles Polysaccharid niederer Pflanzen, Pilze und wirbelloser Tiere (hauptsächlich der Hornhäute von Arthropoden - Insekten und Krebstieren). Chitin erfüllt wie Zellulose in Pflanzen unterstützende und mechanische Funktionen im Organismus von Pilzen und Tieren. Das Chitinmolekül ist aus N-Acetyl-D-Glucosamin-Resten aufgebaut, die durch Beta-1,4-Glycosium-Bindungen verbunden sind. Chitin-Makromoleküle sind unverzweigt und ihre räumliche Anordnung hat nichts mit Zellulose zu tun.
Pektin Substanzen- Polygalacturonsäure, die in Obst und Gemüse vorkommt, D-Galacturonsäurereste sind durch alpha-1,4-glykosidische Bindungen verbunden. In Gegenwart von organischen Säuren können sie gelieren, sie werden in der Lebensmittelindustrie zur Herstellung von Gelee und Marmelade verwendet. Einige Pektin-Substanzen haben eine Antiulcus-Wirkung und sind aktiver Bestandteil einer Reihe von pharmazeutischen Präparaten, beispielsweise ein Derivat des Spitzwegerichs Plantaglucid.
Muramin ist ein Polysaccharid, ein stützendes mechanisches Material der bakteriellen Zellwand. Gemäß seiner chemischen Struktur ist es eine unverzweigte Kette, die aus abwechselnden Resten von N-Acetylglucosamin und N-Acetylmuraminsäure aufgebaut ist, die durch eine beta-1,4-glykosidische Bindung verbunden sind. Muramin vorbei strukturelle Organisation(geradkettiges Beta-1,4-Polyglucopyranose-Skelett) und funktionale Rolle sehr nah an Chitin und Zellulose.
Dextran-Halbsaccharide bakteriellen Ursprungs werden unter industriellen Bedingungen mikrobiologisch (durch Einwirkung von Leuconostoc mesenteroides-Mikroorganismen auf eine Saccharoselösung) synthetisiert und als Blutplasmaersatz verwendet (die sogenannten klinischen "Dextrane": Poliglukin und andere).

Links ist D-Glycerinaldehyd, rechts L-Glycerinaldehyd.

Räumliche Isomerie

Isomerie - die Existenz chemischer Verbindungen (Isomere), die in Zusammensetzung und Molekulargewicht identisch sind und sich in der Struktur oder Anordnung der Atome im Raum und infolgedessen in den Eigenschaften unterscheiden.
Stereoisomerie von Monosacchariden: Als D-Glycerinaldehyd gilt das Isomer des Glycerinaldehyds, bei dem sich bei Projektion des Modells auf die Ebene die OH-Gruppe am asymmetrischen Kohlenstoffatom auf der rechten Seite befindet, und der Spiegelbild L-Glycerinaldehyd . Alle Isomere von Monosacchariden werden nach der Ähnlichkeit der Lage der OH-Gruppe am letzten asymmetrischen Kohlenstoffatom in der Nähe der CH2OH-Gruppe in D- und L-Form eingeteilt (Ketosen enthalten ein asymmetrisches Kohlenstoffatom weniger als Aldosen mit der gleichen Anzahl an Kohlenstoffatomen Atome). Natürliche Hexosen – Glucose, Fructose, Mannose und Galactose – werden gemäß den stereochemischen Konfigurationen als Verbindungen der D-Reihe klassifiziert.

Biologische Rolle
In lebenden Organismen erfüllen Kohlenhydrate folgende Funktionen:
Strukturelle und unterstützende Funktionen. Kohlenhydrate sind am Aufbau verschiedener Stützstrukturen beteiligt. Zellulose ist also die Hauptsache strukturelle Komponente Zellwände von Pflanzen erfüllt Chitin eine ähnliche Funktion in Pilzen und verleiht dem Exoskelett von Arthropoden auch Steifigkeit.
Schutzfunktion in Pflanzen. Einige Pflanzen haben Schutzformationen (Dornen, Stacheln usw.), die aus Zellwänden toter Zellen bestehen.
plastische Funktion. Kohlenhydrate sind Teil komplexer Moleküle (beispielsweise sind Pentosen (Ribose und Desoxyribose) am Aufbau von ATP, DNA und RNA beteiligt).
Energiefunktion. Kohlenhydrate dienen als Energiequelle: Wenn 1 Gramm Kohlenhydrate oxidiert werden, werden 4,1 kcal Energie und 0,4 g Wasser freigesetzt.
Speicherfunktion. Kohlenhydrate dienen als Reservenährstoffe: Glykogen bei Tieren, Stärke und Inulin bei Pflanzen.
osmotische Funktion. Kohlenhydrate sind an der Regulierung des osmotischen Drucks im Körper beteiligt. So enthält das Blut 100-110 mg/% Glucose, der osmotische Druck des Blutes hängt von der Glucosekonzentration ab.
Rezeptorfunktion. Oligosaccharide sind Teil des rezeptiven Teils vieler Zellrezeptoren oder Ligandenmoleküle Biosynthese
Kohlenhydrate überwiegen in der täglichen Ernährung von Menschen und Tieren. Pflanzenfresser erhalten Stärke, Ballaststoffe, Saccharose. Fleischfresser nehmen Glykogen aus Fleisch auf.
Tiere sind nicht in der Lage, Kohlenhydrate daraus zu synthetisieren anorganische Stoffe. Sie erhalten sie aus Pflanzen mit Nahrung und nutzen sie als Hauptenergiequelle aus dem Oxidationsprozess: In den grünen Blättern von Pflanzen werden während der Photosynthese Kohlenhydrate gebildet - ein einzigartiger biologischer Prozess zur Umwandlung anorganischer Substanzen in Zucker - Kohlenmonoxid ( IV) und Wasser, das unter Beteiligung von Chlorophyll durch Sonnenenergie entsteht: Der Stoffwechsel von Kohlenhydraten im menschlichen Körper und höheren Tieren besteht aus mehreren Prozessen:
Hydrolyse (Abbau) von Polysacchariden und Disacchariden der Nahrung im Magen-Darm-Trakt zu Monosacchariden, gefolgt von der Aufnahme aus dem Darmlumen in den Blutkreislauf.
Glykogenogenese (Synthese) und Glykogenolyse (Abbau) von Glykogen in Geweben, hauptsächlich in der Leber.
Aerobe (Pentosephosphatweg der Glukoseoxidation oder Pentosezyklus) und anaerobe (ohne Sauerstoffverbrauch) Glykolyse sind Wege für den Abbau von Glukose im Körper.
Umwandlung von Hexosen.
Aerobe Oxidation des Produkts der Glykolyse - Pyruvat (das Endstadium des Kohlenhydratstoffwechsels).
Gluconeogenese ist die Synthese von Kohlenhydraten aus Nicht-Kohlenhydrat-Rohstoffen (Brenztraubensäure, Milchsäure, Glycerin, Aminosäuren und andere organische Verbindungen).
[Bearbeiten] Wichtige Quellen
Die Hauptquellen für Kohlenhydrate aus der Nahrung sind: Brot, Kartoffeln, Nudeln, Müsli, Süßigkeiten. Das Nettokohlenhydrat ist Zucker. Honig enthält je nach Herkunft 70-80 % Glucose und Fructose.
Um die Menge an Kohlenhydraten in Lebensmitteln anzugeben, wird eine spezielle Broteinheit verwendet.
Darüber hinaus grenzen Ballaststoffe und Pektine, die vom menschlichen Körper schlecht verdaut werden, an die Kohlenhydratgruppe an.

Liste der häufigsten Kohlenhydrate

  • Monosaccharide
  • Oligosaccharide

  • Saccharose (normaler Zucker, Rohr oder Rübe)

  • Polysaccharide

  • Galaktomannane

  • Glykosaminoglykane (Mucopolysaccharide)

  • Chondroitinsulfat

  • Hyaluronsäure

  • Heparansulfat

  • Dermatansulfat

  • Keratansulfat

Glucose ist das wichtigste aller Monosaccharide, da es die Struktureinheit der meisten Lebensmittel-Di- und Polysaccharide ist. Im Stoffwechsel werden sie in einzelne Monosaccharidmoleküle zerlegt, die im Laufe mehrstufiger chemischer Reaktionen in andere Stoffe umgewandelt und schließlich zu Kohlendioxid und Wasser oxidiert werden – als „Brennstoff“ für die Zellen. Glukose ist ein wesentlicher Bestandteil des Stoffwechsels Kohlenhydrate. Bei einer Abnahme des Blutspiegels oder einer hohen Konzentration und der Unfähigkeit zur Anwendung, wie dies bei Diabetes der Fall ist, tritt Schläfrigkeit auf, und es kann zu Bewusstlosigkeit (hypoglykämisches Koma) kommen. Glukose „in reiner Form“, als Monosaccharid, kommt in Gemüse und Obst vor. Besonders reich an Glukose sind Weintrauben - 7,8 %, Kirschen, Kirschen - 5,5 %, Himbeeren - 3,9 %, Erdbeeren - 2,7 %, Pflaumen - 2,5 %, Wassermelonen - 2,4 %. Vom Gemüse kommt die meiste Glukose im Kürbis vor - 2,6%, im Weißkohl - 2,6%, in Karotten - 2,5%.

Glucose ist weniger süß als das bekannteste Disaccharid Saccharose. Wenn wir die Süße von Saccharose mit 100 Einheiten annehmen, dann beträgt die Süße von Glukose 74 Einheiten.

Fruktose ist eine der häufigsten Kohlenhydrate Früchte. Im Gegensatz zu Glukose kann es ohne Beteiligung von Insulin aus dem Blut in Gewebezellen eindringen. Aus diesem Grund wird Fruktose als sicherste Quelle empfohlen. Kohlenhydrate für Diabetiker. Ein Teil der Fruktose gelangt in die Leberzellen, die sie in einen universelleren "Brennstoff" umwandeln - Glukose, so dass Fruktose auch den Blutzucker erhöhen kann, wenn auch in viel geringerem Maße als andere einfache Zucker. Fruktose wird leichter in Fett umgewandelt als Glukose. Der Hauptvorteil von Fructose besteht darin, dass sie 2,5-mal süßer als Glucose und 1,7-mal süßer als Saccharose ist. Seine Verwendung anstelle von Zucker kann die Gesamtaufnahme reduzieren Kohlenhydrate.

Die Hauptquellen für Fruktose in Lebensmitteln sind Weintrauben – 7,7 %, Äpfel – 5,5 %, Birnen – 5,2 %, Kirschen, Süßkirschen – 4,5 %, Wassermelonen – 4,3 %, schwarze Johannisbeeren – 4,2 %, Himbeeren – 3,9 %, Erdbeeren – 2,4 % %, Melonen - 2,0 %. In Gemüse ist der Fruktosegehalt gering – von 0,1 % in Rüben bis 1,6 % in Weißkohl. Fructose ist in Honig enthalten - etwa 3,7%. Fructose, die eine viel höhere Süße als Saccharose hat, verursacht nachweislich keine Karies, die durch Zuckerkonsum gefördert wird.

Galaktose kommt in Produkten nicht in freier Form vor. Es bildet ein Disaccharid mit Glukose - Laktose (Milchzucker) - der Hauptbestandteil Kohlenhydrat Milch und Milchprodukte.

Laktose wird im Magen-Darm-Trakt durch die Wirkung eines Enzyms zu Glucose und Galactose abgebaut. Laktase. Ein Mangel an diesem Enzym führt bei manchen Menschen zu einer Milchunverträglichkeit. Unverdaute Laktose dient als guter Nährstoff für die Darmflora. Gleichzeitig ist eine reichliche Gasbildung möglich, der Magen „schwillt an“. In fermentierten Milchprodukten wird der größte Teil der Laktose zu Milchsäure fermentiert, sodass Menschen mit Laktasemangel fermentierte Milchprodukte ohne unangenehme Folgen vertragen können. Darüber hinaus hemmen Milchsäurebakterien in fermentierten Milchprodukten die Aktivität der Darmflora und reduzieren die unerwünschten Wirkungen von Laktose.

Galactose, die beim Abbau von Lactose entsteht, wird in der Leber in Glucose umgewandelt. Bei einem angeborenen erblichen Mangel oder Fehlen eines Enzyms, das Galaktose in Glukose umwandelt, entwickelt sich eine schwere Krankheit - Galaktosämie, was zu geistiger Behinderung führt.

Ein Disaccharid aus Glukose- und Fruktosemolekülen ist Saccharose. Der Gehalt an Saccharose im Zucker beträgt 99,5 %. Dass Zucker der „weiße Tod“ ist, wissen Bonbonliebhaber ebenso wie Raucher, dass ein Tropfen Nikotin ein Pferd umbringt. Leider beides gemeinsame Wahrheiten dienen oft eher als Anlass für Witze als für ernsthafte Überlegungen und praktische Schlussfolgerungen.

Zucker wird im Magen-Darm-Trakt schnell abgebaut, Glucose und Fructose werden ins Blut aufgenommen und dienen als Energielieferant und wichtigste Vorstufe von Glykogen und Fetten. Er wird oft als „leerer Kalorienträger“ bezeichnet, da Zucker rein ist Kohlenhydrat und enthält keine anderen Nährstoffe, wie zum Beispiel Vitamine, Mineralsalze. Von den pflanzlichen Produkten findet sich die meiste Saccharose in Rüben – 8,6 %, Pfirsichen – 6,0 %, Melonen – 5,9 %, Pflaumen – 4,8 %, Mandarinen – 4,5 %. In Gemüse, mit Ausnahme von Rüben, wird in Karotten ein erheblicher Gehalt an Saccharose festgestellt - 3,5%. In anderen Gemüsesorten liegt der Saccharosegehalt zwischen 0,4 und 0,7 %. Neben Zucker selbst sind die Hauptquellen für Saccharose in Lebensmitteln Marmelade, Honig, Süßwaren, süße Getränke und Eiscreme.

Wenn sich zwei Glukosemoleküle verbinden, bilden sie sich Maltose- Malzzucker. Es enthält Honig, Malz, Bier, Melasse sowie Back- und Süßwaren, die unter Zusatz von Melasse hergestellt werden.

Alle in der menschlichen Nahrung vorkommenden Polysaccharide seltene Ausnahmen, sind Polymere von Glucose.

Stärke ist das wichtigste verdauliche Polysaccharid. Es macht bis zu 80 % der Nahrungsaufnahme aus. Kohlenhydrate.

Die Stärkequelle sind pflanzliche Produkte, hauptsächlich Getreide: Getreide, Mehl, Brot und Kartoffeln. Getreide enthält die meiste Stärke: von 60 % in Buchweizen (Kern) bis 70 % in Reis. Von den Getreiden ist die geringste Stärke in Haferflocken und ihren verarbeiteten Produkten enthalten: Haferflocken, Haferflocken "Hercules" - 49%. Nudeln enthalten 62 bis 68 % Stärke, Roggenmehlbrot je nach Sorte 33 % bis 49 %, Weizenbrot und andere Produkte aus Weizenmehl - 35 bis 51 % Stärke, Mehl - 56 (Roggen) bis 68 % (Weizenprämie). Auch Hülsenfrüchte enthalten viel Stärke – von 40 % in Linsen bis 44 % in Erbsen. Aus diesem Grund werden trockene Erbsen, Bohnen, Linsen, Kichererbsen als klassifiziert Hülsenfrüchte. Sojabohnen, die nur 3,5 % Stärke enthalten, und Sojamehl (10-15,5 %) heben sich ab. Wegen hoher Inhalt Stärke in Kartoffeln (15-18%) in der Ernährungswissenschaft wird sie nicht als Gemüse eingestuft, wo die Hauptsache ist Kohlenhydrate vertreten durch Monosaccharide und Disaccharide, und zu stärkehaltigen Lebensmitteln zusammen mit Getreide und Hülsenfrüchten.

In Topinambur und einigen anderen Pflanzen Kohlenhydrate gespeichert in Form eines Polymers von Fruktose - Inulin. Nahrungsmittel mit dem Zusatz von Inulin werden bei Diabetes und insbesondere zur Vorbeugung empfohlen (denken Sie daran, dass Fruktose die Bauchspeicheldrüse weniger belastet als andere Zucker).

Glykogen- "Tierische Stärke" - besteht aus hochverzweigten Ketten von Glukosemolekülen. Es kommt in geringen Mengen in tierischen Produkten vor (2-10 % in der Leber, 0,3-1 % im Muskelgewebe).

Diabetes mellitus (DM) - endokrine Erkrankung, gekennzeichnet durch ein Syndrom der chronischen Hyperglykämie, das eine Folge einer unzureichenden Produktion oder Wirkung von Insulin ist, die zu einer Verletzung aller Arten des Stoffwechsels führt, vor allem Kohlenhydrate, Schädigung der Blutgefäße (Angiopathie), des Nervensystems (Neuropathie), sowie andere Organe und Systeme. Nach der WHO-Definition (1985) ist Diabetes mellitus ein Zustand chronischer ...

Erinnern!

Welche Substanzen werden als biologische Polymere bezeichnet?

Dies sind Polymere - hochmolekulare Verbindungen, die Bestandteil lebender Organismen sind. Proteine, einige Kohlenhydrate, Nukleinsäuren.

Welche Bedeutung haben Kohlenhydrate in der Natur?

Fruktose ist in der Natur weit verbreitet - Fruchtzucker, der viel süßer ist als andere Zucker. Dieses Monosaccharid verleiht Pflanzenfrüchten und Honig einen süßen Geschmack. Das in der Natur am häufigsten vorkommende Disaccharid – Saccharose oder Rohrzucker – besteht aus Glukose und Fruktose. Es wird aus Zuckerrohr oder Zuckerrüben gewonnen. Stärke für Pflanzen und Glykogen für Tiere und Pilze sind eine Reserve an Nährstoffen und Energie. Zellulose und Chitin erfüllen in Organismen strukturelle und schützende Funktionen. Zellulose oder Faser bildet die Wände von Pflanzenzellen. Von Totale Masse unter allen organischen Verbindungen steht es auf der Erde an erster Stelle. Chitin ist in seiner Struktur der Zellulose sehr ähnlich, die die Grundlage des äußeren Skeletts von Arthropoden bildet und Bestandteil der Zellwand von Pilzen ist.

Nennen Sie die Ihnen bekannten Proteine. Welche Funktionen erfüllen sie?

Hämoglobin ist ein Blutprotein, das Gase im Blut transportiert

Myosin - Muskelprotein, Muskelkontraktion

Kollagen - Protein von Sehnen, Haut, Elastizität, Dehnbarkeit

Casein ist ein Milchprotein

Überprüfen Sie Fragen und Aufgaben

1 Was Chemische Komponenten Kohlenhydrate genannt?

Das große Gruppe natürliche organische Verbindungen. In tierischen Zellen machen Kohlenhydrate nicht mehr als 5 % der Trockenmasse aus, und in einigen Pflanzenzellen (z. B. Knollen oder Kartoffeln) erreicht ihr Gehalt 90 % des Trockenrückstands. Kohlenhydrate werden in drei Hauptklassen eingeteilt: Monosaccharide, Disaccharide und Polysaccharide.

2. Was sind Mono- und Disaccharide? Nenne Beispiele.

Monosaccharide bestehen aus Monomeren, organischen Substanzen mit niedrigem Molekulargewicht. Die Monosaccharide Ribose und Desoxyribose sind Bestandteile von Nukleinsäuren. Das häufigste Monosaccharid ist Glukose. Glukose kommt in den Zellen aller Organismen vor und ist eine der Hauptenergiequellen für Tiere. Wenn sich zwei Monosaccharide in einem Molekül verbinden, wird eine solche Verbindung als Disaccharid bezeichnet. Das häufigste Disaccharid in der Natur ist Saccharose oder Rohrzucker.

3. Welches einfache Kohlenhydrat dient als Monomer von Stärke, Glykogen, Zellulose?

4. Aus welchen organischen Verbindungen bestehen Proteine?

Lange Proteinketten werden aus nur 20 verschiedenen Arten von Aminosäuren aufgebaut Gesamtplan Strukturen, die sich aber in der Struktur des Radikals voneinander unterscheiden. Verbindende Aminosäuremoleküle bilden sogenannte Peptidbindungen. Die zwei Polypeptidketten, aus denen das Pankreashormon Insulin besteht, enthalten 21 und 30 Aminosäurereste. Dies sind einige der kürzesten „Wörter“ in der Protein-„Sprache“. Myoglobin ist ein Protein, das Sauerstoff im Muskelgewebe bindet und aus 153 Aminosäuren besteht. Das Kollagenprotein, das die Basis von Kollagenfasern bildet Bindegewebe und liefert seine Stärke, besteht aus drei Polypeptidketten, von denen jede etwa 1000 Aminosäurereste enthält.

5. Wie entstehen sekundäre und tertiäre Proteinstrukturen?

In Form einer Spirale verdreht, erhält der Proteinfaden eine höhere Organisationsebene - eine Sekundärstruktur. Schließlich wickelt sich das Polypeptid zu einer Spirale (Kügelchen) zusammen. Diese Tertiärstruktur des Proteins ist seine biologisch aktive Form, die eine individuelle Spezifität aufweist. Für eine Reihe von Proteinen ist die Tertiärstruktur jedoch nicht endgültig. Die Sekundärstruktur ist eine zu einer Helix verdrehte Polypeptidkette. Für eine stärkere Wechselwirkung in der Sekundärstruktur erfolgt eine intramolekulare Wechselwirkung mit Hilfe von –S–S–-Sulfidbrücken zwischen den Windungen der Helix. Dies gewährleistet die Festigkeit dieser Struktur. Die Tertiärstruktur ist eine sekundäre Spiralstruktur, die zu Kügelchen - kompakten Klumpen - verdreht ist. Diese Strukturen sorgen im Vergleich zu anderen organischen Molekülen für maximale Festigkeit und größere Häufigkeit in Zellen.

6. Nennen Sie die Ihnen bekannten Funktionen von Proteinen. Wie lässt sich die vorhandene Vielfalt an Proteinfunktionen erklären?

Eine der Hauptfunktionen von Proteinen ist enzymatisch. Enzyme sind Proteine, die chemische Reaktionen in lebenden Organismen katalysieren. Eine enzymatische Reaktion ist eine chemische Reaktion, die nur in Gegenwart eines Enzyms abläuft. Ohne ein Enzym findet in lebenden Organismen nicht eine einzige Reaktion statt. Die Arbeit von Enzymen ist streng spezifisch, jedes Enzym hat sein eigenes Substrat, das es spaltet. Wie ein „Schlüssel zum Schloss“ nähert sich das Enzym seinem Substrat. Das Urease-Enzym reguliert also den Abbau von Harnstoff, das Amylase-Enzym reguliert Stärke und die Protease-Enzyme regulieren Proteine. Daher wird für Enzyme der Ausdruck "Wirkungsspezifität" verwendet.

Proteine ​​erfüllen auch verschiedene andere Funktionen in Organismen: Struktur, Transport, Motor, Regulation, Schutz, Energie. Die Funktionen von Proteinen sind sehr zahlreich, da sie der Vielfalt der Erscheinungsformen des Lebens zugrunde liegen. Dies ist eine Komponente biologische Membranen, Transport von Nährstoffen wie Hämoglobin, Muskelfunktion, Hormonfunktion, Körperabwehr - die Arbeit von Antigenen und Antikörpern und andere wichtige Funktionen im Körper.

7. Was ist Proteindenaturierung? Was kann eine Denaturierung verursachen?

Denaturierung ist eine Verletzung der räumlichen Tertiärstruktur von Proteinmolekülen unter dem Einfluss verschiedener physikalischer, chemischer, mechanischer und anderer Faktoren. Physische Faktoren ist Temperatur, Strahlung, Chemische Faktoren ist eine Wirkung auf Proteine ​​von jedem Chemikalien: Lösungsmittel, Säuren, Laugen, konzentrierte Substanzen usw. Mechanische Faktoren - Schütteln, Druck, Dehnen, Verdrehen usw.

Denken! Erinnern!

1. Erklären Sie anhand der Erkenntnisse aus dem Studium der Pflanzenbiologie, warum in pflanzlichen Organismen deutlich mehr Kohlenhydrate vorkommen als in Tieren.

Da die Grundlage der Lebens-Pflanzenernährung die Photosynthese ist, ist dies der Prozess der Bildung komplexer organischer Verbindungen von Kohlenhydraten aus einfacherem anorganischem Kohlendioxid und Wasser. Das wichtigste Kohlenhydrat, das von Pflanzen für die Lufternährung synthetisiert wird, ist Glukose, es kann auch Stärke sein.

2. Welche Krankheiten können zu einer Verletzung der Umwandlung von Kohlenhydraten im menschlichen Körper führen?

Die Regulation des Kohlenhydratstoffwechsels erfolgt hauptsächlich durch Hormone und die Zentrale nervöses System. Glucocorticosteroide (Cortison, Hydrocortison) verlangsamen den Glukosetransport in die Gewebezellen, Insulin beschleunigt ihn; Adrenalin stimuliert den Prozess der Zuckerbildung aus Glykogen in der Leber. Auch die Großhirnrinde gehört dazu bestimmte Rolle bei der Regulierung des Kohlenhydratstoffwechsels, da psychogene Faktoren die Zuckerbildung in der Leber steigern und eine Hyperglykämie verursachen.

Der Zustand des Kohlenhydratstoffwechsels kann anhand des Zuckergehalts im Blut (normalerweise 70-120 mg%) beurteilt werden. Bei einer Zuckerbelastung steigt dieser Wert an, erreicht dann aber schnell die Norm. Störungen des Kohlenhydratstoffwechsels treten bei verschiedenen Erkrankungen auf. Bei Insulinmangel tritt also Diabetes mellitus auf.

Eine Abnahme der Aktivität eines der Enzyme des Kohlenhydratstoffwechsels - Muskelphosphorylase - führt zu Muskeldystrophie.

3. Es ist bekannt, dass, wenn die Nahrung kein Protein enthält, trotz des ausreichenden Kaloriengehalts der Nahrung das Wachstum bei Tieren stoppt, sich die Zusammensetzung des Blutes ändert und andere pathologische Phänomene auftreten. Was ist der Grund für solche Verstöße?

Im Körper gibt es nur 20 verschiedene Arten von Aminosäuren, die einen gemeinsamen Bauplan haben, sich aber in der Struktur des Radikals voneinander unterscheiden, sie bilden sich unterschiedlich aus Eiweißmoleküle, wenn Sie beispielsweise keine Proteine ​​verwenden, essentielle, die im Körper nicht selbst gebildet werden können, sondern mit der Nahrung aufgenommen werden müssen. Ohne Proteine ​​können sich also viele Proteinmoleküle im Körper selbst nicht bilden und krankhafte Veränderungen können nicht auftreten. Das Wachstum wird durch das Wachstum von Knochenzellen gesteuert, die Basis jeder Zelle ist Protein; Hämoglobin ist das Hauptprotein im Blut, das den Transport der wichtigsten Gase im Körper (Sauerstoff, Kohlendioxid) sicherstellt.

4. Erklären Sie die Schwierigkeiten, die während einer Organtransplantation auftreten, basierend auf der Kenntnis der Spezifität von Proteinmolekülen in jedem Organismus.

Proteine ​​sind das genetische Material, da sie die Struktur der DNA und RNA des Körpers enthalten. Somit haben Proteine ​​​​in jedem Organismus genetische Eigenschaften, die Information von Genen ist in ihnen verschlüsselt, dies ist die Schwierigkeit bei der Transplantation von fremden (nicht verwandten) Organismen, da sie unterschiedliche Gene und damit Proteine ​​​​haben.

Organische Verbindungen, die die Hauptenergiequelle darstellen, werden als Kohlenhydrate bezeichnet. Am häufigsten findet sich Zucker in Lebensmitteln pflanzlichen Ursprungs. Ein Kohlenhydratmangel kann zu Leberfunktionsstörungen führen, und ein Übermaß an Kohlenhydraten führt zu einem Anstieg des Insulinspiegels. Lassen Sie uns mehr über Zucker sprechen.

Was sind Kohlenhydrate?

Dies sind organische Verbindungen, die eine Carbonylgruppe und mehrere Hydroxylgruppen enthalten. Sie sind Teil des Gewebes von Organismen und sind es auch wichtiger Bestandteil Zellen. Mono-, Oligo- und Polysaccharide werden isoliert, sowie komplexere Kohlenhydrate, wie Glykolipide, Glykoside und andere. Kohlenhydrate sind ein Produkt der Photosynthese und auch das wichtigste Startmaterial Biosynthese anderer Verbindungen in Pflanzen. Aufgrund der großen Vielfalt an Verbindungen kann diese Klasse vielfältige Rollen in lebenden Organismen spielen. Kohlenhydrate werden oxidiert und versorgen alle Zellen mit Energie. Sie sind an der Bildung von Immunität beteiligt und sind auch Teil vieler zellulärer Strukturen.

Arten von Zucker

Organische Verbindungen werden in zwei Gruppen eingeteilt - einfach und komplex. Kohlenhydrate des ersten Typs sind Monosaccharide, die eine Carbonylgruppe enthalten und Derivate von mehrwertigen Alkoholen sind. Die zweite Gruppe umfasst Oligosaccharide und Polysaccharide. Erstere bestehen aus Monosaccharidresten (von zwei bis zehn), die durch eine glykosidische Bindung verbunden sind. Letztere können Hunderte und sogar Tausende von Monomeren enthalten. Die Tabelle der am häufigsten vorkommenden Kohlenhydrate sieht wie folgt aus:

  1. Glucose.
  2. Fruktose.
  3. Galaktose.
  4. Saccharose.
  5. Laktose.
  6. Maltose.
  7. Raffinose.
  8. Stärke.
  9. Zellulose.
  10. Chitin.
  11. Muramin.
  12. Glykogen.

Die Liste der Kohlenhydrate ist umfangreich. Lassen Sie uns auf einige von ihnen näher eingehen.

Einfache Gruppe von Kohlenhydraten

Abhängig von der Stelle, die die Carbonylgruppe im Molekül einnimmt, werden zwei Arten von Monosacchariden unterschieden - Aldosen und Ketosen. Bei ersterem ist die funktionelle Gruppe Aldehyd, bei letzterem Keton. Je nach Anzahl der Kohlenstoffatome im Molekül entsteht der Name des Monosaccharids. Beispielsweise Aldohexosen, Aldotetrosen, Ketotriosen und so weiter. Diese Substanzen sind meistens farblos, in Alkohol schlecht löslich, aber gut in Wasser. Einfache Kohlenhydrate in Lebensmitteln sind fest und werden während der Verdauung nicht hydrolysiert. Einige der Vertreter haben einen süßen Geschmack.

Gruppenvertreter

Was ist ein einfaches Kohlenhydrat? Erstens ist es Glukose oder Aldohexose. Es existiert in zwei Formen - linear und zyklisch. Am genauesten beschreibt Chemische Eigenschaften Glukose ist die zweite Form. Aldohexose enthält sechs Kohlenstoffatome. Die Substanz hat keine Farbe, aber sie schmeckt süß. Es ist sehr gut wasserlöslich. Sie können Glukose fast überall finden. Es kommt in den Organen von Pflanzen und Tieren sowie in Früchten vor. In der Natur entsteht Aldohexose bei der Photosynthese.

Zweitens ist es Galactose. Die Substanz unterscheidet sich von Glucose durch die räumliche Anordnung der Hydroxyl- und Wasserstoffgruppen am vierten Kohlenstoffatom im Molekül. Hat einen süßen Geschmack. Es kommt in tierischen und pflanzlichen Organismen sowie in einigen Mikroorganismen vor.

Und der dritte Vertreter der einfachen Kohlenhydrate ist Fruchtzucker. Die Substanz ist der süßeste Zucker, der in der Natur produziert wird. Es ist in Gemüse, Obst, Beeren und Honig enthalten. Leicht vom Körper aufgenommen, schnell aus dem Blut ausgeschieden, was zu seiner Verwendung bei Patienten mit Diabetes mellitus führt. Fruchtzucker ist kalorienarm und verursacht keine Karies.

Lebensmittel, die reich an einfachen Zuckern sind

  1. 90 g - Maissirup.
  2. 50 g - raffinierter Zucker.
  3. 40,5 g - Honig.
  4. 24 g - Feigen.
  5. 13 g - getrocknete Aprikosen.
  6. 4 g - Pfirsiche.

Die tägliche Einnahme dieser Substanz sollte 50 g nicht überschreiten.Bei Glukose ist das Verhältnis in diesem Fall etwas anders:

  1. 99,9 g - raffinierter Zucker.
  2. 80,3 g - Honig.
  3. 69,2 g - Datteln.
  4. 66,9 g - Graupen.
  5. 61,8 g - Haferflocken.
  6. 60,4 g - Buchweizen.

Um die tägliche Aufnahme einer Substanz zu berechnen, müssen Sie das Gewicht mit 2,6 multiplizieren. Einfachzucker liefern dem menschlichen Körper Energie und helfen, mit verschiedenen Toxinen fertig zu werden. Aber wir dürfen nicht vergessen, dass es bei jedem Einsatz eine Maßnahme geben muss, sonst lassen schwerwiegende Folgen nicht lange auf sich warten.

Oligosaccharide

Die häufigsten Arten in dieser Gruppe sind Disaccharide. Was sind Kohlenhydrate mit mehreren Monosacchariden? Sie sind Glykoside, die Monomere enthalten. Monosaccharide sind durch eine glykosidische Bindung verbunden, die durch die Kombination von Hydroxylgruppen entsteht. Basierend auf der Struktur werden Disaccharide in zwei Typen unterteilt: reduzierend und nicht reduzierend. Die erste ist Maltose und Lactose und die zweite Saccharose. Der reduzierende Typ hat eine gute Löslichkeit und einen süßen Geschmack. Oligosaccharide können mehr als zwei Monomere enthalten. Wenn Monosaccharide gleich sind, dann gehört ein solches Kohlenhydrat zur Gruppe der Homopolysaccharide, und wenn sie verschieden sind, dann zu den Heteropolysacchariden. Ein Beispiel des letzteren Typs ist das Trisaccharid Raffinose, das Reste von Glucose, Fructose und Galactose enthält.

Lactose, Maltose und Saccharose

Letztere Substanz löst sich gut auf, hat einen süßen Geschmack. Zuckerrohr und Rüben sind eine Quelle für Disaccharide. Im Körper wird Saccharose durch Hydrolyse in Glukose und Fruktose zerlegt. Das Disaccharid kommt in großen Mengen in raffiniertem Zucker (99,9 g pro 100 g Produkt), in Pflaumen (67,4 g), in Weintrauben (61,5 g) und in anderen Produkten vor. Bei einer übermäßigen Aufnahme dieser Substanz kann sich fast alles in Fett verwandeln Nährstoffe. Es erhöht auch den Cholesterinspiegel im Blut. Eine große Menge Saccharose wirkt sich negativ auf die Darmflora aus.

Milchzucker oder Laktose kommt in Milch und seinen Derivaten vor. Das Kohlenhydrat wird durch ein spezielles Enzym in Galactose und Glucose zerlegt. Wenn es nicht im Körper ist, tritt eine Milchunverträglichkeit auf. Malzzucker oder Maltose ist ein Zwischenprodukt des Abbaus von Glykogen und Stärke. In Lebensmitteln findet sich der Stoff in Malz, Melasse, Honig und gekeimtem Getreide. Die Zusammensetzung von Lactose- und Maltosekohlenhydraten wird durch Monomerreste dargestellt. Nur im ersten Fall handelt es sich um D-Galactose und D-Glucose, im zweiten Fall wird die Substanz durch zwei D-Glucosen repräsentiert. Beide Kohlenhydrate sind reduzierende Zucker.

Polysaccharide

Was sind komplexe Kohlenhydrate? Sie unterscheiden sich in mehreren Punkten voneinander:

1. Nach der Struktur der in der Kette enthaltenen Monomere.

2. In der Reihenfolge des Auffindens von Monosacchariden in der Kette.

3. Je nach Art der glykosidischen Bindungen, die die Monomere verbinden.

Wie bei den Oligosacchariden können in dieser Gruppe Homo- und Heteropolysaccharide unterschieden werden. Die erste umfasst Cellulose und Stärke und die zweite - Chitin, Glykogen. Polysaccharide sind eine wichtige Energiequelle, die durch den Stoffwechsel entsteht. Sie sind an Immunprozessen sowie an der Adhäsion von Zellen in Geweben beteiligt.

Die Liste der komplexen Kohlenhydrate wird durch Stärke, Cellulose und Glykogen dargestellt, wir werden sie genauer betrachten. Einer der Hauptlieferanten von Kohlenhydraten ist Stärke. Dies sind Verbindungen, die Hunderttausende von Glucoseresten enthalten. Kohlenhydrate werden in Form von Körnern in den Chloroplasten von Pflanzen geboren und gespeichert. Durch Hydrolyse wird Stärke in wasserlösliche Zucker umgewandelt, was die freie Bewegung durch die Pflanzenteile erleichtert. Einmal im menschlichen Körper beginnen Kohlenhydrate bereits im Mund abgebaut zu werden. BEIM die meisten Stärke enthält Getreidekörner, Knollen und Zwiebeln von Pflanzen. In der Ernährung macht es etwa 80% der Gesamtmenge an Kohlenhydraten aus. Die größte Menge an Stärke pro 100 g Produkt findet sich in Reis - 78 g, etwas weniger in Nudeln und Hirse - 70 und 69 g. Einhundert Gramm Roggenbrot enthalten 48 g Stärke und in derselben Portion Kartoffeln seine Menge erreicht nur 15 g Der tägliche Bedarf des menschlichen Körpers an diesem Kohlenhydrat beträgt 330-450 g.

Getreideprodukte enthalten auch Ballaststoffe oder Zellulose. Kohlenhydrate sind Bestandteil der Zellwände von Pflanzen. Sein Beitrag beträgt 40-50%. Ein Mensch ist nicht in der Lage, Zellulose zu verdauen, daher gibt es kein notwendiges Enzym, das den Hydrolyseprozess durchführen würde. Aber die weichen Ballaststoffe, wie Kartoffeln und Gemüse, können im Verdauungstrakt gut aufgenommen werden. Wie hoch ist der Gehalt dieses Kohlenhydrats in 100 g Nahrung? Roggen- und Weizenkleie sind die ballaststoffreichsten Lebensmittel. Ihr Inhalt erreicht 44 g. Kakaopulver enthält 35 g nahrhafte Kohlenhydrate und getrocknete Pilze nur 25. Hagebutten und gemahlener Kaffee enthalten 22 und 21 g. Einige der ballaststoffreichsten Früchte sind Aprikosen und Feigen. Der Kohlenhydratgehalt in ihnen erreicht 18 g. Eine Person muss bis zu 35 g Zellulose pro Tag essen. Außerdem tritt der größte Bedarf an Kohlenhydraten im Alter von 14 bis 50 Jahren auf.

Glykogenpolysaccharid wird als Energiestoff für die gute Funktion von Muskeln und Organen verwendet. Es hat keinen Nährwert, da sein Gehalt in Lebensmitteln äußerst gering ist. Das Kohlenhydrat wird wegen der Ähnlichkeit in der Struktur manchmal als tierische Stärke bezeichnet. In dieser Form wird Glukose in tierischen Zellen gespeichert (in der größten Menge in Leber und Muskeln). In der Leber von Erwachsenen kann die Kohlenhydratmenge bis zu 120 g erreichen, führend im Glykogengehalt sind Zucker, Honig und Schokolade. Datteln, Rosinen, Marmelade, süße Strohhalme, Bananen, Wassermelonen, Kakis und Feigen können ebenfalls mit einem hohen Kohlenhydratgehalt aufwarten. Die tägliche Norm für Glykogen beträgt 100 g pro Tag. Wenn eine Person aktiv Sport treibt oder Leistungen erbringt gut gemacht In Verbindung mit geistiger Aktivität sollte die Menge an Kohlenhydraten erhöht werden. Glykogen bezieht sich auf leicht verdauliche Kohlenhydrate, die in Reserve gespeichert werden, was nur bei Energiemangel aus anderen Stoffen auf seine Verwendung hinweist.

Zu den Polysacchariden gehören auch die folgenden Substanzen:

1. Chitin. Es ist Teil der Hornhaut von Arthropoden, kommt in Pilzen vor, niedere Pflanzen und bei Wirbellosen. Die Substanz spielt die Rolle eines Trägermaterials und erfüllt auch mechanische Funktionen.

2. Muramin. Es ist als stützendes mechanisches Material der bakteriellen Zellwand vorhanden.

3. Dextrane. Polysaccharide dienen als Ersatz für Blutplasma. Sie werden durch Einwirkung von Mikroorganismen auf eine Saccharoselösung gewonnen.

4. Pektinsubstanzen. Zusammen mit organischen Säuren können sie Gelee und Marmelade bilden.

Proteine ​​und Kohlenhydrate. Produkte. Aufführen

Der menschliche Körper benötigt jeden Tag eine bestimmte Menge an Nährstoffen. Beispielsweise sollten Kohlenhydrate in einer Menge von 6-8 g pro 1 kg Körpergewicht verzehrt werden. Wenn eine Person einen aktiven Lebensstil führt, steigt die Zahl. Kohlenhydrate sind fast immer in Lebensmitteln enthalten. Lassen Sie uns eine Liste ihrer Anwesenheit pro 100 g Lebensmittel erstellen:

  1. Die größte Menge (mehr als 70 g) findet sich in Zucker, Müsli, Marmelade, Stärke und Reis.
  2. Von 31 bis 70 g - in Mehl und Süßwaren, in Nudeln, Müsli, Trockenfrüchten, Bohnen und Erbsen.
  3. 16 bis 30 g Kohlenhydrate enthalten Bananen, Eiscreme, Hagebutten, Kartoffeln, Tomatenmark, Kompotte, Kokosnuss, Sonnenblumenkerne und Cashewnüsse.
  4. Von 6 bis 15 g - in Petersilie, Dill, Rüben, Karotten, Stachelbeeren, Johannisbeeren, Bohnen, Früchten, Nüssen, Mais, Bier, Kürbiskernen, getrockneten Pilzen und so weiter.
  5. Bis zu 5 g Kohlenhydrate sind in Frühlingszwiebeln, Tomaten, Zucchini, Kürbissen, Kohl, Gurken, Preiselbeeren, Milchprodukten, Eiern usw. enthalten.

Nährstoff sollte nicht weniger als 100 g pro Tag in den Körper gelangen. Andernfalls erhält die Zelle nicht die benötigte Energie. Das Gehirn ist nicht in der Lage, seine Analyse- und Koordinationsfunktionen auszuführen, daher erhalten die Muskeln keine Befehle, was schließlich zur Ketose führen wird.

Was sind Kohlenhydrate, haben wir gesagt, aber neben ihnen sind Proteine ​​eine unverzichtbare Substanz für das Leben. Sie sind eine Kette von Aminosäuren verbunden Peptidbindung. Je nach Zusammensetzung unterscheiden sich Proteine ​​in ihren Eigenschaften. Diese Stoffe spielen zum Beispiel eine Rolle Baumaterial, da jede Zelle des Körpers sie in ihrer Zusammensetzung enthält. Einige Arten von Proteinen sind Enzyme und Hormone sowie eine Energiequelle. Sie beeinflussen die Entwicklung und das Wachstum des Körpers, regulieren den Säure-Basen- und Wasserhaushalt.

Die Tabelle der Kohlenhydrate in Lebensmitteln zeigte, dass ihre Anzahl in Fleisch und Fisch sowie in einigen Gemüsesorten minimal ist. Wie hoch ist der Proteingehalt in Lebensmitteln? Das reichste Produkt ist Speisegelatine, sie enthält 87,2 g der Substanz pro 100 g. Als nächstes kommen Senf (37,1 g) und Soja (34,9 g). Das Verhältnis von Proteinen und Kohlenhydraten in der täglichen Aufnahme pro 1 kg Gewicht sollte 0,8 g und 7 g betragen.Für eine bessere Aufnahme der ersten Substanz ist es notwendig, Nahrung zu sich zu nehmen, die sie zu sich nimmt leichte Gestalt. Dies gilt für Proteine, die in Milchprodukten und Eiern enthalten sind. Proteine ​​und Kohlenhydrate lassen sich in einer Mahlzeit nicht gut kombinieren. Die Tabelle zur getrennten Ernährung zeigt, welche Variationen am besten vermieden werden:

  1. Reis mit Fisch.
  2. Kartoffeln und Huhn.
  3. Nudeln und Fleisch.
  4. Sandwiches mit Käse und Schinken.
  5. Panierter Fisch.
  6. Walnusskuchen.
  7. Omelette mit Schinken.
  8. Mehl mit Beeren.
  9. Melone und Wassermelone sollten separat eine Stunde vor der Hauptmahlzeit gegessen werden.

Gut passen:

  1. Fleisch mit Salat.
  2. Fisch mit Gemüse oder gegrillt.
  3. Käse und Schinken getrennt.
  4. Nüsse im Allgemeinen.
  5. Omelette mit Gemüse.

Die Regeln der getrennten Ernährung basieren auf Kenntnissen der Gesetze der Biochemie und Informationen über die Arbeit von Enzymen und Lebensmittelsäften. Für eine gute Verdauung benötigt jede Art von Nahrung einen individuellen Satz an Magensaft, eine bestimmte Menge Wasser, ein alkalisches oder saures Milieu und das Vorhandensein oder Fehlen von Enzymen. Eine kohlenhydratreiche Mahlzeit zum Beispiel benötigt für eine bessere Verdauung Verdauungssäfte mit basischen Enzymen, die diese organischen Stoffe abbauen. Aber proteinreiche Lebensmittel erfordern bereits saure Enzyme... Indem man die einfachen Regeln der Lebensmittelkonformität befolgt, stärkt ein Mensch seine Gesundheit und hält ein konstantes Gewicht, ohne die Hilfe von Diäten.

„Schlechte“ und „gute“ Kohlenhydrate

"Schnelle" (oder "falsche") Substanzen sind Verbindungen, die eine kleine Anzahl von Monosacchariden enthalten. Solche Kohlenhydrate können schnell verdaut werden, den Blutzuckerspiegel erhöhen und auch die Menge an freigesetztem Insulin erhöhen. Letzteres senkt den Blutzuckerspiegel, indem es ihn in Fett umwandelt. Der Verzehr von Kohlenhydraten nach dem Abendessen ist für eine Person, die ihr Gewicht überwacht, die größte Gefahr. Zu diesem Zeitpunkt ist der Körper am stärksten für eine Zunahme der Fettmasse prädisponiert. Was genau enthält die falschen Kohlenhydrate? Unten aufgeführte Produkte:

1. Süßwaren.

3. Marmelade.

4. Süße Säfte und Kompotte.

7. Kartoffeln.

8. Nudeln.

9. Weißer Reis

10. Schokolade.

Grundsätzlich handelt es sich um Produkte, die keiner langen Vorbereitung bedürfen. Nach so einer Mahlzeit muss man sich viel bewegen, sonst macht sich das zusätzliche Gewicht bemerkbar.

"Richtige" Kohlenhydrate enthalten mehr als drei einfache Monomere. Sie werden langsam resorbiert und verursachen keinen starken Zuckeranstieg. Dieser Typ Kohlenhydrate enthalten eine große Menge an Ballaststoffen, die praktisch nicht verdaut werden. In dieser Hinsicht bleibt eine Person für den Abbau solcher Lebensmittel lange satt, zusätzliche Energie dazu kommt eine natürliche reinigung des körpers. Lassen Sie uns eine Liste komplexer Kohlenhydrate erstellen, oder besser gesagt, der Produkte, in denen sie enthalten sind:

  1. Brot mit Kleie und Vollkorn.
  2. Buchweizen und Haferflocken.
  3. Grünes Gemüse.
  4. Grobe Nudeln.
  5. Pilze.
  6. Erbsen.
  7. Rote Bohnen.
  8. Tomaten.
  9. Milchprodukte.
  10. Früchte.
  11. Bitter Schokolade.
  12. Beeren.
  13. Linsen.

Um sich in guter Form zu halten, müssen Sie mehr „gute“ Kohlenhydrate in Lebensmitteln zu sich nehmen und so wenig „schlechte“ wie möglich. Letztere werden am besten in der ersten Tageshälfte eingenommen. Wenn Sie abnehmen müssen, ist es besser, die Verwendung "falscher" Kohlenhydrate auszuschließen, da eine Person bei ihrer Verwendung Lebensmittel in einem größeren Volumen erhält. "Richtig" Nährstoffe kalorienarm, können sie lange ein Sättigungsgefühl hinterlassen. Damit ist keine komplette Absage an „schlechte“ Kohlenhydrate gemeint, sondern nur deren sinnvoller Einsatz.